1
0
Fork 0
bind9/lib/dns/keymgr.c
Daniel Baumann f66ff7eae6
Adding upstream version 1:9.20.9.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 13:32:37 +02:00

2901 lines
84 KiB
C

/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* SPDX-License-Identifier: MPL-2.0
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
/*! \file */
#include <inttypes.h>
#include <stdbool.h>
#include <stdlib.h>
#include <unistd.h>
#include <isc/buffer.h>
#include <isc/dir.h>
#include <isc/mem.h>
#include <isc/result.h>
#include <isc/string.h>
#include <isc/time.h>
#include <isc/util.h>
#include <dns/dnssec.h>
#include <dns/kasp.h>
#include <dns/keymgr.h>
#include <dns/keyvalues.h>
#include <dns/log.h>
#include <dst/dst.h>
#define RETERR(x) \
do { \
result = (x); \
if (result != ISC_R_SUCCESS) \
goto failure; \
} while (0)
/*
* Set key state to `target` state and change last changed
* to `time`, only if key state has not been set before.
*/
#define INITIALIZE_STATE(key, state, timing, target, time) \
do { \
dst_key_state_t s; \
char keystr[DST_KEY_FORMATSIZE]; \
if (dst_key_getstate((key), (state), &s) == ISC_R_NOTFOUND) { \
dst_key_setstate((key), (state), (target)); \
dst_key_settime((key), (timing), time); \
\
if (isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(1))) { \
dst_key_format((key), keystr, sizeof(keystr)); \
isc_log_write( \
dns_lctx, DNS_LOGCATEGORY_DNSSEC, \
DNS_LOGMODULE_DNSSEC, \
ISC_LOG_DEBUG(3), \
"keymgr: DNSKEY %s (%s) initialize " \
"%s state to %s (policy %s)", \
keystr, keymgr_keyrole(key), \
keystatetags[state], \
keystatestrings[target], \
dns_kasp_getname(kasp)); \
} \
} \
} while (0)
/* Shorter keywords for better readability. */
#define HIDDEN DST_KEY_STATE_HIDDEN
#define RUMOURED DST_KEY_STATE_RUMOURED
#define OMNIPRESENT DST_KEY_STATE_OMNIPRESENT
#define UNRETENTIVE DST_KEY_STATE_UNRETENTIVE
#define NA DST_KEY_STATE_NA
/* Quickly get key state timing metadata. */
#define NUM_KEYSTATES (DST_MAX_KEYSTATES)
static int keystatetimes[NUM_KEYSTATES] = { DST_TIME_DNSKEY, DST_TIME_ZRRSIG,
DST_TIME_KRRSIG, DST_TIME_DS };
/* Readable key state types and values. */
static const char *keystatetags[NUM_KEYSTATES] = { "DNSKEY", "ZRRSIG", "KRRSIG",
"DS" };
static const char *keystatestrings[4] = { "HIDDEN", "RUMOURED", "OMNIPRESENT",
"UNRETENTIVE" };
static void
log_key_overflow(dst_key_t *key, const char *what) {
char keystr[DST_KEY_FORMATSIZE];
dst_key_format(key, keystr, sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC,
ISC_LOG_WARNING,
"keymgr: DNSKEY %s (%s) calculation overflowed", keystr,
what);
}
/*
* Print key role.
*
*/
static const char *
keymgr_keyrole(dst_key_t *key) {
bool ksk = false, zsk = false;
isc_result_t ret;
ret = dst_key_getbool(key, DST_BOOL_KSK, &ksk);
if (ret != ISC_R_SUCCESS) {
return "UNKNOWN";
}
ret = dst_key_getbool(key, DST_BOOL_ZSK, &zsk);
if (ret != ISC_R_SUCCESS) {
return "UNKNOWN";
}
if (ksk && zsk) {
return "CSK";
} else if (ksk) {
return "KSK";
} else if (zsk) {
return "ZSK";
}
return "NOSIGN";
}
/*
* Set the remove time on key given its retire time.
*
*/
static void
keymgr_settime_remove(dns_dnsseckey_t *key, dns_kasp_t *kasp) {
isc_stdtime_t retire = 0, remove = 0, ksk_remove = 0, zsk_remove = 0;
bool zsk = false, ksk = false;
isc_result_t ret;
REQUIRE(key != NULL);
REQUIRE(key->key != NULL);
ret = dst_key_gettime(key->key, DST_TIME_INACTIVE, &retire);
if (ret != ISC_R_SUCCESS) {
return;
}
ret = dst_key_getbool(key->key, DST_BOOL_ZSK, &zsk);
if (ret == ISC_R_SUCCESS && zsk) {
dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true);
/* ZSK: Iret = Dsgn + Dprp + TTLsig */
zsk_remove =
retire + ttlsig + dns_kasp_zonepropagationdelay(kasp) +
dns_kasp_retiresafety(kasp) + dns_kasp_signdelay(kasp);
}
ret = dst_key_getbool(key->key, DST_BOOL_KSK, &ksk);
if (ret == ISC_R_SUCCESS && ksk) {
/* KSK: Iret = DprpP + TTLds */
ksk_remove = retire + dns_kasp_dsttl(kasp) +
dns_kasp_parentpropagationdelay(kasp) +
dns_kasp_retiresafety(kasp);
}
remove = ISC_MAX(ksk_remove, zsk_remove);
dst_key_settime(key->key, DST_TIME_DELETE, remove);
}
/*
* Set the SyncPublish time (when the DS may be submitted to the parent).
*
*/
void
dns_keymgr_settime_syncpublish(dst_key_t *key, dns_kasp_t *kasp, bool first) {
isc_stdtime_t published, syncpublish;
bool ksk = false;
isc_result_t ret;
REQUIRE(key != NULL);
ret = dst_key_gettime(key, DST_TIME_PUBLISH, &published);
if (ret != ISC_R_SUCCESS) {
return;
}
ret = dst_key_getbool(key, DST_BOOL_KSK, &ksk);
if (ret != ISC_R_SUCCESS || !ksk) {
return;
}
syncpublish = published + dst_key_getttl(key) +
dns_kasp_zonepropagationdelay(kasp) +
dns_kasp_publishsafety(kasp);
if (first) {
/* Also need to wait until the signatures are omnipresent. */
isc_stdtime_t zrrsig_present;
dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true);
zrrsig_present = published + ttlsig +
dns_kasp_zonepropagationdelay(kasp);
if (zrrsig_present > syncpublish) {
syncpublish = zrrsig_present;
}
}
dst_key_settime(key, DST_TIME_SYNCPUBLISH, syncpublish);
uint32_t lifetime = 0;
ret = dst_key_getnum(key, DST_NUM_LIFETIME, &lifetime);
if (ret == ISC_R_SUCCESS && lifetime > 0) {
dst_key_settime(key, DST_TIME_SYNCDELETE,
(syncpublish + lifetime));
}
}
/*
* Calculate prepublication time of a successor key of 'key'.
* This function can have side effects:
* 1. If there is no active time set, which would be super weird, set it now.
* 2. If there is no published time set, also super weird, set it now.
* 3. If there is no syncpublished time set, set it now.
* 4. If the lifetime is not set, it will be set now.
* 5. If there should be a retire time and it is not set, it will be set now.
* 6. The removed time is adjusted accordingly.
*
* This returns when the successor key needs to be published in the zone.
* A special value of 0 means there is no need for a successor.
*
*/
static isc_stdtime_t
keymgr_prepublication_time(dns_dnsseckey_t *key, dns_kasp_t *kasp,
uint32_t lifetime, isc_stdtime_t now) {
isc_result_t ret;
isc_stdtime_t active, retire, pub, prepub;
bool zsk = false, ksk = false;
REQUIRE(key != NULL);
REQUIRE(key->key != NULL);
active = 0;
pub = 0;
retire = 0;
/*
* An active key must have publish and activate timing
* metadata.
*/
ret = dst_key_gettime(key->key, DST_TIME_ACTIVATE, &active);
if (ret != ISC_R_SUCCESS) {
/* Super weird, but if it happens, set it to now. */
dst_key_settime(key->key, DST_TIME_ACTIVATE, now);
active = now;
}
ret = dst_key_gettime(key->key, DST_TIME_PUBLISH, &pub);
if (ret != ISC_R_SUCCESS) {
/* Super weird, but if it happens, set it to now. */
dst_key_settime(key->key, DST_TIME_PUBLISH, now);
pub = now;
}
/*
* To calculate phase out times ("Retired", "Removed", ...),
* the key lifetime is required.
*/
uint32_t klifetime = 0;
ret = dst_key_getnum(key->key, DST_NUM_LIFETIME, &klifetime);
if (ret != ISC_R_SUCCESS) {
dst_key_setnum(key->key, DST_NUM_LIFETIME, lifetime);
klifetime = lifetime;
}
/*
* Calculate prepublication time.
*/
prepub = dst_key_getttl(key->key) + dns_kasp_publishsafety(kasp) +
dns_kasp_zonepropagationdelay(kasp);
ret = dst_key_getbool(key->key, DST_BOOL_KSK, &ksk);
if (ret == ISC_R_SUCCESS && ksk) {
isc_stdtime_t syncpub;
/*
* Set PublishCDS if not set.
*/
ret = dst_key_gettime(key->key, DST_TIME_SYNCPUBLISH, &syncpub);
if (ret != ISC_R_SUCCESS) {
uint32_t tag;
isc_stdtime_t syncpub1, syncpub2;
syncpub1 = pub + prepub;
syncpub2 = 0;
ret = dst_key_getnum(key->key, DST_NUM_PREDECESSOR,
&tag);
if (ret != ISC_R_SUCCESS) {
/*
* No predecessor, wait for zone to be
* completely signed.
*/
dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp,
true);
syncpub2 = pub + ttlsig +
dns_kasp_zonepropagationdelay(kasp);
}
syncpub = ISC_MAX(syncpub1, syncpub2);
dst_key_settime(key->key, DST_TIME_SYNCPUBLISH,
syncpub);
if (klifetime > 0) {
dst_key_settime(key->key, DST_TIME_SYNCDELETE,
(syncpub + klifetime));
}
}
}
/*
* Not sure what to do when dst_key_getbool() fails here. Extending
* the prepublication time anyway is arguably the safest thing to do,
* so ignore the result code.
*/
(void)dst_key_getbool(key->key, DST_BOOL_ZSK, &zsk);
ret = dst_key_gettime(key->key, DST_TIME_INACTIVE, &retire);
if (ret != ISC_R_SUCCESS) {
if (klifetime == 0) {
/*
* No inactive time and no lifetime,
* so no need to start a rollover.
*/
return 0;
}
if (ISC_OVERFLOW_ADD(active, klifetime, &retire)) {
log_key_overflow(key->key, "retire");
retire = UINT32_MAX;
}
dst_key_settime(key->key, DST_TIME_INACTIVE, retire);
}
/*
* Update remove time.
*/
keymgr_settime_remove(key, kasp);
/*
* Publish successor 'prepub' time before the 'retire' time of 'key'.
*/
if (prepub > retire) {
/* We should have already prepublished the new key. */
return now;
}
return retire - prepub;
}
static void
keymgr_key_retire(dns_dnsseckey_t *key, dns_kasp_t *kasp, isc_stdtime_t now) {
char keystr[DST_KEY_FORMATSIZE];
isc_result_t ret;
isc_stdtime_t retire;
dst_key_state_t s;
bool ksk = false, zsk = false;
REQUIRE(key != NULL);
REQUIRE(key->key != NULL);
/* This key wants to retire and hide in a corner. */
ret = dst_key_gettime(key->key, DST_TIME_INACTIVE, &retire);
if (ret != ISC_R_SUCCESS || (retire > now)) {
dst_key_settime(key->key, DST_TIME_INACTIVE, now);
}
dst_key_setstate(key->key, DST_KEY_GOAL, HIDDEN);
keymgr_settime_remove(key, kasp);
/* This key may not have key states set yet. Pretend as if they are
* in the OMNIPRESENT state.
*/
if (dst_key_getstate(key->key, DST_KEY_DNSKEY, &s) != ISC_R_SUCCESS) {
dst_key_setstate(key->key, DST_KEY_DNSKEY, OMNIPRESENT);
dst_key_settime(key->key, DST_TIME_DNSKEY, now);
}
ret = dst_key_getbool(key->key, DST_BOOL_KSK, &ksk);
if (ret == ISC_R_SUCCESS && ksk) {
if (dst_key_getstate(key->key, DST_KEY_KRRSIG, &s) !=
ISC_R_SUCCESS)
{
dst_key_setstate(key->key, DST_KEY_KRRSIG, OMNIPRESENT);
dst_key_settime(key->key, DST_TIME_KRRSIG, now);
}
if (dst_key_getstate(key->key, DST_KEY_DS, &s) != ISC_R_SUCCESS)
{
dst_key_setstate(key->key, DST_KEY_DS, OMNIPRESENT);
dst_key_settime(key->key, DST_TIME_DS, now);
}
}
ret = dst_key_getbool(key->key, DST_BOOL_ZSK, &zsk);
if (ret == ISC_R_SUCCESS && zsk) {
if (dst_key_getstate(key->key, DST_KEY_ZRRSIG, &s) !=
ISC_R_SUCCESS)
{
dst_key_setstate(key->key, DST_KEY_ZRRSIG, OMNIPRESENT);
dst_key_settime(key->key, DST_TIME_ZRRSIG, now);
}
}
dst_key_format(key->key, keystr, sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC,
ISC_LOG_INFO, "keymgr: retire DNSKEY %s (%s)", keystr,
keymgr_keyrole(key->key));
}
/* Update lifetime and retire and remove time accordingly. */
static void
keymgr_key_update_lifetime(dns_dnsseckey_t *key, dns_kasp_t *kasp,
isc_stdtime_t now, uint32_t lifetime) {
uint32_t l;
dst_key_state_t g = HIDDEN;
isc_result_t r;
(void)dst_key_getstate(key->key, DST_KEY_GOAL, &g);
r = dst_key_getnum(key->key, DST_NUM_LIFETIME, &l);
/* Initialize lifetime. */
if (r != ISC_R_SUCCESS) {
dst_key_setnum(key->key, DST_NUM_LIFETIME, lifetime);
l = lifetime - 1;
}
/* Skip keys that are still hidden or already retiring. */
if (g != OMNIPRESENT) {
return;
}
/* Update lifetime and timing metadata. */
if (l != lifetime) {
dst_key_setnum(key->key, DST_NUM_LIFETIME, lifetime);
if (lifetime > 0) {
uint32_t a = now;
uint32_t inactive;
(void)dst_key_gettime(key->key, DST_TIME_ACTIVATE, &a);
if (ISC_OVERFLOW_ADD(a, lifetime, &inactive)) {
log_key_overflow(key->key, "inactive");
inactive = UINT32_MAX;
}
dst_key_settime(key->key, DST_TIME_INACTIVE, inactive);
keymgr_settime_remove(key, kasp);
} else {
dst_key_unsettime(key->key, DST_TIME_INACTIVE);
dst_key_unsettime(key->key, DST_TIME_DELETE);
dst_key_unsettime(key->key, DST_TIME_SYNCDELETE);
}
}
}
static bool
keymgr_keyid_conflict(dst_key_t *newkey, uint16_t min, uint16_t max,
dns_dnsseckeylist_t *keys) {
uint16_t id = dst_key_id(newkey);
uint32_t rid = dst_key_rid(newkey);
uint32_t alg = dst_key_alg(newkey);
if (id < min || id > max) {
return true;
}
if (rid < min || rid > max) {
return true;
}
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keys); dkey != NULL;
dkey = ISC_LIST_NEXT(dkey, link))
{
if (dst_key_alg(dkey->key) != alg) {
continue;
}
if (dst_key_id(dkey->key) == id ||
dst_key_rid(dkey->key) == id ||
dst_key_id(dkey->key) == rid ||
dst_key_rid(dkey->key) == rid)
{
return true;
}
}
return false;
}
/*
* Create a new key for 'origin' given the kasp key configuration 'kkey'.
* This will check for key id collisions with keys in 'keylist'.
* The created key will be stored in 'dst_key'.
*
*/
static isc_result_t
keymgr_createkey(dns_kasp_key_t *kkey, const dns_name_t *origin,
dns_kasp_t *kasp, dns_rdataclass_t rdclass, isc_mem_t *mctx,
const char *keydir, dns_dnsseckeylist_t *keylist,
dns_dnsseckeylist_t *newkeys, dst_key_t **dst_key) {
isc_result_t result = ISC_R_SUCCESS;
bool conflict = false;
int flags = DNS_KEYOWNER_ZONE;
dst_key_t *newkey = NULL;
uint32_t alg = dns_kasp_key_algorithm(kkey);
dns_keystore_t *keystore = dns_kasp_key_keystore(kkey);
const char *dir = NULL;
int size = dns_kasp_key_size(kkey);
if (dns_kasp_key_ksk(kkey)) {
flags |= DNS_KEYFLAG_KSK;
}
do {
if (keystore == NULL) {
RETERR(dst_key_generate(origin, alg, size, 0, flags,
DNS_KEYPROTO_DNSSEC, rdclass,
NULL, mctx, &newkey, NULL));
} else {
RETERR(dns_keystore_keygen(
keystore, origin, dns_kasp_getname(kasp),
rdclass, mctx, alg, size, flags, &newkey));
}
/* Key collision? */
conflict = keymgr_keyid_conflict(newkey, kkey->tag_min,
kkey->tag_max, keylist);
if (!conflict) {
conflict = keymgr_keyid_conflict(
newkey, kkey->tag_min, kkey->tag_max, newkeys);
}
if (conflict) {
/* Try again. */
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_WARNING,
"keymgr: key collision id %d",
dst_key_id(newkey));
dst_key_free(&newkey);
}
} while (conflict);
INSIST(!conflict);
dst_key_setnum(newkey, DST_NUM_LIFETIME, dns_kasp_key_lifetime(kkey));
dst_key_setbool(newkey, DST_BOOL_KSK, dns_kasp_key_ksk(kkey));
dst_key_setbool(newkey, DST_BOOL_ZSK, dns_kasp_key_zsk(kkey));
dir = dns_keystore_directory(keystore, keydir);
if (dir != NULL) {
dst_key_setdirectory(newkey, dir);
}
*dst_key = newkey;
return ISC_R_SUCCESS;
failure:
return result;
}
/*
* Return the desired state for this record 'type'. The desired state depends
* on whether the key wants to be active, or wants to retire. This implements
* the edges of our state machine:
*
* ----> OMNIPRESENT ----
* | |
* | \|/
*
* RUMOURED <----> UNRETENTIVE
*
* /|\ |
* | |
* ---- HIDDEN <----
*
* A key that wants to be active eventually wants to have its record types
* in the OMNIPRESENT state (that is, all resolvers that know about these
* type of records know about these records specifically).
*
* A key that wants to be retired eventually wants to have its record types
* in the HIDDEN state (that is, all resolvers that know about these type
* of records specifically don't know about these records).
*
*/
static dst_key_state_t
keymgr_desiredstate(dns_dnsseckey_t *key, dst_key_state_t state) {
dst_key_state_t goal;
if (dst_key_getstate(key->key, DST_KEY_GOAL, &goal) != ISC_R_SUCCESS) {
/* No goal? No movement. */
return state;
}
if (goal == HIDDEN) {
switch (state) {
case RUMOURED:
case OMNIPRESENT:
return UNRETENTIVE;
case HIDDEN:
case UNRETENTIVE:
return HIDDEN;
default:
return state;
}
} else if (goal == OMNIPRESENT) {
switch (state) {
case RUMOURED:
case OMNIPRESENT:
return OMNIPRESENT;
case HIDDEN:
case UNRETENTIVE:
return RUMOURED;
default:
return state;
}
}
/* Unknown goal. */
return state;
}
/*
* Check if 'key' matches specific 'states'.
* A state in 'states' that is NA matches any state.
* A state in 'states' that is HIDDEN also matches if the state is not set.
* If 'next_state' is set (not NA), we are pretending as if record 'type' of
* 'subject' key already transitioned to the 'next state'.
*
*/
static bool
keymgr_key_match_state(dst_key_t *key, dst_key_t *subject, int type,
dst_key_state_t next_state,
dst_key_state_t states[NUM_KEYSTATES]) {
REQUIRE(key != NULL);
for (int i = 0; i < NUM_KEYSTATES; i++) {
dst_key_state_t state;
if (states[i] == NA) {
continue;
}
if (next_state != NA && i == type &&
dst_key_alg(key) == dst_key_alg(subject) &&
dst_key_id(key) == dst_key_id(subject))
{
/* Check next state rather than current state. */
state = next_state;
} else if (dst_key_getstate(key, i, &state) != ISC_R_SUCCESS) {
/* This is fine only if expected state is HIDDEN. */
if (states[i] != HIDDEN) {
return false;
}
continue;
}
if (state != states[i]) {
return false;
}
}
/* Match. */
return true;
}
/*
* Key d directly depends on k if d is the direct predecessor of k.
*/
static bool
keymgr_direct_dep(dst_key_t *d, dst_key_t *k) {
uint32_t s, p;
if (dst_key_getnum(d, DST_NUM_SUCCESSOR, &s) != ISC_R_SUCCESS) {
return false;
}
if (dst_key_getnum(k, DST_NUM_PREDECESSOR, &p) != ISC_R_SUCCESS) {
return false;
}
return dst_key_id(d) == p && dst_key_id(k) == s;
}
/*
* Determine which key (if any) has a dependency on k.
*/
static bool
keymgr_dep(dst_key_t *k, dns_dnsseckeylist_t *keyring, uint32_t *dep) {
for (dns_dnsseckey_t *d = ISC_LIST_HEAD(*keyring); d != NULL;
d = ISC_LIST_NEXT(d, link))
{
/*
* Check if k is a direct successor of d, e.g. d depends on k.
*/
if (keymgr_direct_dep(d->key, k)) {
dst_key_state_t hidden[NUM_KEYSTATES] = {
HIDDEN, HIDDEN, HIDDEN, HIDDEN
};
if (keymgr_key_match_state(d->key, k, NA, NA, hidden)) {
continue;
}
if (dep != NULL) {
*dep = dst_key_id(d->key);
}
return true;
}
}
return false;
}
/*
* Check if a 'z' is a successor of 'x'.
* This implements Equation(2) of "Flexible and Robust Key Rollover".
*/
static bool
keymgr_key_is_successor(dst_key_t *x, dst_key_t *z, dst_key_t *key, int type,
dst_key_state_t next_state,
dns_dnsseckeylist_t *keyring) {
uint32_t dep_x;
uint32_t dep_z;
/*
* The successor relation requires that the predecessor key must not
* have any other keys relying on it. In other words, there must be
* nothing depending on x.
*/
if (keymgr_dep(x, keyring, &dep_x)) {
return false;
}
/*
* If there is no keys relying on key z, then z is not a successor.
*/
if (!keymgr_dep(z, keyring, &dep_z)) {
return false;
}
/*
* x depends on z, thus key z is a direct successor of key x.
*/
if (dst_key_id(x) == dep_z) {
return true;
}
/*
* It is possible to roll keys faster than the time required to finish
* the rollover procedure. For example, consider the keys x, y, z.
* Key x is currently published and is going to be replaced by y. The
* DNSKEY for x is removed from the zone and at the same moment the
* DNSKEY for y is introduced. Key y is a direct dependency for key x
* and is therefore the successor of x. However, before the new DNSKEY
* has been propagated, key z will replace key y. The DNSKEY for y is
* removed and moves into the same state as key x. Key y now directly
* depends on key z, and key z will be a new successor key for x.
*/
dst_key_state_t zst[NUM_KEYSTATES] = { NA, NA, NA, NA };
for (int i = 0; i < NUM_KEYSTATES; i++) {
dst_key_state_t state;
if (dst_key_getstate(z, i, &state) != ISC_R_SUCCESS) {
continue;
}
zst[i] = state;
}
for (dns_dnsseckey_t *y = ISC_LIST_HEAD(*keyring); y != NULL;
y = ISC_LIST_NEXT(y, link))
{
if (dst_key_id(y->key) == dst_key_id(z)) {
continue;
}
if (dst_key_id(y->key) != dep_z) {
continue;
}
/*
* This is another key y, that depends on key z. It may be
* part of the successor relation if the key states match
* those of key z.
*/
if (keymgr_key_match_state(y->key, key, type, next_state, zst))
{
/*
* If y is a successor of x, then z is also a
* successor of x.
*/
return keymgr_key_is_successor(x, y->key, key, type,
next_state, keyring);
}
}
return false;
}
/*
* Check if a key exists in 'keyring' that matches 'states'.
*
* If 'match_algorithms', the key must also match the algorithm of 'key'.
* If 'next_state' is not NA, we are actually looking for a key as if
* 'key' already transitioned to the next state.
* If 'check_successor', we also want to make sure there is a successor
* relationship with the found key that matches 'states2'.
*/
static bool
keymgr_key_exists_with_state(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key,
int type, dst_key_state_t next_state,
dst_key_state_t states[NUM_KEYSTATES],
dst_key_state_t states2[NUM_KEYSTATES],
bool check_successor, bool match_algorithms) {
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keyring); dkey != NULL;
dkey = ISC_LIST_NEXT(dkey, link))
{
if (match_algorithms &&
(dst_key_alg(dkey->key) != dst_key_alg(key->key)))
{
continue;
}
if (!keymgr_key_match_state(dkey->key, key->key, type,
next_state, states))
{
continue;
}
/* Found a match. */
if (!check_successor) {
return true;
}
/*
* We have to make sure that the key we are checking, also
* has a successor relationship with another key.
*/
for (dns_dnsseckey_t *skey = ISC_LIST_HEAD(*keyring);
skey != NULL; skey = ISC_LIST_NEXT(skey, link))
{
if (skey == dkey) {
continue;
}
if (!keymgr_key_match_state(skey->key, key->key, type,
next_state, states2))
{
continue;
}
/*
* Found a possible successor, check.
*/
if (keymgr_key_is_successor(dkey->key, skey->key,
key->key, type, next_state,
keyring))
{
return true;
}
}
}
/* No match. */
return false;
}
/*
* Check if a key has a successor.
*/
static bool
keymgr_key_has_successor(dns_dnsseckey_t *predecessor,
dns_dnsseckeylist_t *keyring) {
for (dns_dnsseckey_t *successor = ISC_LIST_HEAD(*keyring);
successor != NULL; successor = ISC_LIST_NEXT(successor, link))
{
if (keymgr_direct_dep(predecessor->key, successor->key)) {
return true;
}
}
return false;
}
/*
* Check if all keys have their DS hidden. If not, then there must be at
* least one key with an OMNIPRESENT DNSKEY.
*
* If 'next_state' is not NA, we are actually looking for a key as if
* 'key' already transitioned to the next state.
* If 'match_algorithms', only consider keys with same algorithm of 'key'.
*
*/
static bool
keymgr_ds_hidden_or_chained(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key,
int type, dst_key_state_t next_state,
bool match_algorithms, bool must_be_hidden) {
/* (3e) */
dst_key_state_t dnskey_chained[NUM_KEYSTATES] = { OMNIPRESENT, NA,
OMNIPRESENT, NA };
dst_key_state_t ds_hidden[NUM_KEYSTATES] = { NA, NA, NA, HIDDEN };
/* successor n/a */
dst_key_state_t na[NUM_KEYSTATES] = { NA, NA, NA, NA };
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keyring); dkey != NULL;
dkey = ISC_LIST_NEXT(dkey, link))
{
if (match_algorithms &&
(dst_key_alg(dkey->key) != dst_key_alg(key->key)))
{
continue;
}
if (keymgr_key_match_state(dkey->key, key->key, type,
next_state, ds_hidden))
{
/* This key has its DS hidden. */
continue;
}
if (must_be_hidden) {
return false;
}
/*
* This key does not have its DS hidden. There must be at
* least one key with the same algorithm that provides a
* chain of trust (can be this key).
*/
if (keymgr_key_match_state(dkey->key, key->key, type,
next_state, dnskey_chained))
{
/* This DNSKEY and KRRSIG are OMNIPRESENT. */
continue;
}
/*
* Perhaps another key provides a chain of trust.
*/
dnskey_chained[DST_KEY_DS] = OMNIPRESENT;
if (!keymgr_key_exists_with_state(keyring, key, type,
next_state, dnskey_chained,
na, false, match_algorithms))
{
/* There is no chain of trust. */
return false;
}
}
/* All good. */
return true;
}
/*
* Check if all keys have their DNSKEY hidden. If not, then there must be at
* least one key with an OMNIPRESENT ZRRSIG.
*
* If 'next_state' is not NA, we are actually looking for a key as if
* 'key' already transitioned to the next state.
* If 'match_algorithms', only consider keys with same algorithm of 'key'.
*
*/
static bool
keymgr_dnskey_hidden_or_chained(dns_dnsseckeylist_t *keyring,
dns_dnsseckey_t *key, int type,
dst_key_state_t next_state,
bool match_algorithms) {
/* (3i) */
dst_key_state_t rrsig_chained[NUM_KEYSTATES] = { OMNIPRESENT,
OMNIPRESENT, NA, NA };
dst_key_state_t dnskey_hidden[NUM_KEYSTATES] = { HIDDEN, NA, NA, NA };
/* successor n/a */
dst_key_state_t na[NUM_KEYSTATES] = { NA, NA, NA, NA };
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keyring); dkey != NULL;
dkey = ISC_LIST_NEXT(dkey, link))
{
if (match_algorithms &&
(dst_key_alg(dkey->key) != dst_key_alg(key->key)))
{
continue;
}
if (keymgr_key_match_state(dkey->key, key->key, type,
next_state, dnskey_hidden))
{
/* This key has its DNSKEY hidden. */
continue;
}
/*
* This key does not have its DNSKEY hidden. There must be at
* least one key with the same algorithm that has its RRSIG
* records OMNIPRESENT.
*/
(void)dst_key_getstate(dkey->key, DST_KEY_DNSKEY,
&rrsig_chained[DST_KEY_DNSKEY]);
if (!keymgr_key_exists_with_state(keyring, key, type,
next_state, rrsig_chained, na,
false, match_algorithms))
{
/* There is no chain of trust. */
return false;
}
}
/* All good. */
return true;
}
/*
* Check for existence of DS.
*
*/
static bool
keymgr_have_ds(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key, int type,
dst_key_state_t next_state, bool secure_to_insecure) {
/* (3a) */
dst_key_state_t states[2][NUM_KEYSTATES] = {
/* DNSKEY, ZRRSIG, KRRSIG, DS */
{ NA, NA, NA, OMNIPRESENT }, /* DS present */
{ NA, NA, NA, RUMOURED } /* DS introducing */
};
/* successor n/a */
dst_key_state_t na[NUM_KEYSTATES] = { NA, NA, NA, NA };
/*
* Equation (3a):
* There is a key with the DS in either RUMOURD or OMNIPRESENT state.
*/
return keymgr_key_exists_with_state(keyring, key, type, next_state,
states[0], na, false, false) ||
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[1], na, false, false) ||
(secure_to_insecure &&
keymgr_key_exists_with_state(keyring, key, type, next_state, na,
na, false, false));
}
/*
* Check for existence of DNSKEY, or at least a good DNSKEY state.
* See equations what are good DNSKEY states.
*
*/
static bool
keymgr_have_dnskey(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key, int type,
dst_key_state_t next_state) {
dst_key_state_t states[9][NUM_KEYSTATES] = {
/* DNSKEY, ZRRSIG, KRRSIG, DS */
{ OMNIPRESENT, NA, OMNIPRESENT, OMNIPRESENT }, /* (3b) */
{ OMNIPRESENT, NA, OMNIPRESENT, UNRETENTIVE }, /* (3c)p */
{ OMNIPRESENT, NA, OMNIPRESENT, RUMOURED }, /* (3c)s */
{ UNRETENTIVE, NA, UNRETENTIVE, OMNIPRESENT }, /* (3d)p */
{ OMNIPRESENT, NA, UNRETENTIVE, OMNIPRESENT }, /* (3d)p */
{ UNRETENTIVE, NA, OMNIPRESENT, OMNIPRESENT }, /* (3d)p */
{ RUMOURED, NA, RUMOURED, OMNIPRESENT }, /* (3d)s */
{ OMNIPRESENT, NA, RUMOURED, OMNIPRESENT }, /* (3d)s */
{ RUMOURED, NA, OMNIPRESENT, OMNIPRESENT }, /* (3d)s */
};
/* successor n/a */
dst_key_state_t na[NUM_KEYSTATES] = { NA, NA, NA, NA };
return
/*
* Equation (3b):
* There is a key with the same algorithm with its DNSKEY,
* KRRSIG and DS records in OMNIPRESENT state.
*/
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[0], na, false, true) ||
/*
* Equation (3c):
* There are two or more keys with an OMNIPRESENT DNSKEY and
* the DS records get swapped. These keys must be in a
* successor relation.
*/
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[1], states[2], true,
true) ||
/*
* Equation (3d):
* There are two or more keys with an OMNIPRESENT DS and
* the DNSKEY records and its KRRSIG records get swapped.
* These keys must be in a successor relation. Since the
* state for DNSKEY and KRRSIG move independently, we have
* to check all combinations for DNSKEY and KRRSIG in
* OMNIPRESENT/UNRETENTIVE state for the predecessor, and
* OMNIPRESENT/RUMOURED state for the successor.
*/
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[3], states[6], true,
true) ||
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[3], states[7], true,
true) ||
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[3], states[8], true,
true) ||
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[4], states[6], true,
true) ||
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[4], states[7], true,
true) ||
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[4], states[8], true,
true) ||
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[5], states[6], true,
true) ||
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[5], states[7], true,
true) ||
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[5], states[8], true,
true) ||
/*
* Equation (3e):
* The key may be in any state as long as all keys have their
* DS HIDDEN, or when their DS is not HIDDEN, there must be a
* key with its DS in the same state and its DNSKEY omnipresent.
* In other words, if a DS record for the same algorithm is
* is still available to some validators, there must be a
* chain of trust for those validators.
*/
keymgr_ds_hidden_or_chained(keyring, key, type, next_state,
true, false);
}
/*
* Check for existence of RRSIG (zsk), or a good RRSIG state.
* See equations what are good RRSIG states.
*
*/
static bool
keymgr_have_rrsig(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key, int type,
dst_key_state_t next_state) {
dst_key_state_t states[11][NUM_KEYSTATES] = {
/* DNSKEY, ZRRSIG, KRRSIG, DS */
{ OMNIPRESENT, OMNIPRESENT, NA, NA }, /* (3f) */
{ UNRETENTIVE, OMNIPRESENT, NA, NA }, /* (3g)p */
{ RUMOURED, OMNIPRESENT, NA, NA }, /* (3g)s */
{ OMNIPRESENT, UNRETENTIVE, NA, NA }, /* (3h)p */
{ OMNIPRESENT, RUMOURED, NA, NA }, /* (3h)s */
};
/* successor n/a */
dst_key_state_t na[NUM_KEYSTATES] = { NA, NA, NA, NA };
return
/*
* If all DS records are hidden than this rule can be ignored.
*/
keymgr_ds_hidden_or_chained(keyring, key, type, next_state,
true, true) ||
/*
* Equation (3f):
* There is a key with the same algorithm with its DNSKEY and
* ZRRSIG records in OMNIPRESENT state.
*/
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[0], na, false, true) ||
/*
* Equation (3g):
* There are two or more keys with OMNIPRESENT ZRRSIG
* records and the DNSKEY records get swapped. These keys
* must be in a successor relation.
*/
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[1], states[2], true,
true) ||
/*
* Equation (3h):
* There are two or more keys with an OMNIPRESENT DNSKEY
* and the ZRRSIG records get swapped. These keys must be in
* a successor relation.
*/
keymgr_key_exists_with_state(keyring, key, type, next_state,
states[3], states[4], true,
true) ||
/*
* Equation (3i):
* If no DNSKEYs are published, the state of the signatures is
* irrelevant. In case a DNSKEY is published however, there
* must be a path that can be validated from there.
*/
keymgr_dnskey_hidden_or_chained(keyring, key, type, next_state,
true);
}
/*
* Check if a transition in the state machine is allowed by the policy.
* This means when we do rollovers, we want to follow the rules of the
* 1. Pre-publish rollover method (in case of a ZSK)
* - First introduce the DNSKEY record.
* - Only if the DNSKEY record is OMNIPRESENT, introduce ZRRSIG records.
*
* 2. Double-KSK rollover method (in case of a KSK)
* - First introduce the DNSKEY record, as well as the KRRSIG records.
* - Only if the DNSKEY record is OMNIPRESENT, suggest to introduce the DS.
*/
static bool
keymgr_policy_approval(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key,
int type, dst_key_state_t next) {
dst_key_state_t dnskeystate = HIDDEN;
dst_key_state_t ksk_present[NUM_KEYSTATES] = { OMNIPRESENT, NA,
OMNIPRESENT,
OMNIPRESENT };
dst_key_state_t ds_rumoured[NUM_KEYSTATES] = { OMNIPRESENT, NA,
OMNIPRESENT, RUMOURED };
dst_key_state_t ds_retired[NUM_KEYSTATES] = { OMNIPRESENT, NA,
OMNIPRESENT,
UNRETENTIVE };
dst_key_state_t ksk_rumoured[NUM_KEYSTATES] = { RUMOURED, NA, NA,
OMNIPRESENT };
dst_key_state_t ksk_retired[NUM_KEYSTATES] = { UNRETENTIVE, NA, NA,
OMNIPRESENT };
/* successor n/a */
dst_key_state_t na[NUM_KEYSTATES] = { NA, NA, NA, NA };
if (next != RUMOURED) {
/*
* Local policy only adds an extra barrier on transitions to
* the RUMOURED state.
*/
return true;
}
switch (type) {
case DST_KEY_DNSKEY:
/* No restrictions. */
return true;
case DST_KEY_ZRRSIG:
/* Make sure the DNSKEY record is OMNIPRESENT. */
(void)dst_key_getstate(key->key, DST_KEY_DNSKEY, &dnskeystate);
if (dnskeystate == OMNIPRESENT) {
return true;
}
/*
* Or are we introducing a new key for this algorithm? Because
* in that case allow publishing the RRSIG records before the
* DNSKEY.
*/
return !(keymgr_key_exists_with_state(keyring, key, type, next,
ksk_present, na, false,
true) ||
keymgr_key_exists_with_state(keyring, key, type, next,
ds_retired, ds_rumoured,
true, true) ||
keymgr_key_exists_with_state(keyring, key, type, next,
ksk_retired, ksk_rumoured,
true, true));
case DST_KEY_KRRSIG:
/* Only introduce if the DNSKEY is also introduced. */
(void)dst_key_getstate(key->key, DST_KEY_DNSKEY, &dnskeystate);
return dnskeystate != HIDDEN;
case DST_KEY_DS:
/* Make sure the DNSKEY record is OMNIPRESENT. */
(void)dst_key_getstate(key->key, DST_KEY_DNSKEY, &dnskeystate);
return dnskeystate == OMNIPRESENT;
default:
return false;
}
}
/*
* Check if a transition in the state machine is DNSSEC safe.
* This implements Equation(1) of "Flexible and Robust Key Rollover".
*
*/
static bool
keymgr_transition_allowed(dns_dnsseckeylist_t *keyring, dns_dnsseckey_t *key,
int type, dst_key_state_t next_state,
bool secure_to_insecure) {
/* Debug logging. */
if (isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(1))) {
bool rule1a, rule1b, rule2a, rule2b, rule3a, rule3b;
char keystr[DST_KEY_FORMATSIZE];
dst_key_format(key->key, keystr, sizeof(keystr));
rule1a = keymgr_have_ds(keyring, key, type, NA,
secure_to_insecure);
rule1b = keymgr_have_ds(keyring, key, type, next_state,
secure_to_insecure);
rule2a = keymgr_have_dnskey(keyring, key, type, NA);
rule2b = keymgr_have_dnskey(keyring, key, type, next_state);
rule3a = keymgr_have_rrsig(keyring, key, type, NA);
rule3b = keymgr_have_rrsig(keyring, key, type, next_state);
isc_log_write(
dns_lctx, DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC,
ISC_LOG_DEBUG(1),
"keymgr: dnssec evaluation of %s %s record %s: "
"rule1=(~%s or %s) rule2=(~%s or %s) "
"rule3=(~%s or %s)",
keymgr_keyrole(key->key), keystr, keystatetags[type],
rule1a ? "true" : "false", rule1b ? "true" : "false",
rule2a ? "true" : "false", rule2b ? "true" : "false",
rule3a ? "true" : "false", rule3b ? "true" : "false");
}
return
/*
* Rule 1: There must be a DS at all times.
* First check the current situation: if the rule check fails,
* we allow the transition to attempt to move us out of the
* invalid state. If the rule check passes, also check if
* the next state is also still a valid situation.
*/
(!keymgr_have_ds(keyring, key, type, NA, secure_to_insecure) ||
keymgr_have_ds(keyring, key, type, next_state,
secure_to_insecure)) &&
/*
* Rule 2: There must be a DNSKEY at all times. Again, first
* check the current situation, then assess the next state.
*/
(!keymgr_have_dnskey(keyring, key, type, NA) ||
keymgr_have_dnskey(keyring, key, type, next_state)) &&
/*
* Rule 3: There must be RRSIG records at all times. Again,
* first check the current situation, then assess the next
* state.
*/
(!keymgr_have_rrsig(keyring, key, type, NA) ||
keymgr_have_rrsig(keyring, key, type, next_state));
}
/*
* Calculate the time when it is safe to do the next transition.
*
*/
static void
keymgr_transition_time(dns_dnsseckey_t *key, int type,
dst_key_state_t next_state, dns_kasp_t *kasp,
isc_stdtime_t now, isc_stdtime_t *when) {
isc_result_t ret;
isc_stdtime_t lastchange, dstime, nexttime = now;
dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true);
uint32_t dsstate;
/*
* No need to wait if we move things into an uncertain state.
*/
if (next_state == RUMOURED || next_state == UNRETENTIVE) {
*when = now;
return;
}
ret = dst_key_gettime(key->key, keystatetimes[type], &lastchange);
if (ret != ISC_R_SUCCESS) {
/* No last change, for safety purposes let's set it to now. */
dst_key_settime(key->key, keystatetimes[type], now);
lastchange = now;
}
switch (type) {
case DST_KEY_DNSKEY:
case DST_KEY_KRRSIG:
switch (next_state) {
case OMNIPRESENT:
/*
* RFC 7583: The publication interval (Ipub) is the
* amount of time that must elapse after the
* publication of a DNSKEY (plus RRSIG (KSK)) before
* it can be assumed that any resolvers that have the
* relevant RRset cached have a copy of the new
* information. This is the sum of the propagation
* delay (Dprp) and the DNSKEY TTL (TTLkey). This
* translates to zone-propagation-delay + dnskey-ttl.
* We will also add the publish-safety interval.
*/
nexttime = lastchange + dst_key_getttl(key->key) +
dns_kasp_zonepropagationdelay(kasp) +
dns_kasp_publishsafety(kasp);
break;
case HIDDEN:
/*
* Same as OMNIPRESENT but without the publish-safety
* interval.
*/
nexttime = lastchange + dst_key_getttl(key->key) +
dns_kasp_zonepropagationdelay(kasp);
break;
default:
nexttime = now;
break;
}
break;
case DST_KEY_ZRRSIG:
switch (next_state) {
case OMNIPRESENT:
case HIDDEN:
/*
* RFC 7583: The retire interval (Iret) is the amount
* of time that must elapse after a DNSKEY or
* associated data enters the retire state for any
* dependent information (RRSIG ZSK) to be purged from
* validating resolver caches. This is defined as:
*
* Iret = Dsgn + Dprp + TTLsig
*
* Where Dsgn is the Dsgn is the delay needed to
* ensure that all existing RRsets have been re-signed
* with the new key, Dprp is the propagation delay and
* TTLsig is the maximum TTL of all zone RRSIG
* records. This translates to:
*
* Dsgn + zone-propagation-delay + max-zone-ttl.
*/
nexttime = lastchange + ttlsig +
dns_kasp_zonepropagationdelay(kasp);
/*
* Only add the sign delay Dsgn and retire-safety if
* there is an actual predecessor or successor key.
*/
uint32_t tag;
ret = dst_key_getnum(key->key, DST_NUM_PREDECESSOR,
&tag);
if (ret != ISC_R_SUCCESS) {
ret = dst_key_getnum(key->key,
DST_NUM_SUCCESSOR, &tag);
}
if (ret == ISC_R_SUCCESS) {
nexttime += dns_kasp_signdelay(kasp) +
dns_kasp_retiresafety(kasp);
}
break;
default:
nexttime = now;
break;
}
break;
case DST_KEY_DS:
switch (next_state) {
/*
* RFC 7583: The successor DS record is published in
* the parent zone and after the registration delay
* (Dreg), the time taken after the DS record has been
* submitted to the parent zone manager for it to be
* placed in the zone. Key N (the predecessor) must
* remain in the zone until any caches that contain a
* copy of the DS RRset have a copy containing the new
* DS record. This interval is the retire interval
* (Iret), given by:
*
* Iret = DprpP + TTLds
*
* This translates to:
*
* parent-propagation-delay + parent-ds-ttl.
*/
case OMNIPRESENT:
case HIDDEN:
/* Make sure DS has been seen in/withdrawn from the
* parent. */
dsstate = next_state == HIDDEN ? DST_TIME_DSDELETE
: DST_TIME_DSPUBLISH;
ret = dst_key_gettime(key->key, dsstate, &dstime);
if (ret != ISC_R_SUCCESS || dstime > now) {
/* Not yet, try again in an hour. */
nexttime = now + 3600;
} else {
nexttime =
dstime + dns_kasp_dsttl(kasp) +
dns_kasp_parentpropagationdelay(kasp);
/*
* Only add the retire-safety if there is an
* actual predecessor or successor key.
*/
uint32_t tag;
ret = dst_key_getnum(key->key,
DST_NUM_PREDECESSOR, &tag);
if (ret != ISC_R_SUCCESS) {
ret = dst_key_getnum(key->key,
DST_NUM_SUCCESSOR,
&tag);
}
if (ret == ISC_R_SUCCESS) {
nexttime += dns_kasp_retiresafety(kasp);
}
}
break;
default:
nexttime = now;
break;
}
break;
default:
UNREACHABLE();
break;
}
*when = nexttime;
}
/*
* Update keys.
* This implements Algorithm (1) of "Flexible and Robust Key Rollover".
*
*/
static isc_result_t
keymgr_update(dns_dnsseckeylist_t *keyring, dns_kasp_t *kasp, isc_stdtime_t now,
isc_stdtime_t *nexttime, bool secure_to_insecure) {
bool changed;
/* Repeat until nothing changed. */
transition:
changed = false;
/* For all keys in the zone. */
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keyring); dkey != NULL;
dkey = ISC_LIST_NEXT(dkey, link))
{
char keystr[DST_KEY_FORMATSIZE];
dst_key_format(dkey->key, keystr, sizeof(keystr));
if (dkey->purge) {
/* Skip purged keys. */
continue;
}
/* For all records related to this key. */
for (int i = 0; i < NUM_KEYSTATES; i++) {
isc_result_t ret;
isc_stdtime_t when;
dst_key_state_t state, next_state;
ret = dst_key_getstate(dkey->key, i, &state);
if (ret == ISC_R_NOTFOUND) {
/*
* This record type is not applicable for this
* key, continue to the next record type.
*/
continue;
}
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: examine %s %s type %s "
"in state %s",
keymgr_keyrole(dkey->key), keystr,
keystatetags[i], keystatestrings[state]);
/* Get the desired next state. */
next_state = keymgr_desiredstate(dkey, state);
if (state == next_state) {
/*
* This record is in a stable state.
* No change needed, continue with the next
* record type.
*/
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC,
ISC_LOG_DEBUG(1),
"keymgr: %s %s type %s in "
"stable state %s",
keymgr_keyrole(dkey->key), keystr,
keystatetags[i],
keystatestrings[state]);
continue;
}
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: can we transition %s %s type %s "
"state %s to state %s?",
keymgr_keyrole(dkey->key), keystr,
keystatetags[i], keystatestrings[state],
keystatestrings[next_state]);
/* Is the transition allowed according to policy? */
if (!keymgr_policy_approval(keyring, dkey, i,
next_state))
{
/* No, please respect rollover methods. */
isc_log_write(
dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: policy says no to %s %s type "
"%s "
"state %s to state %s",
keymgr_keyrole(dkey->key), keystr,
keystatetags[i], keystatestrings[state],
keystatestrings[next_state]);
continue;
}
/* Is the transition DNSSEC safe? */
if (!keymgr_transition_allowed(keyring, dkey, i,
next_state,
secure_to_insecure))
{
/* No, this would make the zone bogus. */
isc_log_write(
dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: dnssec says no to %s %s type "
"%s "
"state %s to state %s",
keymgr_keyrole(dkey->key), keystr,
keystatetags[i], keystatestrings[state],
keystatestrings[next_state]);
continue;
}
/* Is it time to make the transition? */
when = now;
keymgr_transition_time(dkey, i, next_state, kasp, now,
&when);
if (when > now) {
/* Not yet. */
isc_log_write(
dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: time says no to %s %s type %s "
"state %s to state %s (wait %u "
"seconds)",
keymgr_keyrole(dkey->key), keystr,
keystatetags[i], keystatestrings[state],
keystatestrings[next_state],
when - now);
if (*nexttime == 0 || *nexttime > when) {
*nexttime = when;
}
continue;
}
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: transition %s %s type %s "
"state %s to state %s!",
keymgr_keyrole(dkey->key), keystr,
keystatetags[i], keystatestrings[state],
keystatestrings[next_state]);
/* It is safe to make the transition. */
dst_key_setstate(dkey->key, i, next_state);
dst_key_settime(dkey->key, keystatetimes[i], now);
INSIST(dst_key_ismodified(dkey->key));
changed = true;
}
}
/* We changed something, continue processing. */
if (changed) {
goto transition;
}
return ISC_R_SUCCESS;
}
/*
* See if this key needs to be initialized with properties. A key created
* and derived from a dnssec-policy will have the required metadata available,
* otherwise these may be missing and need to be initialized. The key states
* will be initialized according to existing timing metadata.
*
*/
static void
keymgr_key_init(dns_dnsseckey_t *key, dns_kasp_t *kasp, isc_stdtime_t now,
bool csk) {
bool ksk, zsk;
isc_result_t ret;
isc_stdtime_t active = 0, pub = 0, syncpub = 0, retire = 0, remove = 0;
dst_key_state_t dnskey_state = HIDDEN;
dst_key_state_t ds_state = HIDDEN;
dst_key_state_t zrrsig_state = HIDDEN;
dst_key_state_t goal_state = HIDDEN;
REQUIRE(key != NULL);
REQUIRE(key->key != NULL);
/* Initialize role. */
ret = dst_key_getbool(key->key, DST_BOOL_KSK, &ksk);
if (ret != ISC_R_SUCCESS) {
ksk = ((dst_key_flags(key->key) & DNS_KEYFLAG_KSK) != 0);
dst_key_setbool(key->key, DST_BOOL_KSK, (ksk || csk));
}
ret = dst_key_getbool(key->key, DST_BOOL_ZSK, &zsk);
if (ret != ISC_R_SUCCESS) {
zsk = ((dst_key_flags(key->key) & DNS_KEYFLAG_KSK) == 0);
dst_key_setbool(key->key, DST_BOOL_ZSK, (zsk || csk));
}
/* Get time metadata. */
ret = dst_key_gettime(key->key, DST_TIME_ACTIVATE, &active);
if (active <= now && ret == ISC_R_SUCCESS) {
dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true);
ttlsig += dns_kasp_zonepropagationdelay(kasp);
if ((active + ttlsig) <= now) {
zrrsig_state = OMNIPRESENT;
} else {
zrrsig_state = RUMOURED;
}
goal_state = OMNIPRESENT;
}
ret = dst_key_gettime(key->key, DST_TIME_PUBLISH, &pub);
if (pub <= now && ret == ISC_R_SUCCESS) {
dns_ttl_t key_ttl = dst_key_getttl(key->key);
key_ttl += dns_kasp_zonepropagationdelay(kasp);
if ((pub + key_ttl) <= now) {
dnskey_state = OMNIPRESENT;
} else {
dnskey_state = RUMOURED;
}
goal_state = OMNIPRESENT;
}
ret = dst_key_gettime(key->key, DST_TIME_SYNCPUBLISH, &syncpub);
if (syncpub <= now && ret == ISC_R_SUCCESS) {
dns_ttl_t ds_ttl = dns_kasp_dsttl(kasp);
ds_ttl += dns_kasp_parentpropagationdelay(kasp);
if ((syncpub + ds_ttl) <= now) {
ds_state = OMNIPRESENT;
} else {
ds_state = RUMOURED;
}
goal_state = OMNIPRESENT;
}
ret = dst_key_gettime(key->key, DST_TIME_INACTIVE, &retire);
if (retire <= now && ret == ISC_R_SUCCESS) {
dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true);
ttlsig += dns_kasp_zonepropagationdelay(kasp);
if ((retire + ttlsig) <= now) {
zrrsig_state = HIDDEN;
} else {
zrrsig_state = UNRETENTIVE;
}
ds_state = UNRETENTIVE;
goal_state = HIDDEN;
}
ret = dst_key_gettime(key->key, DST_TIME_DELETE, &remove);
if (remove <= now && ret == ISC_R_SUCCESS) {
dns_ttl_t key_ttl = dst_key_getttl(key->key);
key_ttl += dns_kasp_zonepropagationdelay(kasp);
if ((remove + key_ttl) <= now) {
dnskey_state = HIDDEN;
} else {
dnskey_state = UNRETENTIVE;
}
zrrsig_state = HIDDEN;
ds_state = HIDDEN;
goal_state = HIDDEN;
}
/* Set goal if not already set. */
if (dst_key_getstate(key->key, DST_KEY_GOAL, &goal_state) !=
ISC_R_SUCCESS)
{
dst_key_setstate(key->key, DST_KEY_GOAL, goal_state);
}
/* Set key states for all keys that do not have them. */
INITIALIZE_STATE(key->key, DST_KEY_DNSKEY, DST_TIME_DNSKEY,
dnskey_state, now);
if (ksk || csk) {
INITIALIZE_STATE(key->key, DST_KEY_KRRSIG, DST_TIME_KRRSIG,
dnskey_state, now);
INITIALIZE_STATE(key->key, DST_KEY_DS, DST_TIME_DS, ds_state,
now);
}
if (zsk || csk) {
INITIALIZE_STATE(key->key, DST_KEY_ZRRSIG, DST_TIME_ZRRSIG,
zrrsig_state, now);
}
}
static isc_result_t
keymgr_key_rollover(dns_kasp_key_t *kaspkey, dns_dnsseckey_t *active_key,
dns_dnsseckeylist_t *keyring, dns_dnsseckeylist_t *newkeys,
const dns_name_t *origin, dns_rdataclass_t rdclass,
dns_kasp_t *kasp, const char *keydir, uint32_t lifetime,
bool rollover, isc_stdtime_t now, isc_stdtime_t *nexttime,
isc_mem_t *mctx) {
char keystr[DST_KEY_FORMATSIZE];
isc_stdtime_t retire = 0, active = 0, prepub = 0;
dns_dnsseckey_t *new_key = NULL;
dns_dnsseckey_t *candidate = NULL;
dst_key_t *dst_key = NULL;
/* Do we need to create a successor for the active key? */
if (active_key != NULL) {
if (isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(1))) {
dst_key_format(active_key->key, keystr, sizeof(keystr));
isc_log_write(
dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: DNSKEY %s (%s) is active in policy %s",
keystr, keymgr_keyrole(active_key->key),
dns_kasp_getname(kasp));
}
/*
* Calculate when the successor needs to be published
* in the zone.
*/
prepub = keymgr_prepublication_time(active_key, kasp, lifetime,
now);
if (prepub > now) {
if (isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(1))) {
dst_key_format(active_key->key, keystr,
sizeof(keystr));
isc_log_write(
dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: new successor needed for "
"DNSKEY %s (%s) (policy %s) in %u "
"seconds",
keystr, keymgr_keyrole(active_key->key),
dns_kasp_getname(kasp), (prepub - now));
}
}
if (prepub == 0 || prepub > now) {
/* No need to start rollover now. */
if (*nexttime == 0 || prepub < *nexttime) {
if (prepub > 0) {
*nexttime = prepub;
}
}
return ISC_R_SUCCESS;
}
if (keymgr_key_has_successor(active_key, keyring)) {
/* Key already has successor. */
if (isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(1))) {
dst_key_format(active_key->key, keystr,
sizeof(keystr));
isc_log_write(
dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: key DNSKEY %s (%s) (policy "
"%s) already has successor",
keystr, keymgr_keyrole(active_key->key),
dns_kasp_getname(kasp));
}
return ISC_R_SUCCESS;
}
if (isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(1))) {
dst_key_format(active_key->key, keystr, sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: need successor for DNSKEY %s "
"(%s) (policy %s)",
keystr, keymgr_keyrole(active_key->key),
dns_kasp_getname(kasp));
}
/*
* If rollover is not allowed, warn.
*/
if (!rollover) {
dst_key_format(active_key->key, keystr, sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_WARNING,
"keymgr: DNSKEY %s (%s) is offline in "
"policy %s, cannot start rollover",
keystr, keymgr_keyrole(active_key->key),
dns_kasp_getname(kasp));
return ISC_R_SUCCESS;
}
} else if (isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(1))) {
char namestr[DNS_NAME_FORMATSIZE];
dns_name_format(origin, namestr, sizeof(namestr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: no active key found for %s (policy %s)",
namestr, dns_kasp_getname(kasp));
}
/* It is time to do key rollover, we need a new key. */
/*
* Check if there is a key available in pool because keys
* may have been pregenerated with dnssec-keygen.
*/
for (candidate = ISC_LIST_HEAD(*keyring); candidate != NULL;
candidate = ISC_LIST_NEXT(candidate, link))
{
if (dns_kasp_key_match(kaspkey, candidate) &&
dst_key_is_unused(candidate->key))
{
/* Found a candidate in keyring. */
break;
}
}
if (candidate == NULL) {
/* No key available in keyring, create a new one. */
bool csk = (dns_kasp_key_ksk(kaspkey) &&
dns_kasp_key_zsk(kaspkey));
isc_result_t result =
keymgr_createkey(kaspkey, origin, kasp, rdclass, mctx,
keydir, keyring, newkeys, &dst_key);
if (result != ISC_R_SUCCESS) {
return result;
}
dst_key_setttl(dst_key, dns_kasp_dnskeyttl(kasp));
dst_key_settime(dst_key, DST_TIME_CREATED, now);
dns_dnsseckey_create(mctx, &dst_key, &new_key);
keymgr_key_init(new_key, kasp, now, csk);
} else {
new_key = candidate;
}
dst_key_setnum(new_key->key, DST_NUM_LIFETIME, lifetime);
/* Got a key. */
if (active_key == NULL) {
/*
* If there is no active key found yet for this kasp
* key configuration, immediately make this key active.
*/
dst_key_settime(new_key->key, DST_TIME_PUBLISH, now);
dst_key_settime(new_key->key, DST_TIME_ACTIVATE, now);
dns_keymgr_settime_syncpublish(new_key->key, kasp, true);
active = now;
} else {
/*
* This is a successor. Mark the relationship.
*/
isc_stdtime_t created;
(void)dst_key_gettime(new_key->key, DST_TIME_CREATED, &created);
dst_key_setnum(new_key->key, DST_NUM_PREDECESSOR,
dst_key_id(active_key->key));
dst_key_setnum(active_key->key, DST_NUM_SUCCESSOR,
dst_key_id(new_key->key));
(void)dst_key_gettime(active_key->key, DST_TIME_INACTIVE,
&retire);
active = retire;
/*
* If prepublication time and/or retire time are
* in the past (before the new key was created), use
* creation time as published and active time,
* effectively immediately making the key active.
*/
if (prepub < created) {
active += (created - prepub);
prepub = created;
}
if (active < created) {
active = created;
}
dst_key_settime(new_key->key, DST_TIME_PUBLISH, prepub);
dst_key_settime(new_key->key, DST_TIME_ACTIVATE, active);
dns_keymgr_settime_syncpublish(new_key->key, kasp, false);
/*
* Retire predecessor.
*/
dst_key_setstate(active_key->key, DST_KEY_GOAL, HIDDEN);
}
/* This key wants to be present. */
dst_key_setstate(new_key->key, DST_KEY_GOAL, OMNIPRESENT);
/* Do we need to set retire time? */
if (lifetime > 0) {
uint32_t inactive;
if (ISC_OVERFLOW_ADD(active, lifetime, &inactive)) {
log_key_overflow(new_key->key, "inactive");
inactive = UINT32_MAX;
}
dst_key_settime(new_key->key, DST_TIME_INACTIVE, inactive);
keymgr_settime_remove(new_key, kasp);
}
/* Append dnsseckey to list of new keys. */
dns_dnssec_get_hints(new_key, now);
new_key->source = dns_keysource_repository;
INSIST(!new_key->legacy);
if (candidate == NULL) {
ISC_LIST_APPEND(*newkeys, new_key, link);
}
/* Logging. */
dst_key_format(new_key->key, keystr, sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC, DNS_LOGMODULE_DNSSEC,
ISC_LOG_INFO, "keymgr: DNSKEY %s (%s) %s for policy %s",
keystr, keymgr_keyrole(new_key->key),
(candidate != NULL) ? "selected" : "created",
dns_kasp_getname(kasp));
return ISC_R_SUCCESS;
}
static bool
keymgr_key_may_be_purged(dst_key_t *key, uint32_t after, isc_stdtime_t now) {
bool ksk = false;
bool zsk = false;
dst_key_state_t hidden[NUM_KEYSTATES] = { HIDDEN, NA, NA, NA };
isc_stdtime_t lastchange = 0;
char keystr[DST_KEY_FORMATSIZE];
dst_key_format(key, keystr, sizeof(keystr));
/* If 'purge-keys' is disabled, always retain keys. */
if (after == 0) {
return false;
}
/* Don't purge keys with goal OMNIPRESENT */
if (dst_key_goal(key) == OMNIPRESENT) {
return false;
}
/* Don't purge unused keys. */
if (dst_key_is_unused(key)) {
return false;
}
/* If this key is completely HIDDEN it may be purged. */
(void)dst_key_getbool(key, DST_BOOL_KSK, &ksk);
(void)dst_key_getbool(key, DST_BOOL_ZSK, &zsk);
if (ksk) {
hidden[DST_KEY_KRRSIG] = HIDDEN;
hidden[DST_KEY_DS] = HIDDEN;
}
if (zsk) {
hidden[DST_KEY_ZRRSIG] = HIDDEN;
}
if (!keymgr_key_match_state(key, key, 0, NA, hidden)) {
return false;
}
/*
* Check 'purge-keys' interval. If the interval has passed since
* the last key change, it may be purged.
*/
for (int i = 0; i < NUM_KEYSTATES; i++) {
isc_stdtime_t change = 0;
(void)dst_key_gettime(key, keystatetimes[i], &change);
if (change > lastchange) {
lastchange = change;
}
}
return (lastchange + after) < now;
}
static void
keymgr_purge_keyfile(dst_key_t *key, int type) {
isc_result_t ret;
isc_buffer_t fileb;
char filename[NAME_MAX];
/*
* Make the filename.
*/
isc_buffer_init(&fileb, filename, sizeof(filename));
ret = dst_key_buildfilename(key, type, dst_key_directory(key), &fileb);
if (ret != ISC_R_SUCCESS) {
char keystr[DST_KEY_FORMATSIZE];
dst_key_format(key, keystr, sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_WARNING,
"keymgr: failed to purge DNSKEY %s (%s): cannot "
"build filename (%s)",
keystr, keymgr_keyrole(key),
isc_result_totext(ret));
return;
}
if (unlink(filename) < 0) {
char keystr[DST_KEY_FORMATSIZE];
dst_key_format(key, keystr, sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_WARNING,
"keymgr: failed to purge DNSKEY %s (%s): unlink "
"'%s' failed",
keystr, keymgr_keyrole(key), filename);
}
}
static bool
dst_key_doublematch(dns_dnsseckey_t *key, dns_kasp_t *kasp) {
int matches = 0;
for (dns_kasp_key_t *kkey = ISC_LIST_HEAD(dns_kasp_keys(kasp));
kkey != NULL; kkey = ISC_LIST_NEXT(kkey, link))
{
if (dns_kasp_key_match(kkey, key)) {
matches++;
}
}
return matches > 1;
}
/*
* Examine 'keys' and match 'kasp' policy.
*
*/
isc_result_t
dns_keymgr_run(const dns_name_t *origin, dns_rdataclass_t rdclass,
isc_mem_t *mctx, dns_dnsseckeylist_t *keyring,
dns_dnsseckeylist_t *dnskeys, const char *keydir,
dns_kasp_t *kasp, isc_stdtime_t now, isc_stdtime_t *nexttime) {
isc_result_t result = ISC_R_SUCCESS;
dns_dnsseckeylist_t newkeys;
dns_kasp_key_t *kkey;
dns_dnsseckey_t *newkey = NULL;
bool secure_to_insecure = false;
int numkeys = 0;
int options = (DST_TYPE_PRIVATE | DST_TYPE_PUBLIC | DST_TYPE_STATE);
char keystr[DST_KEY_FORMATSIZE];
REQUIRE(dns_name_isvalid(origin));
REQUIRE(mctx != NULL);
REQUIRE(keyring != NULL);
REQUIRE(DNS_KASP_VALID(kasp));
ISC_LIST_INIT(newkeys);
*nexttime = 0;
/* Debug logging: what keys are available in the keyring? */
if (isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(1))) {
if (ISC_LIST_EMPTY(*keyring)) {
char namebuf[DNS_NAME_FORMATSIZE];
dns_name_format(origin, namebuf, sizeof(namebuf));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: keyring empty (zone %s policy "
"%s)",
namebuf, dns_kasp_getname(kasp));
}
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keyring);
dkey != NULL; dkey = ISC_LIST_NEXT(dkey, link))
{
dst_key_format(dkey->key, keystr, sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: keyring: %s (policy %s)", keystr,
dns_kasp_getname(kasp));
}
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*dnskeys);
dkey != NULL; dkey = ISC_LIST_NEXT(dkey, link))
{
dst_key_format(dkey->key, keystr, sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(1),
"keymgr: dnskeys: %s (policy %s)", keystr,
dns_kasp_getname(kasp));
}
}
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*dnskeys); dkey != NULL;
dkey = ISC_LIST_NEXT(dkey, link))
{
numkeys++;
}
/* Do we need to remove keys? */
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keyring); dkey != NULL;
dkey = ISC_LIST_NEXT(dkey, link))
{
bool found_match = false;
keymgr_key_init(dkey, kasp, now, (numkeys == 1));
for (kkey = ISC_LIST_HEAD(dns_kasp_keys(kasp)); kkey != NULL;
kkey = ISC_LIST_NEXT(kkey, link))
{
if (dns_kasp_key_match(kkey, dkey)) {
found_match = true;
break;
}
}
/* No match, so retire unwanted retire key. */
if (!found_match) {
keymgr_key_retire(dkey, kasp, now);
}
/* Check purge-keys interval. */
if (keymgr_key_may_be_purged(dkey->key,
dns_kasp_purgekeys(kasp), now))
{
dst_key_format(dkey->key, keystr, sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_INFO,
"keymgr: purge DNSKEY %s (%s) according "
"to policy %s",
keystr, keymgr_keyrole(dkey->key),
dns_kasp_getname(kasp));
keymgr_purge_keyfile(dkey->key, DST_TYPE_PUBLIC);
keymgr_purge_keyfile(dkey->key, DST_TYPE_PRIVATE);
keymgr_purge_keyfile(dkey->key, DST_TYPE_STATE);
dkey->purge = true;
}
}
/* Create keys according to the policy, if come in short. */
for (kkey = ISC_LIST_HEAD(dns_kasp_keys(kasp)); kkey != NULL;
kkey = ISC_LIST_NEXT(kkey, link))
{
uint32_t lifetime = dns_kasp_key_lifetime(kkey);
dns_dnsseckey_t *active_key = NULL;
bool rollover_allowed = true;
/* Do we have keys available for this kasp key? */
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keyring);
dkey != NULL; dkey = ISC_LIST_NEXT(dkey, link))
{
if (dns_kasp_key_match(kkey, dkey)) {
/* Found a match. */
dst_key_format(dkey->key, keystr,
sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC,
ISC_LOG_DEBUG(1),
"keymgr: DNSKEY %s (%s) matches "
"policy %s",
keystr, keymgr_keyrole(dkey->key),
dns_kasp_getname(kasp));
/* Update lifetime if changed. */
keymgr_key_update_lifetime(dkey, kasp, now,
lifetime);
if (active_key) {
/* We already have an active key that
* matches the kasp policy.
*/
if (!dst_key_is_unused(dkey->key) &&
!dst_key_doublematch(dkey, kasp) &&
(dst_key_goal(dkey->key) ==
OMNIPRESENT) &&
!keymgr_dep(dkey->key, keyring,
NULL) &&
!keymgr_dep(active_key->key,
keyring, NULL))
{
/*
* Multiple signing keys match
* the kasp key configuration.
* Retire excess keys in use.
*/
keymgr_key_retire(dkey, kasp,
now);
}
continue;
}
/*
* Save the matched key only if it is active
* or desires to be active.
*/
if (dst_key_goal(dkey->key) == OMNIPRESENT ||
dst_key_is_active(dkey->key, now))
{
active_key = dkey;
}
}
}
if (active_key == NULL) {
/*
* We didn't found an active key, perhaps the .private
* key file is offline. If so, we don't want to create
* a successor key. Check if we have an appropriate
* state file.
*/
for (dns_dnsseckey_t *dnskey = ISC_LIST_HEAD(*dnskeys);
dnskey != NULL;
dnskey = ISC_LIST_NEXT(dnskey, link))
{
if (dns_kasp_key_match(kkey, dnskey)) {
/* Found a match. */
dst_key_format(dnskey->key, keystr,
sizeof(keystr));
isc_log_write(
dns_lctx,
DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC,
ISC_LOG_DEBUG(1),
"keymgr: DNSKEY %s (%s) "
"offline, policy %s",
keystr,
keymgr_keyrole(dnskey->key),
dns_kasp_getname(kasp));
rollover_allowed = false;
active_key = dnskey;
break;
}
}
}
/* See if this key requires a rollover. */
RETERR(keymgr_key_rollover(kkey, active_key, keyring, &newkeys,
origin, rdclass, kasp, keydir,
lifetime, rollover_allowed, now,
nexttime, mctx));
}
/* Walked all kasp key configurations. Append new keys. */
if (!ISC_LIST_EMPTY(newkeys)) {
ISC_LIST_APPENDLIST(*keyring, newkeys, link);
}
/*
* If the policy has an empty key list, this means the zone is going
* back to unsigned.
*/
secure_to_insecure = dns_kasp_keylist_empty(kasp);
/* Read to update key states. */
keymgr_update(keyring, kasp, now, nexttime, secure_to_insecure);
/* Store key states and update hints. */
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keyring); dkey != NULL;
dkey = ISC_LIST_NEXT(dkey, link))
{
bool modified = dst_key_ismodified(dkey->key);
if (dst_key_getttl(dkey->key) != dns_kasp_dnskeyttl(kasp)) {
dst_key_setttl(dkey->key, dns_kasp_dnskeyttl(kasp));
modified = true;
}
if (modified && !dkey->purge) {
const char *directory = dst_key_directory(dkey->key);
if (directory == NULL) {
directory = ".";
}
dns_dnssec_get_hints(dkey, now);
RETERR(dst_key_tofile(dkey->key, options, directory));
dst_key_setmodified(dkey->key, false);
if (!isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(3))) {
continue;
}
dst_key_format(dkey->key, keystr, sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(3),
"keymgr: DNSKEY %s (%s) "
"saved to directory %s, policy %s",
keystr, keymgr_keyrole(dkey->key),
directory, dns_kasp_getname(kasp));
}
dst_key_setmodified(dkey->key, false);
}
result = ISC_R_SUCCESS;
failure:
if (result != ISC_R_SUCCESS) {
while ((newkey = ISC_LIST_HEAD(newkeys)) != NULL) {
ISC_LIST_UNLINK(newkeys, newkey, link);
INSIST(newkey->key != NULL);
dst_key_free(&newkey->key);
dns_dnsseckey_destroy(mctx, &newkey);
}
}
if (isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(3))) {
char namebuf[DNS_NAME_FORMATSIZE];
dns_name_format(origin, namebuf, sizeof(namebuf));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(3),
"keymgr: %s done", namebuf);
}
return result;
}
static isc_result_t
keymgr_checkds(dns_kasp_t *kasp, dns_dnsseckeylist_t *keyring,
isc_stdtime_t now, isc_stdtime_t when, bool dspublish,
dns_keytag_t id, unsigned int alg, bool check_id) {
int options = (DST_TYPE_PRIVATE | DST_TYPE_PUBLIC | DST_TYPE_STATE);
const char *directory = NULL;
isc_result_t result;
dns_dnsseckey_t *ksk_key = NULL;
REQUIRE(DNS_KASP_VALID(kasp));
REQUIRE(keyring != NULL);
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keyring); dkey != NULL;
dkey = ISC_LIST_NEXT(dkey, link))
{
isc_result_t ret;
bool ksk = false;
ret = dst_key_getbool(dkey->key, DST_BOOL_KSK, &ksk);
if (ret == ISC_R_SUCCESS && ksk) {
if (check_id && dst_key_id(dkey->key) != id) {
continue;
}
if (alg > 0 && dst_key_alg(dkey->key) != alg) {
continue;
}
if (ksk_key != NULL) {
/*
* Only checkds for one key at a time.
*/
return DNS_R_TOOMANYKEYS;
}
ksk_key = dkey;
}
}
if (ksk_key == NULL) {
return DNS_R_NOKEYMATCH;
}
if (dspublish) {
dst_key_state_t s;
dst_key_settime(ksk_key->key, DST_TIME_DSPUBLISH, when);
result = dst_key_getstate(ksk_key->key, DST_KEY_DS, &s);
if (result != ISC_R_SUCCESS || s != RUMOURED) {
dst_key_setstate(ksk_key->key, DST_KEY_DS, RUMOURED);
}
} else {
dst_key_state_t s;
dst_key_settime(ksk_key->key, DST_TIME_DSDELETE, when);
result = dst_key_getstate(ksk_key->key, DST_KEY_DS, &s);
if (result != ISC_R_SUCCESS || s != UNRETENTIVE) {
dst_key_setstate(ksk_key->key, DST_KEY_DS, UNRETENTIVE);
}
}
if (isc_log_wouldlog(dns_lctx, ISC_LOG_NOTICE)) {
char keystr[DST_KEY_FORMATSIZE];
char timestr[26]; /* Minimal buf as per ctime_r() spec. */
dst_key_format(ksk_key->key, keystr, sizeof(keystr));
isc_stdtime_tostring(when, timestr, sizeof(timestr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_NOTICE,
"keymgr: checkds DS for key %s seen %s at %s",
keystr, dspublish ? "published" : "withdrawn",
timestr);
}
/* Store key state and update hints. */
directory = dst_key_directory(ksk_key->key);
if (directory == NULL) {
directory = ".";
}
dns_dnssec_get_hints(ksk_key, now);
result = dst_key_tofile(ksk_key->key, options, directory);
if (result == ISC_R_SUCCESS) {
dst_key_setmodified(ksk_key->key, false);
}
return result;
}
isc_result_t
dns_keymgr_checkds(dns_kasp_t *kasp, dns_dnsseckeylist_t *keyring,
isc_stdtime_t now, isc_stdtime_t when, bool dspublish) {
return keymgr_checkds(kasp, keyring, now, when, dspublish, 0, 0, false);
}
isc_result_t
dns_keymgr_checkds_id(dns_kasp_t *kasp, dns_dnsseckeylist_t *keyring,
isc_stdtime_t now, isc_stdtime_t when, bool dspublish,
dns_keytag_t id, unsigned int alg) {
return keymgr_checkds(kasp, keyring, now, when, dspublish, id, alg,
true);
}
static isc_result_t
keytime_status(dst_key_t *key, isc_stdtime_t now, isc_buffer_t *buf,
const char *pre, int ks, int kt) {
char timestr[26]; /* Minimal buf as per ctime_r() spec. */
isc_result_t result = ISC_R_SUCCESS;
isc_stdtime_t when = 0;
dst_key_state_t state = NA;
RETERR(isc_buffer_printf(buf, "%s", pre));
(void)dst_key_getstate(key, ks, &state);
isc_result_t r = dst_key_gettime(key, kt, &when);
if (state == RUMOURED || state == OMNIPRESENT) {
RETERR(isc_buffer_printf(buf, "yes - since "));
} else if (now < when) {
RETERR(isc_buffer_printf(buf, "no - scheduled "));
} else {
return isc_buffer_printf(buf, "no\n");
}
if (r == ISC_R_SUCCESS) {
isc_stdtime_tostring(when, timestr, sizeof(timestr));
RETERR(isc_buffer_printf(buf, "%s\n", timestr));
}
failure:
return result;
}
static isc_result_t
rollover_status(dns_dnsseckey_t *dkey, dns_kasp_t *kasp, isc_stdtime_t now,
isc_buffer_t *buf, bool zsk) {
char timestr[26]; /* Minimal buf as per ctime_r() spec. */
isc_result_t result = ISC_R_SUCCESS;
isc_stdtime_t active_time = 0;
dst_key_state_t state = NA, goal = NA;
int rrsig, active, retire;
dst_key_t *key = dkey->key;
if (zsk) {
rrsig = DST_KEY_ZRRSIG;
active = DST_TIME_ACTIVATE;
retire = DST_TIME_INACTIVE;
} else {
rrsig = DST_KEY_KRRSIG;
active = DST_TIME_PUBLISH;
retire = DST_TIME_DELETE;
}
RETERR(isc_buffer_printf(buf, "\n"));
(void)dst_key_getstate(key, DST_KEY_GOAL, &goal);
(void)dst_key_getstate(key, rrsig, &state);
(void)dst_key_gettime(key, active, &active_time);
if (active_time == 0) {
// only interested in keys that were once active.
return ISC_R_SUCCESS;
}
if (goal == HIDDEN && (state == UNRETENTIVE || state == HIDDEN)) {
isc_stdtime_t remove_time = 0;
// is the key removed yet?
state = NA;
(void)dst_key_getstate(key, DST_KEY_DNSKEY, &state);
if (state == RUMOURED || state == OMNIPRESENT) {
result = dst_key_gettime(key, DST_TIME_DELETE,
&remove_time);
if (result == ISC_R_SUCCESS) {
RETERR(isc_buffer_printf(
buf, " Key is retired, will be "
"removed on "));
isc_stdtime_tostring(remove_time, timestr,
sizeof(timestr));
RETERR(isc_buffer_printf(buf, "%s", timestr));
}
} else {
RETERR(isc_buffer_printf(buf, " Key has been removed "
"from the zone"));
}
} else {
isc_stdtime_t retire_time = 0;
result = dst_key_gettime(key, retire, &retire_time);
if (result == ISC_R_SUCCESS) {
if (now < retire_time) {
if (goal == OMNIPRESENT) {
RETERR(isc_buffer_printf(
buf, " Next rollover "
"scheduled on "));
retire_time = keymgr_prepublication_time(
dkey, kasp,
(retire_time - active_time),
now);
} else {
RETERR(isc_buffer_printf(
buf, " Key will retire on "));
}
} else {
RETERR(isc_buffer_printf(buf, " Rollover is "
"due since "));
}
isc_stdtime_tostring(retire_time, timestr,
sizeof(timestr));
RETERR(isc_buffer_printf(buf, "%s", timestr));
} else {
RETERR(isc_buffer_printf(buf,
" No rollover scheduled"));
}
}
RETERR(isc_buffer_printf(buf, "\n"));
failure:
return result;
}
static isc_result_t
keystate_status(dst_key_t *key, isc_buffer_t *buf, const char *pre, int ks) {
dst_key_state_t state = NA;
isc_result_t result = ISC_R_SUCCESS;
(void)dst_key_getstate(key, ks, &state);
switch (state) {
case HIDDEN:
RETERR(isc_buffer_printf(buf, " - %shidden\n", pre));
break;
case RUMOURED:
RETERR(isc_buffer_printf(buf, " - %srumoured\n", pre));
break;
case OMNIPRESENT:
RETERR(isc_buffer_printf(buf, " - %somnipresent\n", pre));
break;
case UNRETENTIVE:
RETERR(isc_buffer_printf(buf, " - %sunretentive\n", pre));
break;
case NA:
default:
/* print nothing */
break;
}
failure:
return result;
}
isc_result_t
dns_keymgr_status(dns_kasp_t *kasp, dns_dnsseckeylist_t *keyring,
isc_stdtime_t now, char *out, size_t out_len) {
isc_buffer_t buf;
isc_result_t result = ISC_R_SUCCESS;
char timestr[26]; /* Minimal buf as per ctime_r() spec. */
REQUIRE(DNS_KASP_VALID(kasp));
REQUIRE(keyring != NULL);
REQUIRE(out != NULL);
isc_buffer_init(&buf, out, out_len);
// policy name
RETERR(isc_buffer_printf(&buf, "dnssec-policy: %s\n",
dns_kasp_getname(kasp)));
RETERR(isc_buffer_printf(&buf, "current time: "));
isc_stdtime_tostring(now, timestr, sizeof(timestr));
RETERR(isc_buffer_printf(&buf, "%s\n", timestr));
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keyring); dkey != NULL;
dkey = ISC_LIST_NEXT(dkey, link))
{
char algstr[DNS_NAME_FORMATSIZE];
bool ksk = false, zsk = false;
if (dst_key_is_unused(dkey->key)) {
continue;
}
// key data
dns_secalg_format((dns_secalg_t)dst_key_alg(dkey->key), algstr,
sizeof(algstr));
RETERR(isc_buffer_printf(&buf, "\nkey: %d (%s), %s\n",
dst_key_id(dkey->key), algstr,
keymgr_keyrole(dkey->key)));
// publish status
RETERR(keytime_status(dkey->key, now, &buf,
" published: ", DST_KEY_DNSKEY,
DST_TIME_PUBLISH));
// signing status
result = dst_key_getbool(dkey->key, DST_BOOL_KSK, &ksk);
if (result == ISC_R_SUCCESS && ksk) {
RETERR(keytime_status(
dkey->key, now, &buf, " key signing: ",
DST_KEY_KRRSIG, DST_TIME_PUBLISH));
}
result = dst_key_getbool(dkey->key, DST_BOOL_ZSK, &zsk);
if (result == ISC_R_SUCCESS && zsk) {
RETERR(keytime_status(
dkey->key, now, &buf, " zone signing: ",
DST_KEY_ZRRSIG, DST_TIME_ACTIVATE));
}
// rollover status
RETERR(rollover_status(dkey, kasp, now, &buf, zsk));
// key states
RETERR(keystate_status(dkey->key, &buf,
"goal: ", DST_KEY_GOAL));
RETERR(keystate_status(dkey->key, &buf,
"dnskey: ", DST_KEY_DNSKEY));
RETERR(keystate_status(dkey->key, &buf,
"ds: ", DST_KEY_DS));
RETERR(keystate_status(dkey->key, &buf,
"zone rrsig: ", DST_KEY_ZRRSIG));
RETERR(keystate_status(dkey->key, &buf,
"key rrsig: ", DST_KEY_KRRSIG));
}
failure:
return result;
}
isc_result_t
dns_keymgr_rollover(dns_kasp_t *kasp, dns_dnsseckeylist_t *keyring,
isc_stdtime_t now, isc_stdtime_t when, dns_keytag_t id,
unsigned int algorithm) {
int options = (DST_TYPE_PRIVATE | DST_TYPE_PUBLIC | DST_TYPE_STATE);
const char *directory = NULL;
isc_result_t result;
dns_dnsseckey_t *key = NULL;
isc_stdtime_t active, retire, prepub;
REQUIRE(DNS_KASP_VALID(kasp));
REQUIRE(keyring != NULL);
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keyring); dkey != NULL;
dkey = ISC_LIST_NEXT(dkey, link))
{
if (dst_key_id(dkey->key) != id) {
continue;
}
if (algorithm > 0 && dst_key_alg(dkey->key) != algorithm) {
continue;
}
if (key != NULL) {
/*
* Only rollover for one key at a time.
*/
return DNS_R_TOOMANYKEYS;
}
key = dkey;
}
if (key == NULL) {
return DNS_R_NOKEYMATCH;
}
result = dst_key_gettime(key->key, DST_TIME_ACTIVATE, &active);
if (result != ISC_R_SUCCESS || active > now) {
return DNS_R_KEYNOTACTIVE;
}
result = dst_key_gettime(key->key, DST_TIME_INACTIVE, &retire);
if (result != ISC_R_SUCCESS) {
/**
* Default to as if this key was not scheduled to
* become retired, as if it had unlimited lifetime.
*/
retire = 0;
}
/**
* Usually when is set to now, which is before the scheduled
* prepublication time, meaning we reduce the lifetime of the
* key. But in some cases, the lifetime can also be extended.
* We accept it, but we can return an error here if that
* turns out to be unintuitive behavior.
*/
prepub = dst_key_getttl(key->key) + dns_kasp_publishsafety(kasp) +
dns_kasp_zonepropagationdelay(kasp);
retire = when + prepub;
dst_key_settime(key->key, DST_TIME_INACTIVE, retire);
/* Store key state and update hints. */
directory = dst_key_directory(key->key);
if (directory == NULL) {
directory = ".";
}
dns_dnssec_get_hints(key, now);
result = dst_key_tofile(key->key, options, directory);
if (result == ISC_R_SUCCESS) {
dst_key_setmodified(key->key, false);
}
return result;
}
isc_result_t
dns_keymgr_offline(const dns_name_t *origin, dns_dnsseckeylist_t *keyring,
dns_kasp_t *kasp, isc_stdtime_t now,
isc_stdtime_t *nexttime) {
isc_result_t result = ISC_R_SUCCESS;
int options = (DST_TYPE_PRIVATE | DST_TYPE_PUBLIC | DST_TYPE_STATE);
char keystr[DST_KEY_FORMATSIZE];
*nexttime = 0;
/* Store key states and update hints. */
for (dns_dnsseckey_t *dkey = ISC_LIST_HEAD(*keyring); dkey != NULL;
dkey = ISC_LIST_NEXT(dkey, link))
{
bool modified;
bool ksk = false, zsk = false;
isc_stdtime_t active = 0, published = 0, inactive = 0,
remove = 0;
isc_stdtime_t lastchange = 0, nextchange = 0;
dst_key_state_t dnskey_state = HIDDEN, zrrsig_state = HIDDEN,
goal_state = HIDDEN;
dst_key_state_t current_dnskey = HIDDEN,
current_zrrsig = HIDDEN, current_goal = HIDDEN;
(void)dst_key_role(dkey->key, &ksk, &zsk);
if (ksk || !zsk) {
continue;
}
keymgr_key_init(dkey, kasp, now, false);
/* Get current metadata */
RETERR(dst_key_getstate(dkey->key, DST_KEY_DNSKEY,
&current_dnskey));
RETERR(dst_key_getstate(dkey->key, DST_KEY_ZRRSIG,
&current_zrrsig));
RETERR(dst_key_getstate(dkey->key, DST_KEY_GOAL,
&current_goal));
RETERR(dst_key_gettime(dkey->key, DST_TIME_PUBLISH,
&published));
RETERR(dst_key_gettime(dkey->key, DST_TIME_ACTIVATE, &active));
(void)dst_key_gettime(dkey->key, DST_TIME_INACTIVE, &inactive);
(void)dst_key_gettime(dkey->key, DST_TIME_DELETE, &remove);
/* Determine key states from the metadata. */
if (active <= now) {
dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true);
ttlsig += dns_kasp_zonepropagationdelay(kasp);
if ((active + ttlsig) <= now) {
zrrsig_state = OMNIPRESENT;
} else {
zrrsig_state = RUMOURED;
(void)dst_key_gettime(dkey->key,
DST_TIME_ZRRSIG,
&lastchange);
nextchange = lastchange + ttlsig +
dns_kasp_retiresafety(kasp);
}
goal_state = OMNIPRESENT;
}
if (published <= now) {
dns_ttl_t key_ttl = dst_key_getttl(dkey->key);
key_ttl += dns_kasp_zonepropagationdelay(kasp);
if ((published + key_ttl) <= now) {
dnskey_state = OMNIPRESENT;
} else {
dnskey_state = RUMOURED;
(void)dst_key_gettime(dkey->key,
DST_TIME_DNSKEY,
&lastchange);
nextchange = lastchange + key_ttl +
dns_kasp_publishsafety(kasp);
}
goal_state = OMNIPRESENT;
}
if (inactive > 0 && inactive <= now) {
dns_ttl_t ttlsig = dns_kasp_zonemaxttl(kasp, true);
ttlsig += dns_kasp_zonepropagationdelay(kasp);
if ((inactive + ttlsig) <= now) {
zrrsig_state = HIDDEN;
} else {
zrrsig_state = UNRETENTIVE;
(void)dst_key_gettime(dkey->key,
DST_TIME_ZRRSIG,
&lastchange);
nextchange = lastchange + ttlsig +
dns_kasp_retiresafety(kasp);
}
goal_state = HIDDEN;
}
if (remove > 0 && remove <= now) {
dns_ttl_t key_ttl = dst_key_getttl(dkey->key);
key_ttl += dns_kasp_zonepropagationdelay(kasp);
if ((remove + key_ttl) <= now) {
dnskey_state = HIDDEN;
} else {
dnskey_state = UNRETENTIVE;
(void)dst_key_gettime(dkey->key,
DST_TIME_DNSKEY,
&lastchange);
nextchange =
lastchange + key_ttl +
dns_kasp_zonepropagationdelay(kasp);
}
zrrsig_state = HIDDEN;
goal_state = HIDDEN;
}
if ((*nexttime == 0 || *nexttime > nextchange) &&
nextchange > 0)
{
*nexttime = nextchange;
}
/* Update key states if necessary. */
if (goal_state != current_goal) {
dst_key_setstate(dkey->key, DST_KEY_GOAL, goal_state);
}
if (dnskey_state != current_dnskey) {
dst_key_setstate(dkey->key, DST_KEY_DNSKEY,
dnskey_state);
dst_key_settime(dkey->key, DST_TIME_DNSKEY, now);
}
if (zrrsig_state != current_zrrsig) {
dst_key_setstate(dkey->key, DST_KEY_ZRRSIG,
zrrsig_state);
dst_key_settime(dkey->key, DST_TIME_ZRRSIG, now);
if (zrrsig_state == RUMOURED) {
dkey->first_sign = true;
}
}
modified = dst_key_ismodified(dkey->key);
if (modified) {
const char *directory = dst_key_directory(dkey->key);
if (directory == NULL) {
directory = ".";
}
dns_dnssec_get_hints(dkey, now);
RETERR(dst_key_tofile(dkey->key, options, directory));
dst_key_setmodified(dkey->key, false);
if (!isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(3))) {
continue;
}
dst_key_format(dkey->key, keystr, sizeof(keystr));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(3),
"keymgr: DNSKEY %s (%s) "
"saved to directory %s, policy %s",
keystr, keymgr_keyrole(dkey->key),
directory, dns_kasp_getname(kasp));
}
dst_key_setmodified(dkey->key, false);
}
result = ISC_R_SUCCESS;
failure:
if (isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(3))) {
char namebuf[DNS_NAME_FORMATSIZE];
dns_name_format(origin, namebuf, sizeof(namebuf));
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DNSSEC,
DNS_LOGMODULE_DNSSEC, ISC_LOG_DEBUG(3),
"keymgr: %s (offline-ksk) done", namebuf);
}
return result;
}