1
0
Fork 0
bind9/lib/dns/qp.c
Daniel Baumann f66ff7eae6
Adding upstream version 1:9.20.9.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 13:32:37 +02:00

2338 lines
62 KiB
C

/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* SPDX-License-Identifier: MPL-2.0
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
/*
* For an overview, see doc/design/qp-trie.md
*/
#include <inttypes.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#if FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
#include <sys/mman.h>
#include <unistd.h>
#endif
#include <isc/atomic.h>
#include <isc/buffer.h>
#include <isc/magic.h>
#include <isc/mem.h>
#include <isc/mutex.h>
#include <isc/refcount.h>
#include <isc/result.h>
#include <isc/rwlock.h>
#include <isc/tid.h>
#include <isc/time.h>
#include <isc/types.h>
#include <isc/urcu.h>
#include <isc/util.h>
#include <dns/fixedname.h>
#include <dns/log.h>
#include <dns/name.h>
#include <dns/qp.h>
#include <dns/types.h>
#include "qp_p.h"
#ifndef DNS_QP_LOG_STATS
#define DNS_QP_LOG_STATS 1
#endif
#ifndef DNS_QP_TRACE
#define DNS_QP_TRACE 0
#endif
/*
* very basic garbage collector statistics
*
* XXXFANF for now we're logging GC times, but ideally we should
* accumulate stats more quietly and report via the statschannel
*/
static atomic_uint_fast64_t compact_time;
static atomic_uint_fast64_t recycle_time;
static atomic_uint_fast64_t rollback_time;
/* for LOG_STATS() format strings */
#define PRItime " %" PRIu64 " ns "
#if DNS_QP_LOG_STATS
#define LOG_STATS(...) \
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DATABASE, DNS_LOGMODULE_QP, \
ISC_LOG_DEBUG(1), __VA_ARGS__)
#else
#define LOG_STATS(...)
#endif
#if DNS_QP_TRACE
/*
* TRACE is generally used in allocation-related functions so it doesn't
* trace very high-frequency ops
*/
#define TRACE(fmt, ...) \
do { \
if (isc_log_wouldlog(dns_lctx, ISC_LOG_DEBUG(7))) { \
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DATABASE, \
DNS_LOGMODULE_QP, ISC_LOG_DEBUG(7), \
"%s:%d:%s(qp %p uctx \"%s\"):t%u: " fmt, \
__FILE__, __LINE__, __func__, qp, \
qp ? TRIENAME(qp) : "(null)", isc_tid(), \
##__VA_ARGS__); \
} \
} while (0)
#else
#define TRACE(...)
#endif
/***********************************************************************
*
* converting DNS names to trie keys
*/
/*
* Number of distinct byte values, i.e. 256
*/
#define BYTE_VALUES (UINT8_MAX + 1)
/*
* Lookup table mapping bytes in DNS names to bit positions, used
* by dns_qpkey_fromname() to convert DNS names to qp-trie keys.
*
* Each element holds one or two bit positions, bit_one in the
* lower half and bit_two in the upper half.
*
* For common hostname characters, bit_two is zero (which cannot
* be a valid bit position).
*
* For others, bit_one is the escape bit, and bit_two is the
* position of the character within the escaped range.
*/
uint16_t dns_qp_bits_for_byte[BYTE_VALUES] = { 0 };
/*
* And the reverse, mapping bit positions to characters, so the tests
* can print diagnostics involving qp-trie keys.
*
* This table only handles the first bit in an escape sequence; we
* arrange that we can calculate the byte value for both bits by
* adding the the second bit to the first bit's byte value.
*/
uint8_t dns_qp_byte_for_bit[SHIFT_OFFSET] = { 0 };
/*
* Fill in the lookup tables at program startup. (It doesn't matter
* when this is initialized relative to other startup code.)
*/
static void
initialize_bits_for_byte(void) ISC_CONSTRUCTOR;
/*
* The bit positions for bytes inside labels have to be between
* SHIFT_BITMAP and SHIFT_OFFSET. (SHIFT_NOBYTE separates labels.)
*
* Each byte range in between common hostname characters has a different
* escape character, to preserve the correct lexical order.
*
* Escaped byte ranges mostly fit into the space available in the
* bitmap, except for those above 'z' (which is mostly bytes with the
* top bit set). So, when we reach the end of the bitmap we roll over
* to the next escape character.
*
* After filling the table we ensure that the bit positions for
* hostname characters and escape characters all fit.
*/
static void
initialize_bits_for_byte(void) {
/* zero common character marker not a valid shift position */
INSIST(0 < SHIFT_BITMAP);
/* first bit is common byte or escape byte */
dns_qpshift_t bit_one = SHIFT_BITMAP;
/* second bit is position in escaped range */
dns_qpshift_t bit_two = SHIFT_BITMAP;
bool escaping = true;
for (unsigned int byte = 0; byte < BYTE_VALUES; byte++) {
if (qp_common_character(byte)) {
escaping = false;
bit_one++;
dns_qp_byte_for_bit[bit_one] = byte;
dns_qp_bits_for_byte[byte] = bit_one;
} else if ('A' <= byte && byte <= 'Z') {
/* map upper case to lower case */
dns_qpshift_t after_esc = bit_one + 1;
dns_qpshift_t skip_punct = 'a' - '_';
dns_qpshift_t letter = byte - 'A';
dns_qpshift_t bit = after_esc + skip_punct + letter;
dns_qp_bits_for_byte[byte] = bit;
/* to simplify reverse conversion */
bit_two++;
} else {
/* non-hostname characters need to be escaped */
if (!escaping || bit_two >= SHIFT_OFFSET) {
escaping = true;
bit_one++;
dns_qp_byte_for_bit[bit_one] = byte;
bit_two = SHIFT_BITMAP;
}
dns_qp_bits_for_byte[byte] = bit_two << 8 | bit_one;
bit_two++;
}
}
ENSURE(bit_one < SHIFT_OFFSET);
}
/*
* Convert a DNS name into a trie lookup key.
*
* Returns the length of the key.
*
* For performance we get our hands dirty in the guts of the name.
*
* We don't worry about the distinction between absolute and relative
* names. When the trie is only used with absolute names, the first byte
* of the key will always be SHIFT_NOBYTE and it will always be skipped
* when traversing the trie. So keeping the root label costs little, and
* it allows us to support tries of relative names too. In fact absolute
* and relative names can be mixed in the same trie without causing
* confusion, because the presence or absence of the initial
* SHIFT_NOBYTE in the key disambiguates them (exactly like a trailing
* dot in a zone file).
*/
size_t
dns_qpkey_fromname(dns_qpkey_t key, const dns_name_t *name) {
size_t len, label;
dns_fixedname_t fixed;
REQUIRE(ISC_MAGIC_VALID(name, DNS_NAME_MAGIC));
if (name->labels == 0) {
key[0] = SHIFT_NOBYTE;
return 0;
}
if (name->offsets == NULL) {
dns_name_t *clone = dns_fixedname_initname(&fixed);
dns_name_clone(name, clone);
name = clone;
}
len = 0;
label = name->labels;
while (label-- > 0) {
const uint8_t *ldata = name->ndata + name->offsets[label];
size_t label_len = *ldata++;
while (label_len-- > 0) {
uint16_t bits = dns_qp_bits_for_byte[*ldata++];
key[len++] = bits & 0xFF; /* bit_one */
if ((bits >> 8) != 0) { /* escape? */
key[len++] = bits >> 8; /* bit_two */
}
}
/* label terminator */
key[len++] = SHIFT_NOBYTE;
}
/* mark end with a double NOBYTE */
key[len] = SHIFT_NOBYTE;
ENSURE(len < sizeof(dns_qpkey_t));
return len;
}
void
dns_qpkey_toname(const dns_qpkey_t key, size_t keylen, dns_name_t *name) {
size_t locs[DNS_NAME_MAXLABELS];
size_t loc = 0, opos = 0;
size_t offset;
REQUIRE(ISC_MAGIC_VALID(name, DNS_NAME_MAGIC));
REQUIRE(name->buffer != NULL);
REQUIRE(name->offsets != NULL);
dns_name_reset(name);
if (keylen == 0) {
return;
}
/* Scan the key looking for label boundaries */
for (offset = 0; offset <= keylen; offset++) {
INSIST(key[offset] >= SHIFT_NOBYTE &&
key[offset] < SHIFT_OFFSET);
INSIST(loc < DNS_NAME_MAXLABELS);
if (qpkey_bit(key, keylen, offset) == SHIFT_NOBYTE) {
if (qpkey_bit(key, keylen, offset + 1) == SHIFT_NOBYTE)
{
locs[loc] = offset + 1;
goto scanned;
}
locs[loc++] = offset + 1;
} else if (offset == 0) {
/* This happens for a relative name */
locs[loc++] = offset;
}
}
UNREACHABLE();
scanned:
/*
* In the key the labels are encoded in reverse order, so
* we step backward through the label boundaries, then forward
* through the labels, to create the DNS wire format data.
*/
name->labels = loc;
while (loc-- > 0) {
uint8_t len = 0, *lenp = NULL;
/* Add a length byte to the name data and set an offset */
lenp = isc_buffer_used(name->buffer);
isc_buffer_putuint8(name->buffer, 0);
name->offsets[opos++] = name->length++;
/* Convert from escaped byte ranges to ASCII */
for (offset = locs[loc]; offset < locs[loc + 1] - 1; offset++) {
uint8_t bit = qpkey_bit(key, keylen, offset);
uint8_t byte = dns_qp_byte_for_bit[bit];
if (qp_common_character(byte)) {
isc_buffer_putuint8(name->buffer, byte);
} else {
byte += key[++offset] - SHIFT_BITMAP;
isc_buffer_putuint8(name->buffer, byte);
}
len++;
}
name->length += len;
*lenp = len;
}
/* Add a root label for absolute names */
if (key[0] == SHIFT_NOBYTE) {
name->attributes.absolute = true;
isc_buffer_putuint8(name->buffer, 0);
name->offsets[opos++] = name->length++;
name->labels++;
}
name->ndata = isc_buffer_base(name->buffer);
}
/*
* Sentinel value for equal keys
*/
#define QPKEY_EQUAL (~(size_t)0)
/*
* Compare two keys and return the offset where they differ.
*
* This offset is used to work out where a trie search diverged: when one
* of the keys is in the trie and one is not, the common prefix (up to the
* offset) is the part of the unknown key that exists in the trie. This
* matters for adding new keys or finding neighbours of missing keys.
*
* When the keys are different lengths it is possible (but unwise) for
* the longer key to be the same as the shorter key but with superfluous
* trailing SHIFT_NOBYTE elements. This makes the keys equal for the
* purpose of traversing the trie.
*/
static size_t
qpkey_compare(const dns_qpkey_t key_a, const size_t keylen_a,
const dns_qpkey_t key_b, const size_t keylen_b) {
size_t keylen = ISC_MAX(keylen_a, keylen_b);
for (size_t offset = 0; offset < keylen; offset++) {
if (qpkey_bit(key_a, keylen_a, offset) !=
qpkey_bit(key_b, keylen_b, offset))
{
return offset;
}
}
return QPKEY_EQUAL;
}
/***********************************************************************
*
* allocator wrappers
*/
#if FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
/*
* Optionally (for debugging) during a copy-on-write transaction, use
* memory protection to ensure that the shared chunks are not modified.
* Once a chunk becomes shared, it remains read-only until it is freed.
* POSIX says we have to use mmap() to get an allocation that we can
* definitely pass to mprotect().
*/
static size_t
chunk_size_raw(void) {
size_t size = (size_t)sysconf(_SC_PAGE_SIZE);
return ISC_MAX(size, QP_CHUNK_BYTES);
}
static void *
chunk_get_raw(dns_qp_t *qp) {
if (qp->write_protect) {
size_t size = chunk_size_raw();
void *ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
RUNTIME_CHECK(ptr != MAP_FAILED);
return ptr;
} else {
return isc_mem_allocate(qp->mctx, QP_CHUNK_BYTES);
}
}
static void
chunk_free_raw(dns_qp_t *qp, void *ptr) {
if (qp->write_protect) {
RUNTIME_CHECK(munmap(ptr, chunk_size_raw()) == 0);
} else {
isc_mem_free(qp->mctx, ptr);
}
}
static void *
chunk_shrink_raw(dns_qp_t *qp, void *ptr, size_t bytes) {
if (qp->write_protect) {
return ptr;
} else {
return isc_mem_reallocate(qp->mctx, ptr, bytes);
}
}
static void
write_protect(dns_qp_t *qp, dns_qpchunk_t chunk) {
if (qp->write_protect) {
/* see transaction_open() wrt this special case */
if (qp->transaction_mode == QP_WRITE && chunk == qp->bump) {
return;
}
TRACE("chunk %u", chunk);
void *ptr = qp->base->ptr[chunk];
size_t size = chunk_size_raw();
RUNTIME_CHECK(mprotect(ptr, size, PROT_READ) >= 0);
}
}
#else
#define chunk_get_raw(qp) isc_mem_allocate(qp->mctx, QP_CHUNK_BYTES)
#define chunk_free_raw(qp, ptr) isc_mem_free(qp->mctx, ptr)
#define chunk_shrink_raw(qp, ptr, size) isc_mem_reallocate(qp->mctx, ptr, size)
#define write_protect(qp, chunk)
#endif
/***********************************************************************
*
* allocator
*/
/*
* When we reuse the bump chunk across multiple write transactions,
* it can have an immutable prefix and a mutable suffix.
*/
static inline bool
cells_immutable(dns_qp_t *qp, dns_qpref_t ref) {
dns_qpchunk_t chunk = ref_chunk(ref);
dns_qpcell_t cell = ref_cell(ref);
if (chunk == qp->bump) {
return cell < qp->fender;
} else {
return qp->usage[chunk].immutable;
}
}
/*
* Create a fresh bump chunk and allocate some twigs from it.
*/
static dns_qpref_t
chunk_alloc(dns_qp_t *qp, dns_qpchunk_t chunk, dns_qpweight_t size) {
INSIST(qp->base->ptr[chunk] == NULL);
INSIST(qp->usage[chunk].used == 0);
INSIST(qp->usage[chunk].free == 0);
qp->base->ptr[chunk] = chunk_get_raw(qp);
qp->usage[chunk] = (qp_usage_t){ .exists = true, .used = size };
qp->used_count += size;
qp->bump = chunk;
qp->fender = 0;
if (qp->write_protect) {
TRACE("chunk %u base %p", chunk, qp->base->ptr[chunk]);
}
return make_ref(chunk, 0);
}
/*
* This is used to grow the chunk arrays when they fill up. If the old
* base array is in use by readers, we must make a clone, otherwise we
* can reallocate in place.
*
* The isc_refcount_init() and qpbase_unref() in this function are a pair.
*/
static void
realloc_chunk_arrays(dns_qp_t *qp, dns_qpchunk_t newmax) {
size_t oldptrs = sizeof(qp->base->ptr[0]) * qp->chunk_max;
size_t newptrs = sizeof(qp->base->ptr[0]) * newmax;
size_t size = STRUCT_FLEX_SIZE(qp->base, ptr, newmax);
if (qp->base == NULL || qpbase_unref(qp)) {
qp->base = isc_mem_reallocate(qp->mctx, qp->base, size);
} else {
dns_qpbase_t *oldbase = qp->base;
qp->base = isc_mem_allocate(qp->mctx, size);
memmove(&qp->base->ptr[0], &oldbase->ptr[0], oldptrs);
}
memset(&qp->base->ptr[qp->chunk_max], 0, newptrs - oldptrs);
isc_refcount_init(&qp->base->refcount, 1);
qp->base->magic = QPBASE_MAGIC;
/* usage array is exclusive to the writer */
size_t oldusage = sizeof(qp->usage[0]) * qp->chunk_max;
size_t newusage = sizeof(qp->usage[0]) * newmax;
qp->usage = isc_mem_reallocate(qp->mctx, qp->usage, newusage);
memset(&qp->usage[qp->chunk_max], 0, newusage - oldusage);
qp->chunk_max = newmax;
TRACE("qpbase %p usage %p max %u", qp->base, qp->usage, qp->chunk_max);
}
/*
* There was no space in the bump chunk, so find a place to put a fresh
* chunk in the chunk arrays, then allocate some twigs from it.
*/
static dns_qpref_t
alloc_slow(dns_qp_t *qp, dns_qpweight_t size) {
dns_qpchunk_t chunk;
for (chunk = 0; chunk < qp->chunk_max; chunk++) {
if (!qp->usage[chunk].exists) {
return chunk_alloc(qp, chunk, size);
}
}
ENSURE(chunk == qp->chunk_max);
realloc_chunk_arrays(qp, GROWTH_FACTOR(chunk));
return chunk_alloc(qp, chunk, size);
}
/*
* Ensure we are using a fresh bump chunk.
*/
static void
alloc_reset(dns_qp_t *qp) {
(void)alloc_slow(qp, 0);
}
/*
* Allocate some fresh twigs. This is the bump allocator fast path.
*/
static inline dns_qpref_t
alloc_twigs(dns_qp_t *qp, dns_qpweight_t size) {
dns_qpchunk_t chunk = qp->bump;
dns_qpcell_t cell = qp->usage[chunk].used;
if (cell + size <= QP_CHUNK_SIZE) {
qp->usage[chunk].used += size;
qp->used_count += size;
return make_ref(chunk, cell);
} else {
return alloc_slow(qp, size);
}
}
/*
* Record that some twigs are no longer being used, and if possible
* zero them to ensure that there isn't a spurious double detach when
* the chunk is later recycled.
*
* Returns true if the twigs were immediately destroyed.
*
* NOTE: the caller is responsible for attaching or detaching any
* leaves as required.
*/
static inline bool
free_twigs(dns_qp_t *qp, dns_qpref_t twigs, dns_qpweight_t size) {
dns_qpchunk_t chunk = ref_chunk(twigs);
qp->free_count += size;
qp->usage[chunk].free += size;
ENSURE(qp->free_count <= qp->used_count);
ENSURE(qp->usage[chunk].free <= qp->usage[chunk].used);
if (cells_immutable(qp, twigs)) {
qp->hold_count += size;
ENSURE(qp->free_count >= qp->hold_count);
return false;
} else {
zero_twigs(ref_ptr(qp, twigs), size);
return true;
}
}
/*
* When some twigs have been copied, and free_twigs() could not
* immediately destroy the old copy, we need to update the refcount
* on any leaves that were duplicated.
*/
static void
attach_twigs(dns_qp_t *qp, dns_qpnode_t *twigs, dns_qpweight_t size) {
for (dns_qpweight_t pos = 0; pos < size; pos++) {
if (node_tag(&twigs[pos]) == LEAF_TAG) {
attach_leaf(qp, &twigs[pos]);
}
}
}
/***********************************************************************
*
* chunk reclamation
*/
/*
* Is any of this chunk still in use?
*/
static inline dns_qpcell_t
chunk_usage(dns_qp_t *qp, dns_qpchunk_t chunk) {
return qp->usage[chunk].used - qp->usage[chunk].free;
}
/*
* We remove each empty chunk from the total counts when the chunk is
* freed, or when it is scheduled for safe memory reclamation. We check
* the chunk's phase to avoid discounting it twice in the latter case.
*/
static void
chunk_discount(dns_qp_t *qp, dns_qpchunk_t chunk) {
if (qp->usage[chunk].discounted) {
return;
}
INSIST(qp->used_count >= qp->usage[chunk].used);
INSIST(qp->free_count >= qp->usage[chunk].free);
qp->used_count -= qp->usage[chunk].used;
qp->free_count -= qp->usage[chunk].free;
qp->usage[chunk].discounted = true;
}
/*
* When a chunk is being recycled, we need to detach any leaves that
* remain, and free any `base` arrays that have been marked as unused.
*/
static void
chunk_free(dns_qp_t *qp, dns_qpchunk_t chunk) {
if (qp->write_protect) {
TRACE("chunk %u base %p", chunk, qp->base->ptr[chunk]);
}
dns_qpnode_t *n = qp->base->ptr[chunk];
for (dns_qpcell_t count = qp->usage[chunk].used; count > 0;
count--, n++)
{
if (node_tag(n) == LEAF_TAG && node_pointer(n) != NULL) {
detach_leaf(qp, n);
} else if (count > 1 && reader_valid(n)) {
dns_qpreader_t qpr;
unpack_reader(&qpr, n);
/* pairs with dns_qpmulti_commit() */
if (qpbase_unref(&qpr)) {
isc_mem_free(qp->mctx, qpr.base);
}
}
}
chunk_discount(qp, chunk);
chunk_free_raw(qp, qp->base->ptr[chunk]);
qp->base->ptr[chunk] = NULL;
qp->usage[chunk] = (qp_usage_t){};
}
/*
* Free any chunks that we can while a trie is in use.
*/
static void
recycle(dns_qp_t *qp) {
unsigned int free = 0;
isc_nanosecs_t start = isc_time_monotonic();
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (chunk != qp->bump && chunk_usage(qp, chunk) == 0 &&
qp->usage[chunk].exists && !qp->usage[chunk].immutable)
{
chunk_free(qp, chunk);
free++;
}
}
isc_nanosecs_t time = isc_time_monotonic() - start;
atomic_fetch_add_relaxed(&recycle_time, time);
if (free > 0) {
LOG_STATS("qp recycle" PRItime "free %u chunks", time, free);
LOG_STATS("qp recycle leaf %u live %u used %u free %u hold %u",
qp->leaf_count, qp->used_count - qp->free_count,
qp->used_count, qp->free_count, qp->hold_count);
}
}
/*
* asynchronous cleanup
*/
static void
reclaim_chunks_cb(struct rcu_head *arg) {
qp_rcuctx_t *rcuctx = caa_container_of(arg, qp_rcuctx_t, rcu_head);
REQUIRE(QPRCU_VALID(rcuctx));
dns_qpmulti_t *multi = rcuctx->multi;
REQUIRE(QPMULTI_VALID(multi));
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
REQUIRE(QP_VALID(qp));
unsigned int free = 0;
isc_nanosecs_t start = isc_time_monotonic();
for (unsigned int i = 0; i < rcuctx->count; i++) {
dns_qpchunk_t chunk = rcuctx->chunk[i];
if (qp->usage[chunk].snapshot) {
/* cleanup when snapshot is destroyed */
qp->usage[chunk].snapfree = true;
} else {
chunk_free(qp, chunk);
free++;
}
}
isc_mem_putanddetach(&rcuctx->mctx, rcuctx,
STRUCT_FLEX_SIZE(rcuctx, chunk, rcuctx->count));
isc_nanosecs_t time = isc_time_monotonic() - start;
recycle_time += time;
if (free > 0) {
LOG_STATS("qp reclaim" PRItime "free %u chunks", time, free);
LOG_STATS("qp reclaim leaf %u live %u used %u free %u hold %u",
qp->leaf_count, qp->used_count - qp->free_count,
qp->used_count, qp->free_count, qp->hold_count);
}
UNLOCK(&multi->mutex);
}
/*
* At the end of a transaction, schedule empty but immutable chunks
* for reclamation later.
*/
static void
reclaim_chunks(dns_qpmulti_t *multi) {
dns_qp_t *qp = &multi->writer;
unsigned int count = 0;
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (chunk != qp->bump && chunk_usage(qp, chunk) == 0 &&
qp->usage[chunk].exists && qp->usage[chunk].immutable &&
!qp->usage[chunk].discounted)
{
count++;
}
}
if (count == 0) {
return;
}
qp_rcuctx_t *rcuctx =
isc_mem_get(qp->mctx, STRUCT_FLEX_SIZE(rcuctx, chunk, count));
*rcuctx = (qp_rcuctx_t){
.magic = QPRCU_MAGIC,
.multi = multi,
.count = count,
};
isc_mem_attach(qp->mctx, &rcuctx->mctx);
unsigned int i = 0;
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (chunk != qp->bump && chunk_usage(qp, chunk) == 0 &&
qp->usage[chunk].exists && qp->usage[chunk].immutable &&
!qp->usage[chunk].discounted)
{
rcuctx->chunk[i++] = chunk;
chunk_discount(qp, chunk);
}
}
call_rcu(&rcuctx->rcu_head, reclaim_chunks_cb);
LOG_STATS("qp will reclaim %u chunks", count);
}
/*
* When a snapshot is destroyed, clean up chunks that need free()ing
* and are not used by any remaining snapshots.
*/
static void
marksweep_chunks(dns_qpmulti_t *multi) {
unsigned int free = 0;
isc_nanosecs_t start = isc_time_monotonic();
dns_qp_t *qpw = &multi->writer;
for (dns_qpsnap_t *qps = ISC_LIST_HEAD(multi->snapshots); qps != NULL;
qps = ISC_LIST_NEXT(qps, link))
{
for (dns_qpchunk_t chunk = 0; chunk < qps->chunk_max; chunk++) {
if (qps->base->ptr[chunk] != NULL) {
INSIST(qps->base->ptr[chunk] ==
qpw->base->ptr[chunk]);
qpw->usage[chunk].snapmark = true;
}
}
}
for (dns_qpchunk_t chunk = 0; chunk < qpw->chunk_max; chunk++) {
qpw->usage[chunk].snapshot = qpw->usage[chunk].snapmark;
qpw->usage[chunk].snapmark = false;
if (qpw->usage[chunk].snapfree && !qpw->usage[chunk].snapshot) {
chunk_free(qpw, chunk);
free++;
}
}
isc_nanosecs_t time = isc_time_monotonic() - start;
recycle_time += time;
if (free > 0) {
LOG_STATS("qp marksweep" PRItime "free %u chunks", time, free);
LOG_STATS(
"qp marksweep leaf %u live %u used %u free %u hold %u",
qpw->leaf_count, qpw->used_count - qpw->free_count,
qpw->used_count, qpw->free_count, qpw->hold_count);
}
}
/***********************************************************************
*
* garbage collector
*/
/*
* Move a branch node's twigs to the `bump` chunk, for copy-on-write
* or for garbage collection. We don't update the node in place
* because `compact_recursive()` does not ensure the node itself is
* mutable until after it discovers evacuation was necessary.
*
* If free_twigs() could not immediately destroy the old twigs, we have
* to re-attach to any leaves.
*/
static dns_qpref_t
evacuate(dns_qp_t *qp, dns_qpnode_t *n) {
dns_qpweight_t size = branch_twigs_size(n);
dns_qpref_t old_ref = branch_twigs_ref(n);
dns_qpref_t new_ref = alloc_twigs(qp, size);
dns_qpnode_t *old_twigs = ref_ptr(qp, old_ref);
dns_qpnode_t *new_twigs = ref_ptr(qp, new_ref);
move_twigs(new_twigs, old_twigs, size);
if (!free_twigs(qp, old_ref, size)) {
attach_twigs(qp, new_twigs, size);
}
return new_ref;
}
/*
* Immutable nodes need copy-on-write. As we walk down the trie finding the
* right place to modify, make_root_mutable() and make_twigs_mutable()
* are called to ensure that immutable nodes on the path from the root are
* copied to a mutable chunk.
*/
static inline dns_qpnode_t *
make_root_mutable(dns_qp_t *qp) {
if (cells_immutable(qp, qp->root_ref)) {
qp->root_ref = evacuate(qp, MOVABLE_ROOT(qp));
}
return ref_ptr(qp, qp->root_ref);
}
static inline void
make_twigs_mutable(dns_qp_t *qp, dns_qpnode_t *n) {
if (cells_immutable(qp, branch_twigs_ref(n))) {
*n = make_node(branch_index(n), evacuate(qp, n));
}
}
/*
* Compact the trie by traversing the whole thing recursively, copying
* bottom-up as required. The aim is to avoid evacuation as much as
* possible, but when parts of the trie are immutable, we need to evacuate
* the paths from the root to the parts of the trie that occupy
* fragmented chunks.
*
* Without the QP_MIN_USED check, the algorithm will leave the trie
* unchanged. If the children are all leaves, the loop changes nothing,
* so we will return this node's original ref. If all of the children
* that are branches did not need moving, again, the loop changes
* nothing. So the evacuation check is the only place that the
* algorithm introduces ref changes, that then bubble up towards the
* root through the logic inside the loop.
*/
static dns_qpref_t
compact_recursive(dns_qp_t *qp, dns_qpnode_t *parent) {
dns_qpweight_t size = branch_twigs_size(parent);
dns_qpref_t twigs_ref = branch_twigs_ref(parent);
dns_qpchunk_t chunk = ref_chunk(twigs_ref);
if (qp->compact_all ||
(chunk != qp->bump && chunk_usage(qp, chunk) < QP_MIN_USED))
{
twigs_ref = evacuate(qp, parent);
}
bool immutable = cells_immutable(qp, twigs_ref);
for (dns_qpweight_t pos = 0; pos < size; pos++) {
dns_qpnode_t *child = ref_ptr(qp, twigs_ref) + pos;
if (!is_branch(child)) {
continue;
}
dns_qpref_t old_grandtwigs = branch_twigs_ref(child);
dns_qpref_t new_grandtwigs = compact_recursive(qp, child);
if (old_grandtwigs == new_grandtwigs) {
continue;
}
if (immutable) {
twigs_ref = evacuate(qp, parent);
/* the twigs have moved */
child = ref_ptr(qp, twigs_ref) + pos;
immutable = false;
}
*child = make_node(branch_index(child), new_grandtwigs);
}
return twigs_ref;
}
static void
compact(dns_qp_t *qp) {
LOG_STATS("qp compact before leaf %u live %u used %u free %u hold %u",
qp->leaf_count, qp->used_count - qp->free_count,
qp->used_count, qp->free_count, qp->hold_count);
isc_nanosecs_t start = isc_time_monotonic();
if (qp->usage[qp->bump].free > QP_MAX_FREE) {
alloc_reset(qp);
}
if (qp->leaf_count > 0) {
qp->root_ref = compact_recursive(qp, MOVABLE_ROOT(qp));
}
qp->compact_all = false;
isc_nanosecs_t time = isc_time_monotonic() - start;
atomic_fetch_add_relaxed(&compact_time, time);
LOG_STATS("qp compact" PRItime
"leaf %u live %u used %u free %u hold %u",
time, qp->leaf_count, qp->used_count - qp->free_count,
qp->used_count, qp->free_count, qp->hold_count);
}
void
dns_qp_compact(dns_qp_t *qp, dns_qpgc_t mode) {
REQUIRE(QP_VALID(qp));
if (mode == DNS_QPGC_MAYBE && !QP_NEEDGC(qp)) {
return;
}
if (mode == DNS_QPGC_ALL) {
alloc_reset(qp);
qp->compact_all = true;
}
compact(qp);
recycle(qp);
}
/*
* Free some twigs and (if they were destroyed immediately so that the
* result from QP_MAX_GARBAGE can change) compact the trie if necessary.
*
* This is called by the trie modification API entry points. The
* free_twigs() function requires the caller to attach or detach any
* leaves as necessary. Callers of squash_twigs() satisfy this
* requirement by calling make_twigs_mutable().
*
* Aside: In typical garbage collectors, compaction is triggered when
* the allocator runs out of space. But that is because typical garbage
* collectors do not know how much memory can be recovered, so they must
* find out by scanning the heap. The qp-trie code was originally
* designed to use malloc() and free(), so it has more information about
* when garbage collection might be worthwhile. Hence we can trigger
* collection when garbage passes a threshold.
*
* XXXFANF: If we need to avoid latency outliers caused by compaction in
* write transactions, we can check qp->transaction_mode here.
*/
static inline bool
squash_twigs(dns_qp_t *qp, dns_qpref_t twigs, dns_qpweight_t size) {
bool destroyed = free_twigs(qp, twigs, size);
if (destroyed && QP_AUTOGC(qp)) {
compact(qp);
recycle(qp);
/*
* This shouldn't happen if the garbage collector is
* working correctly. We can recover at the cost of some
* time and space, but recovery should be cheaper than
* letting compact+recycle fail repeatedly.
*/
if (QP_AUTOGC(qp)) {
isc_log_write(dns_lctx, DNS_LOGCATEGORY_DATABASE,
DNS_LOGMODULE_QP, ISC_LOG_NOTICE,
"qp %p uctx \"%s\" compact/recycle "
"failed to recover any space, "
"scheduling a full compaction",
qp, TRIENAME(qp));
qp->compact_all = true;
}
}
return destroyed;
}
/***********************************************************************
*
* public accessors for memory management internals
*/
dns_qp_memusage_t
dns_qp_memusage(dns_qp_t *qp) {
REQUIRE(QP_VALID(qp));
dns_qp_memusage_t memusage = {
.uctx = qp->uctx,
.leaves = qp->leaf_count,
.live = qp->used_count - qp->free_count,
.used = qp->used_count,
.hold = qp->hold_count,
.free = qp->free_count,
.node_size = sizeof(dns_qpnode_t),
.chunk_size = QP_CHUNK_SIZE,
.fragmented = QP_NEEDGC(qp),
};
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (qp->base->ptr[chunk] != NULL) {
memusage.chunk_count += 1;
}
}
/*
* XXXFANF does not subtract chunks that have been shrunk,
* and does not count unreclaimed dns_qpbase_t objects
*/
memusage.bytes = memusage.chunk_count * QP_CHUNK_BYTES +
qp->chunk_max * sizeof(qp->base->ptr[0]) +
qp->chunk_max * sizeof(qp->usage[0]);
return memusage;
}
dns_qp_memusage_t
dns_qpmulti_memusage(dns_qpmulti_t *multi) {
REQUIRE(QPMULTI_VALID(multi));
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
INSIST(QP_VALID(qp));
dns_qp_memusage_t memusage = dns_qp_memusage(qp);
if (qp->transaction_mode == QP_UPDATE) {
memusage.bytes -= QP_CHUNK_BYTES;
memusage.bytes += qp->usage[qp->bump].used *
sizeof(dns_qpnode_t);
}
UNLOCK(&multi->mutex);
return memusage;
}
void
dns_qp_gctime(isc_nanosecs_t *compact_p, isc_nanosecs_t *recycle_p,
isc_nanosecs_t *rollback_p) {
*compact_p = atomic_load_relaxed(&compact_time);
*recycle_p = atomic_load_relaxed(&recycle_time);
*rollback_p = atomic_load_relaxed(&rollback_time);
}
/***********************************************************************
*
* read-write transactions
*/
static dns_qp_t *
transaction_open(dns_qpmulti_t *multi, dns_qp_t **qptp) {
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(qptp != NULL && *qptp == NULL);
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
INSIST(QP_VALID(qp));
/*
* Mark existing chunks as immutable.
*
* Aside: The bump chunk is special: in a series of write
* transactions the bump chunk is reused; the first part (up
* to fender) is immutable, the rest mutable. But we set its
* immutable flag so that when the bump chunk fills up, the
* first part continues to be treated as immutable. (And the
* rest of the chunk too, but that's OK.)
*/
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (qp->usage[chunk].exists) {
qp->usage[chunk].immutable = true;
write_protect(qp, chunk);
}
}
/*
* Ensure QP_AUTOGC() ignores free space in immutable chunks.
*/
qp->hold_count = qp->free_count;
*qptp = qp;
return qp;
}
/*
* a write is light
*
* We need to ensure we allocate from a fresh chunk if the last transaction
* shrunk the bump chunk; but usually in a sequence of write transactions
* we just put `fender` at the point where we started this generation.
*
* (Aside: Instead of keeping the previous transaction's mode, I
* considered forcing allocation into the slow path by fiddling with
* the bump chunk's usage counters. But that is troublesome because
* `chunk_free()` needs to know how much of the chunk to scan.)
*/
void
dns_qpmulti_write(dns_qpmulti_t *multi, dns_qp_t **qptp) {
dns_qp_t *qp = transaction_open(multi, qptp);
TRACE("");
if (qp->transaction_mode == QP_WRITE) {
qp->fender = qp->usage[qp->bump].used;
} else {
alloc_reset(qp);
}
qp->transaction_mode = QP_WRITE;
}
/*
* an update is heavier
*
* We always reset the allocator to the start of a fresh chunk,
* because the previous transaction was probably an update that shrunk
* the bump chunk. It simplifies rollback because `fender` is always zero.
*
* To rollback a transaction, we need to reset all the allocation
* counters to their previous state, in particular we need to un-free
* any nodes that were copied to make them mutable. This means we need
* to make a copy of basically the whole `dns_qp_t writer`: everything
* but the chunks holding the trie nodes.
*
* We do most of the transaction setup before creating the rollback
* state so that after rollback we have a correct idea of which chunks
* are immutable, and so we have the correct transaction mode to make
* the next transaction allocate a new bump chunk. The exception is
* resetting the allocator, which we do after creating the rollback
* state; if this transaction is rolled back then the next transaction
* will start from the rollback state and also reset the allocator as
* one of its first actions.
*/
void
dns_qpmulti_update(dns_qpmulti_t *multi, dns_qp_t **qptp) {
dns_qp_t *qp = transaction_open(multi, qptp);
TRACE("");
qp->transaction_mode = QP_UPDATE;
dns_qp_t *rollback = isc_mem_allocate(qp->mctx, sizeof(*rollback));
memmove(rollback, qp, sizeof(*rollback));
/* can be uninitialized on the first transaction */
if (rollback->base != NULL) {
INSIST(QPBASE_VALID(rollback->base));
INSIST(qp->usage != NULL && qp->chunk_max > 0);
/* paired with either _commit() or _rollback() */
isc_refcount_increment(&rollback->base->refcount);
size_t usage_bytes = sizeof(qp->usage[0]) * qp->chunk_max;
rollback->usage = isc_mem_allocate(qp->mctx, usage_bytes);
memmove(rollback->usage, qp->usage, usage_bytes);
}
INSIST(multi->rollback == NULL);
multi->rollback = rollback;
alloc_reset(qp);
}
void
dns_qpmulti_commit(dns_qpmulti_t *multi, dns_qp_t **qptp) {
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(qptp != NULL && *qptp == &multi->writer);
REQUIRE(multi->writer.transaction_mode == QP_WRITE ||
multi->writer.transaction_mode == QP_UPDATE);
dns_qp_t *qp = *qptp;
TRACE("");
if (qp->transaction_mode == QP_UPDATE) {
INSIST(multi->rollback != NULL);
/* paired with dns_qpmulti_update() */
if (qpbase_unref(multi->rollback)) {
isc_mem_free(qp->mctx, multi->rollback->base);
}
if (multi->rollback->usage != NULL) {
isc_mem_free(qp->mctx, multi->rollback->usage);
}
isc_mem_free(qp->mctx, multi->rollback);
}
INSIST(multi->rollback == NULL);
/* not the first commit? */
if (multi->reader_ref != INVALID_REF) {
INSIST(cells_immutable(qp, multi->reader_ref));
free_twigs(qp, multi->reader_ref, READER_SIZE);
}
if (qp->transaction_mode == QP_UPDATE) {
/* minimize memory overhead */
compact(qp);
multi->reader_ref = alloc_twigs(qp, READER_SIZE);
qp->base->ptr[qp->bump] = chunk_shrink_raw(
qp, qp->base->ptr[qp->bump],
qp->usage[qp->bump].used * sizeof(dns_qpnode_t));
} else {
multi->reader_ref = alloc_twigs(qp, READER_SIZE);
}
/* anchor a new version of the trie */
dns_qpnode_t *reader = ref_ptr(qp, multi->reader_ref);
make_reader(reader, multi);
/* paired with chunk_free() */
isc_refcount_increment(&qp->base->refcount);
rcu_assign_pointer(multi->reader, reader); /* COMMIT */
/* clean up what we can right now */
if (qp->transaction_mode == QP_UPDATE || QP_NEEDGC(qp)) {
recycle(qp);
}
/* schedule the rest for later */
reclaim_chunks(multi);
*qptp = NULL;
UNLOCK(&multi->mutex);
}
/*
* Throw away everything that was allocated during this transaction.
*/
void
dns_qpmulti_rollback(dns_qpmulti_t *multi, dns_qp_t **qptp) {
unsigned int free = 0;
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(multi->writer.transaction_mode == QP_UPDATE);
REQUIRE(qptp != NULL && *qptp == &multi->writer);
dns_qp_t *qp = *qptp;
TRACE("");
isc_nanosecs_t start = isc_time_monotonic();
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (qp->base->ptr[chunk] != NULL && !qp->usage[chunk].immutable)
{
chunk_free(qp, chunk);
/*
* we need to clear its base pointer in the rollback
* trie, in case the arrays were resized
*/
if (chunk < multi->rollback->chunk_max) {
INSIST(!multi->rollback->usage[chunk].exists);
multi->rollback->base->ptr[chunk] = NULL;
}
free++;
}
}
/*
* multi->rollback->base and multi->writer->base are the same,
* unless there was a realloc_chunk_arrays() during the transaction
*/
if (qpbase_unref(qp)) {
/* paired with dns_qpmulti_update() */
isc_mem_free(qp->mctx, qp->base);
}
isc_mem_free(qp->mctx, qp->usage);
/* reset allocator state */
INSIST(multi->rollback != NULL);
memmove(qp, multi->rollback, sizeof(*qp));
isc_mem_free(qp->mctx, multi->rollback);
INSIST(multi->rollback == NULL);
isc_nanosecs_t time = isc_time_monotonic() - start;
atomic_fetch_add_relaxed(&rollback_time, time);
LOG_STATS("qp rollback" PRItime "free %u chunks", time, free);
*qptp = NULL;
UNLOCK(&multi->mutex);
}
/***********************************************************************
*
* read-only transactions
*/
static dns_qpmulti_t *
reader_open(dns_qpmulti_t *multi, dns_qpreadable_t qpr) {
dns_qpreader_t *qp = dns_qpreader(qpr);
dns_qpnode_t *reader = rcu_dereference(multi->reader);
if (reader == NULL) {
QP_INIT(qp, multi->writer.methods, multi->writer.uctx);
} else {
multi = unpack_reader(qp, reader);
}
return multi;
}
/*
* a query is light
*/
void
dns_qpmulti_query(dns_qpmulti_t *multi, dns_qpread_t *qp) {
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(qp != NULL);
qp->tid = isc_tid();
rcu_read_lock();
dns_qpmulti_t *whence = reader_open(multi, qp);
INSIST(whence == multi);
}
void
dns_qpread_destroy(dns_qpmulti_t *multi, dns_qpread_t *qp) {
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(QP_VALID(qp));
REQUIRE(qp->tid == isc_tid());
*qp = (dns_qpread_t){};
rcu_read_unlock();
}
/*
* a snapshot is heavy
*/
void
dns_qpmulti_snapshot(dns_qpmulti_t *multi, dns_qpsnap_t **qpsp) {
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(qpsp != NULL && *qpsp == NULL);
rcu_read_lock();
LOCK(&multi->mutex);
dns_qp_t *qpw = &multi->writer;
size_t bytes = sizeof(dns_qpsnap_t) + sizeof(dns_qpbase_t) +
sizeof(qpw->base->ptr[0]) * qpw->chunk_max;
dns_qpsnap_t *qps = isc_mem_allocate(qpw->mctx, bytes);
qps->whence = reader_open(multi, qps);
INSIST(qps->whence == multi);
/* not a separate allocation */
qps->base = (dns_qpbase_t *)(qps + 1);
isc_refcount_init(&qps->base->refcount, 0);
/*
* only copy base pointers of chunks we need, so we can
* reclaim unused memory in dns_qpsnap_destroy()
*/
qps->chunk_max = qpw->chunk_max;
for (dns_qpchunk_t chunk = 0; chunk < qpw->chunk_max; chunk++) {
if (qpw->usage[chunk].exists && chunk_usage(qpw, chunk) > 0) {
qpw->usage[chunk].snapshot = true;
qps->base->ptr[chunk] = qpw->base->ptr[chunk];
} else {
qps->base->ptr[chunk] = NULL;
}
}
ISC_LIST_INITANDAPPEND(multi->snapshots, qps, link);
*qpsp = qps;
UNLOCK(&multi->mutex);
rcu_read_unlock();
}
void
dns_qpsnap_destroy(dns_qpmulti_t *multi, dns_qpsnap_t **qpsp) {
REQUIRE(QPMULTI_VALID(multi));
REQUIRE(qpsp != NULL && *qpsp != NULL);
LOCK(&multi->mutex);
dns_qpsnap_t *qp = *qpsp;
/* make sure the API is being used correctly */
REQUIRE(qp->whence == multi);
ISC_LIST_UNLINK(multi->snapshots, qp, link);
/*
* eagerly reclaim chunks that are now unused, so that memory does
* not accumulate when a trie has a lot of updates and snapshots
*/
marksweep_chunks(multi);
isc_mem_free(multi->writer.mctx, qp);
*qpsp = NULL;
UNLOCK(&multi->mutex);
}
/***********************************************************************
*
* constructors, destructors
*/
void
dns_qp_create(isc_mem_t *mctx, const dns_qpmethods_t *methods, void *uctx,
dns_qp_t **qptp) {
REQUIRE(qptp != NULL && *qptp == NULL);
dns_qp_t *qp = isc_mem_get(mctx, sizeof(*qp));
QP_INIT(qp, methods, uctx);
isc_mem_attach(mctx, &qp->mctx);
alloc_reset(qp);
TRACE("");
*qptp = qp;
}
void
dns_qpmulti_create(isc_mem_t *mctx, const dns_qpmethods_t *methods, void *uctx,
dns_qpmulti_t **qpmp) {
REQUIRE(qpmp != NULL && *qpmp == NULL);
dns_qpmulti_t *multi = isc_mem_get(mctx, sizeof(*multi));
*multi = (dns_qpmulti_t){
.magic = QPMULTI_MAGIC,
.reader_ref = INVALID_REF,
};
isc_mutex_init(&multi->mutex);
ISC_LIST_INIT(multi->snapshots);
/*
* Do not waste effort allocating a bump chunk that will be thrown
* away when a transaction is opened. dns_qpmulti_update() always
* allocates; to ensure dns_qpmulti_write() does too, pretend the
* previous transaction was an update
*/
dns_qp_t *qp = &multi->writer;
QP_INIT(qp, methods, uctx);
isc_mem_attach(mctx, &qp->mctx);
qp->transaction_mode = QP_UPDATE;
TRACE("");
*qpmp = multi;
}
static void
destroy_guts(dns_qp_t *qp) {
if (qp->chunk_max == 0) {
return;
}
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (qp->base->ptr[chunk] != NULL) {
chunk_free(qp, chunk);
}
}
ENSURE(qp->used_count == 0);
ENSURE(qp->free_count == 0);
ENSURE(isc_refcount_current(&qp->base->refcount) == 1);
isc_mem_free(qp->mctx, qp->base);
isc_mem_free(qp->mctx, qp->usage);
qp->magic = 0;
}
void
dns_qp_destroy(dns_qp_t **qptp) {
REQUIRE(qptp != NULL);
REQUIRE(QP_VALID(*qptp));
dns_qp_t *qp = *qptp;
*qptp = NULL;
/* do not try to destroy part of a dns_qpmulti_t */
REQUIRE(qp->transaction_mode == QP_NONE);
TRACE("");
destroy_guts(qp);
isc_mem_putanddetach(&qp->mctx, qp, sizeof(*qp));
}
static void
qpmulti_destroy_cb(struct rcu_head *arg) {
qp_rcuctx_t *rcuctx = caa_container_of(arg, qp_rcuctx_t, rcu_head);
REQUIRE(QPRCU_VALID(rcuctx));
/* only nonzero for reclaim_chunks_cb() */
REQUIRE(rcuctx->count == 0);
dns_qpmulti_t *multi = rcuctx->multi;
REQUIRE(QPMULTI_VALID(multi));
/* reassure thread sanitizer */
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
REQUIRE(QP_VALID(qp));
destroy_guts(qp);
UNLOCK(&multi->mutex);
isc_mutex_destroy(&multi->mutex);
isc_mem_putanddetach(&rcuctx->mctx, rcuctx,
STRUCT_FLEX_SIZE(rcuctx, chunk, rcuctx->count));
isc_mem_putanddetach(&qp->mctx, multi, sizeof(*multi));
}
void
dns_qpmulti_destroy(dns_qpmulti_t **qpmp) {
dns_qp_t *qp = NULL;
dns_qpmulti_t *multi = NULL;
qp_rcuctx_t *rcuctx = NULL;
REQUIRE(qpmp != NULL);
REQUIRE(QPMULTI_VALID(*qpmp));
multi = *qpmp;
qp = &multi->writer;
*qpmp = NULL;
REQUIRE(QP_VALID(qp));
REQUIRE(multi->rollback == NULL);
REQUIRE(ISC_LIST_EMPTY(multi->snapshots));
rcuctx = isc_mem_get(qp->mctx, STRUCT_FLEX_SIZE(rcuctx, chunk, 0));
*rcuctx = (qp_rcuctx_t){
.magic = QPRCU_MAGIC,
.multi = multi,
};
isc_mem_attach(qp->mctx, &rcuctx->mctx);
call_rcu(&rcuctx->rcu_head, qpmulti_destroy_cb);
}
/***********************************************************************
*
* modification
*/
isc_result_t
dns_qp_insert(dns_qp_t *qp, void *pval, uint32_t ival) {
dns_qpref_t new_ref, old_ref;
dns_qpnode_t new_leaf, old_node;
dns_qpnode_t *new_twigs = NULL, *old_twigs = NULL;
dns_qpshift_t new_bit, old_bit;
dns_qpweight_t old_size, new_size;
dns_qpkey_t new_key, old_key;
size_t new_keylen, old_keylen;
size_t offset;
uint64_t index;
dns_qpshift_t bit;
dns_qpweight_t pos;
dns_qpnode_t *n = NULL;
REQUIRE(QP_VALID(qp));
new_leaf = make_leaf(pval, ival);
new_keylen = leaf_qpkey(qp, &new_leaf, new_key);
/* first leaf in an empty trie? */
if (qp->leaf_count == 0) {
new_ref = alloc_twigs(qp, 1);
new_twigs = ref_ptr(qp, new_ref);
*new_twigs = new_leaf;
attach_leaf(qp, new_twigs);
qp->leaf_count++;
qp->root_ref = new_ref;
return ISC_R_SUCCESS;
}
/*
* We need to keep searching down to a leaf even if our key is
* missing from this branch. It doesn't matter which twig we
* choose since the keys are all the same up to this node's
* offset. Note that if we simply use branch_twig_pos(n, bit)
* we may get an out-of-bounds access if our bit is greater
* than all the set bits in the node.
*/
n = ref_ptr(qp, qp->root_ref);
while (is_branch(n)) {
prefetch_twigs(qp, n);
dns_qpref_t ref = branch_twigs_ref(n);
bit = branch_keybit(n, new_key, new_keylen);
pos = branch_has_twig(n, bit) ? branch_twig_pos(n, bit) : 0;
n = ref_ptr(qp, ref + pos);
}
/* do the keys differ, and if so, where? */
old_keylen = leaf_qpkey(qp, n, old_key);
offset = qpkey_compare(new_key, new_keylen, old_key, old_keylen);
if (offset == QPKEY_EQUAL) {
return ISC_R_EXISTS;
}
new_bit = qpkey_bit(new_key, new_keylen, offset);
old_bit = qpkey_bit(old_key, old_keylen, offset);
/* find where to insert a branch or grow an existing branch. */
n = make_root_mutable(qp);
while (is_branch(n)) {
prefetch_twigs(qp, n);
if (offset < branch_key_offset(n)) {
goto newbranch;
}
if (offset == branch_key_offset(n)) {
goto growbranch;
}
make_twigs_mutable(qp, n);
bit = branch_keybit(n, new_key, new_keylen);
INSIST(branch_has_twig(n, bit));
n = branch_twig_ptr(qp, n, bit);
}
/* fall through */
newbranch:
new_ref = alloc_twigs(qp, 2);
new_twigs = ref_ptr(qp, new_ref);
/* save before overwriting. */
old_node = *n;
/* new branch node takes old node's place */
index = BRANCH_TAG | (1ULL << new_bit) | (1ULL << old_bit) |
((uint64_t)offset << SHIFT_OFFSET);
*n = make_node(index, new_ref);
/* populate twigs */
new_twigs[old_bit > new_bit] = old_node;
new_twigs[new_bit > old_bit] = new_leaf;
attach_leaf(qp, &new_leaf);
qp->leaf_count++;
return ISC_R_SUCCESS;
growbranch:
INSIST(!branch_has_twig(n, new_bit));
/* locate twigs vectors */
old_size = branch_twigs_size(n);
new_size = old_size + 1;
old_ref = branch_twigs_ref(n);
new_ref = alloc_twigs(qp, new_size);
old_twigs = ref_ptr(qp, old_ref);
new_twigs = ref_ptr(qp, new_ref);
/* embiggen branch node */
index = branch_index(n) | (1ULL << new_bit);
*n = make_node(index, new_ref);
/* embiggen twigs vector */
pos = branch_twig_pos(n, new_bit);
move_twigs(new_twigs, old_twigs, pos);
new_twigs[pos] = new_leaf;
move_twigs(new_twigs + pos + 1, old_twigs + pos, old_size - pos);
if (squash_twigs(qp, old_ref, old_size)) {
/* old twigs destroyed, only attach to new leaf */
attach_leaf(qp, &new_leaf);
} else {
/* old twigs duplicated, attach to all leaves */
attach_twigs(qp, new_twigs, new_size);
}
qp->leaf_count++;
return ISC_R_SUCCESS;
}
isc_result_t
dns_qp_deletekey(dns_qp_t *qp, const dns_qpkey_t search_key,
size_t search_keylen, void **pval_r, uint32_t *ival_r) {
REQUIRE(QP_VALID(qp));
REQUIRE(search_keylen < sizeof(dns_qpkey_t));
if (get_root(qp) == NULL) {
return ISC_R_NOTFOUND;
}
dns_qpshift_t bit = 0; /* suppress warning */
dns_qpnode_t *parent = NULL;
dns_qpnode_t *n = make_root_mutable(qp);
while (is_branch(n)) {
prefetch_twigs(qp, n);
bit = branch_keybit(n, search_key, search_keylen);
if (!branch_has_twig(n, bit)) {
return ISC_R_NOTFOUND;
}
make_twigs_mutable(qp, n);
parent = n;
n = branch_twig_ptr(qp, n, bit);
}
dns_qpkey_t found_key;
size_t found_keylen = leaf_qpkey(qp, n, found_key);
if (qpkey_compare(search_key, search_keylen, found_key, found_keylen) !=
QPKEY_EQUAL)
{
return ISC_R_NOTFOUND;
}
SET_IF_NOT_NULL(pval_r, leaf_pval(n));
SET_IF_NOT_NULL(ival_r, leaf_ival(n));
detach_leaf(qp, n);
qp->leaf_count--;
/* trie becomes empty */
if (qp->leaf_count == 0) {
INSIST(parent == NULL);
INSIST(n == get_root(qp));
free_twigs(qp, qp->root_ref, 1);
qp->root_ref = INVALID_REF;
return ISC_R_SUCCESS;
}
/* step back to parent node */
n = parent;
parent = NULL;
INSIST(bit != 0);
dns_qpweight_t size = branch_twigs_size(n);
dns_qpweight_t pos = branch_twig_pos(n, bit);
dns_qpref_t ref = branch_twigs_ref(n);
dns_qpnode_t *twigs = ref_ptr(qp, ref);
if (size == 2) {
/*
* move the other twig to the parent branch.
*/
*n = twigs[!pos];
squash_twigs(qp, ref, 2);
} else {
/*
* shrink the twigs in place, to avoid using the bump
* chunk too fast - the gc will clean up after us
*/
*n = make_node(branch_index(n) & ~(1ULL << bit), ref);
move_twigs(twigs + pos, twigs + pos + 1, size - pos - 1);
squash_twigs(qp, ref + size - 1, 1);
}
return ISC_R_SUCCESS;
}
isc_result_t
dns_qp_deletename(dns_qp_t *qp, const dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
dns_qpkey_t key;
size_t keylen = dns_qpkey_fromname(key, name);
return dns_qp_deletekey(qp, key, keylen, pval_r, ival_r);
}
/***********************************************************************
* chains
*/
static void
maybe_set_name(dns_qpreader_t *qp, dns_qpnode_t *node, dns_name_t *name) {
dns_qpkey_t key;
size_t len;
if (name == NULL) {
return;
}
dns_name_reset(name);
len = leaf_qpkey(qp, node, key);
dns_qpkey_toname(key, len, name);
}
void
dns_qpchain_init(dns_qpreadable_t qpr, dns_qpchain_t *chain) {
dns_qpreader_t *qp = dns_qpreader(qpr);
REQUIRE(QP_VALID(qp));
REQUIRE(chain != NULL);
*chain = (dns_qpchain_t){
.magic = QPCHAIN_MAGIC,
.qp = qp,
};
}
unsigned int
dns_qpchain_length(dns_qpchain_t *chain) {
REQUIRE(QPCHAIN_VALID(chain));
return chain->len;
}
void
dns_qpchain_node(dns_qpchain_t *chain, unsigned int level, dns_name_t *name,
void **pval_r, uint32_t *ival_r) {
dns_qpnode_t *node = NULL;
REQUIRE(QPCHAIN_VALID(chain));
REQUIRE(level < chain->len);
node = chain->chain[level].node;
maybe_set_name(chain->qp, node, name);
SET_IF_NOT_NULL(pval_r, leaf_pval(node));
SET_IF_NOT_NULL(ival_r, leaf_ival(node));
}
/***********************************************************************
* iterators
*/
void
dns_qpiter_init(dns_qpreadable_t qpr, dns_qpiter_t *qpi) {
dns_qpreader_t *qp = dns_qpreader(qpr);
REQUIRE(QP_VALID(qp));
REQUIRE(qpi != NULL);
*qpi = (dns_qpiter_t){
.qp = qp,
.magic = QPITER_MAGIC,
};
}
/*
* are we at the last twig in this branch (in whichever direction
* we're iterating)?
*/
static bool
last_twig(dns_qpiter_t *qpi, bool forward) {
dns_qpweight_t pos = 0, max = 0;
if (qpi->sp > 0) {
dns_qpnode_t *child = qpi->stack[qpi->sp];
dns_qpnode_t *parent = qpi->stack[qpi->sp - 1];
pos = child - ref_ptr(qpi->qp, branch_twigs_ref(parent));
if (forward) {
max = branch_twigs_size(parent) - 1;
}
}
return pos == max;
}
/*
* move a QP iterator forward or back to the next or previous leaf.
* note: this function can go wrong when the iterator refers to
* a mutable view of the trie which is altered while iterating
*/
static isc_result_t
iterate(bool forward, dns_qpiter_t *qpi, dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
dns_qpnode_t *node = NULL;
bool initial_branch = true;
REQUIRE(QPITER_VALID(qpi));
dns_qpreader_t *qp = qpi->qp;
REQUIRE(QP_VALID(qp));
node = get_root(qp);
if (node == NULL) {
return ISC_R_NOMORE;
}
do {
if (qpi->stack[qpi->sp] == NULL) {
/* newly initialized iterator: use the root node */
INSIST(qpi->sp == 0);
qpi->stack[0] = node;
} else if (!initial_branch) {
/*
* in a prior loop, we reached a branch; from
* here we just need to get the highest or lowest
* leaf in the subtree; we don't need to bother
* stepping forward or backward through twigs
* anymore.
*/
INSIST(qpi->sp > 0);
} else if (last_twig(qpi, forward)) {
/*
* we've stepped to the end (or the beginning,
* if we're iterating backwards) of a set of twigs.
*/
if (qpi->sp == 0) {
/*
* we've finished iterating. reinitialize
* the iterator, then return ISC_R_NOMORE.
*/
dns_qpiter_init(qpi->qp, qpi);
return ISC_R_NOMORE;
}
/*
* pop the stack, and resume at the parent branch.
*/
qpi->stack[qpi->sp] = NULL;
qpi->sp--;
continue;
} else {
/*
* there are more twigs in the current branch,
* so step the node pointer forward (or back).
*/
qpi->stack[qpi->sp] += (forward ? 1 : -1);
node = qpi->stack[qpi->sp];
}
/*
* if we're at a branch now, we loop down to the
* left- or rightmost leaf.
*/
if (is_branch(node)) {
qpi->sp++;
INSIST(qpi->sp < DNS_QP_MAXKEY);
node = ref_ptr(qp, branch_twigs_ref(node)) +
(forward ? 0 : branch_twigs_size(node) - 1);
qpi->stack[qpi->sp] = node;
initial_branch = false;
}
} while (is_branch(node));
/* we're at a leaf: return its data to the caller */
SET_IF_NOT_NULL(pval_r, leaf_pval(node));
SET_IF_NOT_NULL(ival_r, leaf_ival(node));
maybe_set_name(qpi->qp, node, name);
return ISC_R_SUCCESS;
}
isc_result_t
dns_qpiter_next(dns_qpiter_t *qpi, dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
return iterate(true, qpi, name, pval_r, ival_r);
}
isc_result_t
dns_qpiter_prev(dns_qpiter_t *qpi, dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
return iterate(false, qpi, name, pval_r, ival_r);
}
isc_result_t
dns_qpiter_current(dns_qpiter_t *qpi, dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
dns_qpnode_t *node = NULL;
REQUIRE(QPITER_VALID(qpi));
node = qpi->stack[qpi->sp];
if (node == NULL || is_branch(node)) {
return ISC_R_FAILURE;
}
SET_IF_NOT_NULL(pval_r, leaf_pval(node));
SET_IF_NOT_NULL(ival_r, leaf_ival(node));
maybe_set_name(qpi->qp, node, name);
return ISC_R_SUCCESS;
}
/***********************************************************************
*
* search
*/
isc_result_t
dns_qp_getkey(dns_qpreadable_t qpr, const dns_qpkey_t search_key,
size_t search_keylen, void **pval_r, uint32_t *ival_r) {
dns_qpreader_t *qp = dns_qpreader(qpr);
dns_qpkey_t found_key;
size_t found_keylen;
dns_qpshift_t bit;
dns_qpnode_t *n = NULL;
REQUIRE(QP_VALID(qp));
REQUIRE(search_keylen < sizeof(dns_qpkey_t));
n = get_root(qp);
if (n == NULL) {
return ISC_R_NOTFOUND;
}
while (is_branch(n)) {
prefetch_twigs(qp, n);
bit = branch_keybit(n, search_key, search_keylen);
if (!branch_has_twig(n, bit)) {
return ISC_R_NOTFOUND;
}
n = branch_twig_ptr(qp, n, bit);
}
found_keylen = leaf_qpkey(qp, n, found_key);
if (qpkey_compare(search_key, search_keylen, found_key, found_keylen) !=
QPKEY_EQUAL)
{
return ISC_R_NOTFOUND;
}
SET_IF_NOT_NULL(pval_r, leaf_pval(n));
SET_IF_NOT_NULL(ival_r, leaf_ival(n));
return ISC_R_SUCCESS;
}
isc_result_t
dns_qp_getname(dns_qpreadable_t qpr, const dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
dns_qpkey_t key;
size_t keylen = dns_qpkey_fromname(key, name);
return dns_qp_getkey(qpr, key, keylen, pval_r, ival_r);
}
static inline void
add_link(dns_qpchain_t *chain, dns_qpnode_t *node, size_t offset) {
/* prevent duplication */
if (chain->len != 0 && chain->chain[chain->len - 1].node == node) {
return;
}
chain->chain[chain->len].node = node;
chain->chain[chain->len].offset = offset;
chain->len++;
INSIST(chain->len <= DNS_NAME_MAXLABELS);
}
static inline void
prevleaf(dns_qpiter_t *it) {
isc_result_t result = dns_qpiter_prev(it, NULL, NULL, NULL);
if (result == ISC_R_NOMORE) {
result = dns_qpiter_prev(it, NULL, NULL, NULL);
}
RUNTIME_CHECK(result == ISC_R_SUCCESS);
}
static inline void
greatest_leaf(dns_qpreadable_t qpr, dns_qpnode_t *n, dns_qpiter_t *iter) {
while (is_branch(n)) {
dns_qpref_t ref = branch_twigs_ref(n) + branch_twigs_size(n) -
1;
iter->stack[++iter->sp] = n;
n = ref_ptr(qpr, ref);
}
iter->stack[++iter->sp] = n;
}
static inline dns_qpnode_t *
anyleaf(dns_qpreader_t *qp, dns_qpnode_t *n) {
while (is_branch(n)) {
n = branch_twigs(qp, n);
}
return n;
}
static inline int
twig_offset(dns_qpnode_t *n, dns_qpshift_t sbit, dns_qpshift_t kbit,
dns_qpshift_t fbit) {
dns_qpweight_t pos = branch_twig_pos(n, sbit);
if (branch_has_twig(n, sbit)) {
return pos - (kbit < fbit);
}
return pos - 1;
}
/*
* If dns_qp_lookup() was passed an iterator, we want it to point at the
* matching name in the case of an exact match, or at the predecessor name
* for a non-exact match.
*
* If there is an exact match, then there is nothing to be done. Otherwise,
* we pop up the iterator stack until we find a parent branch with an offset
* that is before the position where the search key differs from the found key.
* From there we can step to the leaf that is the predecessor of the searched
* name.
*
* Requires the iterator to be pointing at a leaf node.
*/
static void
fix_iterator(dns_qpreader_t *qp, dns_qpiter_t *it, dns_qpkey_t key,
size_t len) {
dns_qpnode_t *n = it->stack[it->sp];
REQUIRE(!is_branch(n));
dns_qpkey_t found;
size_t foundlen = leaf_qpkey(qp, n, found);
size_t to = qpkey_compare(key, len, found, foundlen);
/* If the keys are equal, the iterator is already at the right node. */
if (to == QPKEY_EQUAL) {
return;
}
/*
* Special case: if the key differs even before the root
* key offset, it means the name desired either precedes or
* follows the entire range of names in the database, and
* popping up the stack won't help us, so just move the
* iterator one step back from the origin and return.
*/
if (to < branch_key_offset(it->stack[0])) {
dns_qpiter_init(qp, it);
prevleaf(it);
return;
}
/*
* As long as the branch offset point is after the point where the
* key differs, we need to branch up and find a better node.
*/
while (it->sp > 0) {
dns_qpnode_t *b = it->stack[it->sp - 1];
if (branch_key_offset(b) < to) {
break;
}
it->sp--;
}
n = it->stack[it->sp];
/*
* Either we are now at the correct branch, or we are at the
* first unmatched node. Determine the bit position for the
* twig we need (sbit).
*/
dns_qpshift_t kbit = qpkey_bit(key, len, to);
dns_qpshift_t fbit = qpkey_bit(found, foundlen, to);
dns_qpshift_t sbit = 0;
if (is_branch(n) && branch_key_offset(n) == to) {
/* We are on the correct branch now. */
sbit = kbit;
} else if (it->sp == 0) {
/*
* We are on the root branch, popping up the stack won't
* help us, so just move the iterator one step back from the
* origin and return.
*/
dns_qpiter_init(qp, it);
prevleaf(it);
return;
} else {
/* We are at the first unmatched node, pop up the stack. */
n = it->stack[--it->sp];
sbit = qpkey_bit(key, len, branch_key_offset(n));
}
INSIST(is_branch(n));
prefetch_twigs(qp, n);
dns_qpnode_t *twigs = branch_twigs(qp, n);
int toff = twig_offset(n, sbit, kbit, fbit);
if (toff >= 0) {
/*
* The name we want would've been after some twig in
* this branch. Walk down from that twig to the
* highest leaf in its subtree to get the predecessor.
*/
greatest_leaf(qp, twigs + toff, it);
} else {
/*
* Every leaf below this node is greater than the one we
* wanted, so the previous leaf is the predecessor.
*/
prevleaf(it);
}
}
/*
* When searching for a requested name in dns_qp_lookup(), we might add
* a leaf node to the chain, then subsequently determine that it was a
* dead end. When this happens, the chain can be left holding a node
* that is *not* an ancestor of the requested name. We correct for that
* here.
*/
static void
fix_chain(dns_qpchain_t *chain, size_t offset) {
while (chain->len > 0 && chain->chain[chain->len - 1].offset >= offset)
{
chain->len--;
chain->chain[chain->len].node = NULL;
chain->chain[chain->len].offset = 0;
}
}
isc_result_t
dns_qp_lookup(dns_qpreadable_t qpr, const dns_name_t *name,
dns_name_t *foundname, dns_qpiter_t *iter, dns_qpchain_t *chain,
void **pval_r, uint32_t *ival_r) {
dns_qpreader_t *qp = dns_qpreader(qpr);
dns_qpkey_t search, found;
size_t searchlen, foundlen;
size_t offset = 0;
dns_qpnode_t *n = NULL;
dns_qpshift_t bit = SHIFT_NOBYTE;
dns_qpchain_t oc;
dns_qpiter_t it;
bool matched = false;
bool setiter = true;
REQUIRE(QP_VALID(qp));
REQUIRE(foundname == NULL || ISC_MAGIC_VALID(name, DNS_NAME_MAGIC));
searchlen = dns_qpkey_fromname(search, name);
if (chain == NULL) {
chain = &oc;
}
if (iter == NULL) {
iter = &it;
setiter = false;
}
dns_qpchain_init(qp, chain);
dns_qpiter_init(qp, iter);
n = get_root(qp);
if (n == NULL) {
return ISC_R_NOTFOUND;
}
iter->stack[0] = n;
/*
* Like `dns_qp_insert()`, we must find a leaf. However, we don't make a
* second pass: instead, we keep track of any leaves with shorter keys
* that we discover along the way. (In general, qp-trie searches can be
* one-pass, by recording their traversal, or two-pass, for less stack
* memory usage.)
*/
while (is_branch(n)) {
prefetch_twigs(qp, n);
offset = branch_key_offset(n);
bit = qpkey_bit(search, searchlen, offset);
dns_qpnode_t *twigs = branch_twigs(qp, n);
/*
* A shorter key that can be a parent domain always has a
* leaf node at SHIFT_NOBYTE (indicating end of its key)
* where our search key has a normal character immediately
* after a label separator.
*
* Note 1: It is OK if `off - 1` underflows: it will
* become SIZE_MAX, which is greater than `searchlen`, so
* `qpkey_bit()` will return SHIFT_NOBYTE, which is what we
* want when `off == 0`.
*
* Note 2: If SHIFT_NOBYTE twig is present, it will always
* be in position 0, the first location in 'twigs'.
*/
if (bit != SHIFT_NOBYTE && branch_has_twig(n, SHIFT_NOBYTE) &&
qpkey_bit(search, searchlen, offset - 1) == SHIFT_NOBYTE &&
!is_branch(twigs))
{
add_link(chain, twigs, offset);
}
matched = branch_has_twig(n, bit);
if (matched) {
/*
* found a match: if it's a branch, we keep
* searching, and if it's a leaf, we drop out of
* the loop.
*/
n = branch_twig_ptr(qp, n, bit);
} else {
/*
* this branch is a dead end, and the predecessor
* doesn't matter. now we just need to find a leaf
* to end on so that qpkey_leaf() will work below.
*/
n = anyleaf(qp, twigs);
}
iter->stack[++iter->sp] = n;
}
if (setiter) {
/*
* we found a leaf, but it might not be the leaf we wanted.
* if it isn't, and if the caller passed us an iterator,
* then we might need to reposition it.
*/
fix_iterator(qp, iter, search, searchlen);
n = iter->stack[iter->sp];
}
/* at this point, n can only be a leaf node */
INSIST(!is_branch(n));
foundlen = leaf_qpkey(qp, n, found);
offset = qpkey_compare(search, searchlen, found, foundlen);
/* the search ended with an exact or partial match */
if (offset == QPKEY_EQUAL || offset == foundlen) {
isc_result_t result = ISC_R_SUCCESS;
if (offset == foundlen) {
fix_chain(chain, offset);
result = DNS_R_PARTIALMATCH;
}
add_link(chain, n, offset);
SET_IF_NOT_NULL(pval_r, leaf_pval(n));
SET_IF_NOT_NULL(ival_r, leaf_ival(n));
maybe_set_name(qp, n, foundname);
return result;
}
/*
* the requested name was not found, but if an ancestor
* was, we can retrieve that from the chain.
*/
int len = chain->len;
while (len-- > 0) {
if (offset >= chain->chain[len].offset) {
n = chain->chain[len].node;
SET_IF_NOT_NULL(pval_r, leaf_pval(n));
SET_IF_NOT_NULL(ival_r, leaf_ival(n));
maybe_set_name(qp, n, foundname);
return DNS_R_PARTIALMATCH;
} else {
/*
* oops, during the search we found and added
* a leaf that's longer than the requested
* name; remove it from the chain.
*/
chain->len--;
}
}
/* nothing was found at all */
return ISC_R_NOTFOUND;
}
/**********************************************************************/