1
0
Fork 0
bind9/lib/isc/netmgr/udp.c
Daniel Baumann f66ff7eae6
Adding upstream version 1:9.20.9.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 13:32:37 +02:00

1061 lines
25 KiB
C

/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* SPDX-License-Identifier: MPL-2.0
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
#include <unistd.h>
#include <isc/async.h>
#include <isc/atomic.h>
#include <isc/barrier.h>
#include <isc/buffer.h>
#include <isc/condition.h>
#include <isc/errno.h>
#include <isc/log.h>
#include <isc/magic.h>
#include <isc/mem.h>
#include <isc/netmgr.h>
#include <isc/random.h>
#include <isc/refcount.h>
#include <isc/region.h>
#include <isc/result.h>
#include <isc/sockaddr.h>
#include <isc/stdtime.h>
#include <isc/thread.h>
#include <isc/util.h>
#include <isc/uv.h>
#include "../loop_p.h"
#include "netmgr-int.h"
#ifdef HAVE_NET_ROUTE_H
#include <net/route.h>
#if defined(RTM_VERSION) && defined(RTM_NEWADDR) && defined(RTM_DELADDR)
#define USE_ROUTE_SOCKET 1
#define ROUTE_SOCKET_PF PF_ROUTE
#define ROUTE_SOCKET_PROTOCOL 0
#define MSGHDR rt_msghdr
#define MSGTYPE rtm_type
#endif /* if defined(RTM_VERSION) && defined(RTM_NEWADDR) && \
* defined(RTM_DELADDR) */
#endif /* ifdef HAVE_NET_ROUTE_H */
#if defined(HAVE_LINUX_NETLINK_H) && defined(HAVE_LINUX_RTNETLINK_H)
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#if defined(RTM_NEWADDR) && defined(RTM_DELADDR)
#define USE_ROUTE_SOCKET 1
#define USE_NETLINK 1
#define ROUTE_SOCKET_PF PF_NETLINK
#define ROUTE_SOCKET_PROTOCOL NETLINK_ROUTE
#define MSGHDR nlmsghdr
#define MSGTYPE nlmsg_type
#endif /* if defined(RTM_NEWADDR) && defined(RTM_DELADDR) */
#endif /* if defined(HAVE_LINUX_NETLINK_H) && defined(HAVE_LINUX_RTNETLINK_H) \
*/
static void
udp_send_cb(uv_udp_send_t *req, int status);
static void
udp_close_cb(uv_handle_t *handle);
static uv_os_sock_t
isc__nm_udp_lb_socket(isc_nm_t *mgr, sa_family_t sa_family) {
isc_result_t result;
uv_os_sock_t sock = -1;
result = isc__nm_socket(sa_family, SOCK_DGRAM, 0, &sock);
RUNTIME_CHECK(result == ISC_R_SUCCESS);
(void)isc__nm_socket_disable_pmtud(sock, sa_family);
(void)isc__nm_socket_v6only(sock, sa_family);
result = isc__nm_socket_reuse(sock, 1);
RUNTIME_CHECK(result == ISC_R_SUCCESS);
if (mgr->load_balance_sockets) {
result = isc__nm_socket_reuse_lb(sock);
RUNTIME_CHECK(result == ISC_R_SUCCESS);
}
return sock;
}
/*
* Asynchronous 'udplisten' call handler: start listening on a UDP socket.
*/
static void
start_udp_child_job(void *arg) {
isc_nmsocket_t *sock = arg;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(VALID_NMSOCK(sock->parent));
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(sock->tid == isc_tid());
int r, uv_bind_flags = 0;
int uv_init_flags = 0;
sa_family_t sa_family = sock->iface.type.sa.sa_family;
isc_result_t result = ISC_R_UNSET;
isc_nm_t *mgr = sock->worker->netmgr;
isc_loop_t *loop = sock->worker->loop;
(void)isc__nm_socket_min_mtu(sock->fd, sa_family);
#if HAVE_DECL_UV_UDP_RECVMMSG
uv_init_flags |= UV_UDP_RECVMMSG;
#endif
r = uv_udp_init_ex(&loop->loop, &sock->uv_handle.udp, uv_init_flags);
UV_RUNTIME_CHECK(uv_udp_init_ex, r);
uv_handle_set_data(&sock->uv_handle.handle, sock);
/* This keeps the socket alive after everything else is gone */
isc__nmsocket_attach(sock, &(isc_nmsocket_t *){ NULL });
r = uv_timer_init(&loop->loop, &sock->read_timer);
UV_RUNTIME_CHECK(uv_timer_init, r);
uv_handle_set_data((uv_handle_t *)&sock->read_timer, sock);
r = uv_udp_open(&sock->uv_handle.udp, sock->fd);
if (r < 0) {
isc__nm_closesocket(sock->fd);
isc__nm_incstats(sock, STATID_OPENFAIL);
goto done;
}
isc__nm_incstats(sock, STATID_OPEN);
if (sa_family == AF_INET6) {
uv_bind_flags |= UV_UDP_IPV6ONLY;
}
if (mgr->load_balance_sockets) {
r = isc__nm_udp_freebind(&sock->uv_handle.udp,
&sock->parent->iface.type.sa,
uv_bind_flags);
if (r < 0) {
isc__nm_incstats(sock, STATID_BINDFAIL);
goto done;
}
} else if (sock->tid == 0) {
/* This thread is first, bind the socket */
r = isc__nm_udp_freebind(&sock->uv_handle.udp,
&sock->parent->iface.type.sa,
uv_bind_flags);
if (r < 0) {
isc__nm_incstats(sock, STATID_BINDFAIL);
goto done;
}
sock->parent->uv_handle.udp.flags = sock->uv_handle.udp.flags;
} else {
/* The socket is already bound, just copy the flags */
sock->uv_handle.udp.flags = sock->parent->uv_handle.udp.flags;
}
isc__nm_set_network_buffers(mgr, &sock->uv_handle.handle);
r = uv_udp_recv_start(&sock->uv_handle.udp, isc__nm_alloc_cb,
isc__nm_udp_read_cb);
if (r != 0) {
isc__nm_incstats(sock, STATID_BINDFAIL);
goto done;
}
done:
result = isc_uverr2result(r);
sock->result = result;
REQUIRE(!loop->paused);
if (sock->tid != 0) {
isc_barrier_wait(&sock->parent->listen_barrier);
}
}
static void
start_udp_child(isc_nm_t *mgr, isc_sockaddr_t *iface, isc_nmsocket_t *sock,
uv_os_sock_t fd, int tid) {
isc__networker_t *worker = &mgr->workers[tid];
isc_nmsocket_t *csock = &sock->children[tid];
isc__nmsocket_init(csock, worker, isc_nm_udpsocket, iface, sock);
csock->recv_cb = sock->recv_cb;
csock->recv_cbarg = sock->recv_cbarg;
csock->inactive_handles_max = ISC_NM_NMHANDLES_MAX;
if (mgr->load_balance_sockets) {
csock->fd = isc__nm_udp_lb_socket(mgr,
iface->type.sa.sa_family);
} else {
csock->fd = dup(fd);
}
INSIST(csock->fd >= 0);
if (tid == 0) {
start_udp_child_job(csock);
} else {
isc_async_run(worker->loop, start_udp_child_job, csock);
}
}
isc_result_t
isc_nm_listenudp(isc_nm_t *mgr, uint32_t workers, isc_sockaddr_t *iface,
isc_nm_recv_cb_t cb, void *cbarg, isc_nmsocket_t **sockp) {
isc_result_t result = ISC_R_UNSET;
isc_nmsocket_t *sock = NULL;
uv_os_sock_t fd = -1;
isc__networker_t *worker = NULL;
REQUIRE(VALID_NM(mgr));
REQUIRE(isc_tid() == 0);
worker = &mgr->workers[0];
if (isc__nm_closing(worker)) {
return ISC_R_SHUTTINGDOWN;
}
if (workers == 0) {
workers = mgr->nloops;
}
REQUIRE(workers <= mgr->nloops);
sock = isc_mempool_get(worker->nmsocket_pool);
isc__nmsocket_init(sock, worker, isc_nm_udplistener, iface, NULL);
sock->nchildren = (workers == ISC_NM_LISTEN_ALL) ? (uint32_t)mgr->nloops
: workers;
sock->children = isc_mem_cget(worker->mctx, sock->nchildren,
sizeof(sock->children[0]));
isc__nmsocket_barrier_init(sock);
sock->recv_cb = cb;
sock->recv_cbarg = cbarg;
if (!mgr->load_balance_sockets) {
fd = isc__nm_udp_lb_socket(mgr, iface->type.sa.sa_family);
}
start_udp_child(mgr, iface, sock, fd, 0);
result = sock->children[0].result;
INSIST(result != ISC_R_UNSET);
for (size_t i = 1; i < sock->nchildren; i++) {
start_udp_child(mgr, iface, sock, fd, i);
}
isc_barrier_wait(&sock->listen_barrier);
if (!mgr->load_balance_sockets) {
isc__nm_closesocket(fd);
}
/*
* If any of the child sockets have failed then isc_nm_listenudp
* fails.
*/
for (size_t i = 1; i < sock->nchildren; i++) {
if (result == ISC_R_SUCCESS &&
sock->children[i].result != ISC_R_SUCCESS)
{
result = sock->children[i].result;
}
}
if (result != ISC_R_SUCCESS) {
sock->active = false;
isc__nm_udp_stoplistening(sock);
isc_nmsocket_close(&sock);
return result;
}
sock->active = true;
*sockp = sock;
return ISC_R_SUCCESS;
}
#ifdef USE_ROUTE_SOCKET
static isc_result_t
route_socket(uv_os_sock_t *fdp) {
isc_result_t result;
uv_os_sock_t fd = -1;
#ifdef USE_NETLINK
struct sockaddr_nl sa;
int r;
#endif
result = isc__nm_socket(ROUTE_SOCKET_PF, SOCK_RAW,
ROUTE_SOCKET_PROTOCOL, &fd);
if (result != ISC_R_SUCCESS) {
return result;
}
#ifdef USE_NETLINK
sa.nl_family = PF_NETLINK;
sa.nl_groups = RTMGRP_LINK | RTMGRP_IPV4_IFADDR | RTMGRP_IPV6_IFADDR;
r = bind(fd, (struct sockaddr *)&sa, sizeof(sa));
if (r < 0) {
isc__nm_closesocket(fd);
return isc_errno_toresult(r);
}
#endif
*fdp = fd;
return ISC_R_SUCCESS;
}
static isc_result_t
route_connect_direct(isc_nmsocket_t *sock) {
isc__networker_t *worker = NULL;
int r;
REQUIRE(sock->tid == isc_tid());
worker = sock->worker;
sock->connecting = true;
r = uv_udp_init(&worker->loop->loop, &sock->uv_handle.udp);
UV_RUNTIME_CHECK(uv_udp_init, r);
uv_handle_set_data(&sock->uv_handle.handle, sock);
r = uv_timer_init(&worker->loop->loop, &sock->read_timer);
UV_RUNTIME_CHECK(uv_timer_init, r);
uv_handle_set_data((uv_handle_t *)&sock->read_timer, sock);
if (isc__nm_closing(worker)) {
return ISC_R_SHUTTINGDOWN;
}
r = uv_udp_open(&sock->uv_handle.udp, sock->fd);
if (r != 0) {
return isc_uverr2result(r);
}
isc__nm_set_network_buffers(sock->worker->netmgr,
&sock->uv_handle.handle);
sock->connecting = false;
sock->connected = true;
return ISC_R_SUCCESS;
}
#endif /* USE_ROUTE_SOCKET */
isc_result_t
isc_nm_routeconnect(isc_nm_t *mgr, isc_nm_cb_t cb, void *cbarg) {
#ifdef USE_ROUTE_SOCKET
isc_result_t result = ISC_R_SUCCESS;
isc_nmsocket_t *sock = NULL;
isc__nm_uvreq_t *req = NULL;
isc__networker_t *worker = NULL;
uv_os_sock_t fd = -1;
REQUIRE(VALID_NM(mgr));
REQUIRE(isc_tid() == 0);
worker = &mgr->workers[isc_tid()];
if (isc__nm_closing(worker)) {
return ISC_R_SHUTTINGDOWN;
}
result = route_socket(&fd);
if (result != ISC_R_SUCCESS) {
return result;
}
sock = isc_mempool_get(worker->nmsocket_pool);
isc__nmsocket_init(sock, worker, isc_nm_udpsocket, NULL, NULL);
sock->connect_cb = cb;
sock->connect_cbarg = cbarg;
sock->client = true;
sock->route_sock = true;
sock->fd = fd;
req = isc__nm_uvreq_get(sock);
req->cb.connect = cb;
req->cbarg = cbarg;
req->handle = isc__nmhandle_get(sock, NULL, NULL);
sock->active = true;
result = route_connect_direct(sock);
if (result != ISC_R_SUCCESS) {
sock->active = false;
isc__nm_udp_close(sock);
}
isc__nm_connectcb(sock, req, result, true);
isc__nmsocket_detach(&sock);
return ISC_R_SUCCESS;
#else /* USE_ROUTE_SOCKET */
UNUSED(mgr);
UNUSED(cb);
UNUSED(cbarg);
UNUSED(extrahandlesize);
return ISC_R_NOTIMPLEMENTED;
#endif /* USE_ROUTE_SOCKET */
}
/*
* Asynchronous 'udpstop' call handler: stop listening on a UDP socket.
*/
static void
stop_udp_child_job(void *arg) {
isc_nmsocket_t *sock = arg;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->tid == isc_tid());
REQUIRE(sock->parent != NULL);
sock->active = false;
isc__nm_udp_close(sock);
REQUIRE(!sock->worker->loop->paused);
isc_barrier_wait(&sock->parent->stop_barrier);
}
static void
stop_udp_child(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
if (sock->tid == 0) {
stop_udp_child_job(sock);
} else {
isc_async_run(sock->worker->loop, stop_udp_child_job, sock);
}
}
void
isc__nm_udp_stoplistening(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->type == isc_nm_udplistener);
REQUIRE(sock->tid == isc_tid());
REQUIRE(sock->tid == 0);
REQUIRE(!sock->closing);
sock->closing = true;
/* Mark the parent socket inactive */
sock->active = false;
/* Stop all the other threads' children */
for (size_t i = 1; i < sock->nchildren; i++) {
stop_udp_child(&sock->children[i]);
}
/* Stop the child for the main thread */
stop_udp_child(&sock->children[0]);
/* Stop the parent */
sock->closed = true;
isc__nmsocket_prep_destroy(sock);
}
/*
* udp_recv_cb handles incoming UDP packet from uv. The buffer here is
* reused for a series of packets, so we need to allocate a new one.
* This new one can be reused to send the response then.
*/
void
isc__nm_udp_read_cb(uv_udp_t *handle, ssize_t nrecv, const uv_buf_t *buf,
const struct sockaddr *addr, unsigned int flags) {
isc_nmsocket_t *sock = uv_handle_get_data((uv_handle_t *)handle);
isc__nm_uvreq_t *req = NULL;
uint32_t maxudp;
isc_result_t result;
isc_sockaddr_t sockaddr, *sa = NULL;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->tid == isc_tid());
/*
* When using recvmmsg(2), if no errors occur, there will be a final
* callback with nrecv set to 0, addr set to NULL and the buffer
* pointing at the initially allocated data with the UV_UDP_MMSG_CHUNK
* flag cleared and the UV_UDP_MMSG_FREE flag set.
*/
#if HAVE_DECL_UV_UDP_MMSG_FREE
if ((flags & UV_UDP_MMSG_FREE) == UV_UDP_MMSG_FREE) {
INSIST(nrecv == 0);
INSIST(addr == NULL);
goto free;
}
#else
UNUSED(flags);
#endif
/*
* Possible reasons to return now without processing:
*
* - If we're simulating a firewall blocking UDP packets
* bigger than 'maxudp' bytes for testing purposes.
*/
maxudp = atomic_load_relaxed(&sock->worker->netmgr->maxudp);
if (maxudp != 0 && (uint32_t)nrecv > maxudp) {
/*
* We need to keep the read_cb intact in case, so the
* readtimeout_cb can trigger and not crash because of
* missing read_req.
*/
goto free;
}
/*
* - If there was a networking error.
*/
if (nrecv < 0) {
isc__nm_failed_read_cb(sock, isc_uverr2result(nrecv), false);
goto free;
}
/*
* - If the network manager is shutting down
*/
if (isc__nm_closing(sock->worker)) {
isc__nm_failed_read_cb(sock, ISC_R_SHUTTINGDOWN, false);
goto free;
}
/*
* - If the socket is no longer active.
*/
if (!isc__nmsocket_active(sock)) {
isc__nm_failed_read_cb(sock, ISC_R_CANCELED, false);
goto free;
}
/*
* End of the current (iteration) datagram stream, just free the buffer.
* The callback with nrecv == 0 and addr == NULL is called for both
* normal UDP sockets and recvmmsg sockets at the end of every event
* loop iteration.
*/
if (nrecv == 0 && addr == NULL) {
INSIST(flags == 0);
goto free;
}
/*
* We could receive an empty datagram in which case:
* nrecv == 0 and addr != NULL
*/
INSIST(addr != NULL);
if (!sock->route_sock) {
result = isc_sockaddr_fromsockaddr(&sockaddr, addr);
RUNTIME_CHECK(result == ISC_R_SUCCESS);
sa = &sockaddr;
}
req = isc__nm_get_read_req(sock, sa);
/*
* The callback will be called synchronously, because result is
* ISC_R_SUCCESS, so we are ok of passing the buf directly.
*/
req->uvbuf.base = buf->base;
req->uvbuf.len = nrecv;
sock->reading = false;
/*
* The client isc_nm_read() expects just a single message, so we need to
* stop reading now. The reading could be restarted in the read
* callback with another isc_nm_read() call.
*/
if (sock->client) {
isc__nmsocket_timer_stop(sock);
isc__nm_stop_reading(sock);
isc__nmsocket_clearcb(sock);
}
REQUIRE(!sock->processing);
sock->processing = true;
isc__nm_readcb(sock, req, ISC_R_SUCCESS, false);
sock->processing = false;
free:
#if HAVE_DECL_UV_UDP_MMSG_CHUNK
/*
* When using recvmmsg(2), chunks will have the UV_UDP_MMSG_CHUNK flag
* set, those must not be freed.
*/
if ((flags & UV_UDP_MMSG_CHUNK) == UV_UDP_MMSG_CHUNK) {
return;
}
#endif
/*
* When using recvmmsg(2), if a UDP socket error occurs, nrecv will be <
* 0. In either scenario, the callee can now safely free the provided
* buffer.
*/
if (nrecv < 0) {
/*
* The buffer may be a null buffer on error.
*/
if (buf->base == NULL && buf->len == 0) {
return;
}
}
isc__nm_free_uvbuf(sock, buf);
}
static void
udp_send_cb(uv_udp_send_t *req, int status) {
isc_result_t result = ISC_R_SUCCESS;
isc__nm_uvreq_t *uvreq = uv_handle_get_data((uv_handle_t *)req);
isc_nmsocket_t *sock = NULL;
REQUIRE(VALID_UVREQ(uvreq));
REQUIRE(VALID_NMHANDLE(uvreq->handle));
sock = uvreq->sock;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->tid == isc_tid());
if (status < 0) {
isc__nm_incstats(sock, STATID_SENDFAIL);
isc__nm_failed_send_cb(sock, uvreq, isc_uverr2result(status),
false);
return;
}
isc__nm_sendcb(sock, uvreq, result, false);
}
static _Atomic(isc_stdtime_t) last_udpsends_log = 0;
static bool
can_log_udp_sends(void) {
isc_stdtime_t now = isc_stdtime_now();
isc_stdtime_t last = atomic_exchange_relaxed(&last_udpsends_log, now);
if (now != last) {
return true;
}
return false;
}
/*
* Send the data in 'region' to a peer via a UDP socket. We try to find
* a proper sibling/child socket so that we won't have to jump to
* another thread.
*/
void
isc__nm_udp_send(isc_nmhandle_t *handle, const isc_region_t *region,
isc_nm_cb_t cb, void *cbarg) {
isc_nmsocket_t *sock = handle->sock;
const isc_sockaddr_t *peer = &handle->peer;
const struct sockaddr *sa = NULL;
isc__nm_uvreq_t *uvreq = NULL;
isc__networker_t *worker = NULL;
uint32_t maxudp;
int r;
isc_result_t result;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(sock->tid == isc_tid());
worker = sock->worker;
maxudp = atomic_load(&worker->netmgr->maxudp);
sa = sock->connected ? NULL : &peer->type.sa;
/*
* We're simulating a firewall blocking UDP packets bigger than
* 'maxudp' bytes, for testing purposes.
*
* The client would ordinarily have unreferenced the handle
* in the callback, but that won't happen in this case, so
* we need to do so here.
*/
if (maxudp != 0 && region->length > maxudp) {
isc_nmhandle_detach(&handle);
return;
}
uvreq = isc__nm_uvreq_get(sock);
uvreq->uvbuf.base = (char *)region->base;
uvreq->uvbuf.len = region->length;
isc_nmhandle_attach(handle, &uvreq->handle);
uvreq->cb.send = cb;
uvreq->cbarg = cbarg;
if (isc__nm_closing(worker)) {
result = ISC_R_SHUTTINGDOWN;
goto fail;
}
if (isc__nmsocket_closing(sock)) {
result = ISC_R_CANCELED;
goto fail;
}
if (uv_udp_get_send_queue_size(&sock->uv_handle.udp) >
ISC_NETMGR_UDP_SENDBUF_SIZE)
{
/*
* The kernel UDP send queue is full, try sending the UDP
* response synchronously instead of just failing.
*/
r = uv_udp_try_send(&sock->uv_handle.udp, &uvreq->uvbuf, 1, sa);
if (r < 0) {
if (can_log_udp_sends()) {
isc__netmgr_log(
worker->netmgr, ISC_LOG_ERROR,
"Sending UDP messages failed: %s",
isc_result_totext(isc_uverr2result(r)));
}
isc__nm_incstats(sock, STATID_SENDFAIL);
result = isc_uverr2result(r);
goto fail;
}
RUNTIME_CHECK(r == (int)region->length);
isc__nm_sendcb(sock, uvreq, ISC_R_SUCCESS, true);
} else {
/* Send the message asynchronously */
r = uv_udp_send(&uvreq->uv_req.udp_send, &sock->uv_handle.udp,
&uvreq->uvbuf, 1, sa, udp_send_cb);
if (r < 0) {
isc__nm_incstats(sock, STATID_SENDFAIL);
result = isc_uverr2result(r);
goto fail;
}
}
return;
fail:
isc__nm_failed_send_cb(sock, uvreq, result, true);
}
static isc_result_t
udp_connect_direct(isc_nmsocket_t *sock, isc__nm_uvreq_t *req) {
int uv_bind_flags = 0;
int r;
isc__networker_t *worker = sock->worker;
isc_result_t result;
r = uv_udp_init(&worker->loop->loop, &sock->uv_handle.udp);
UV_RUNTIME_CHECK(uv_udp_init, r);
uv_handle_set_data(&sock->uv_handle.handle, sock);
r = uv_timer_init(&worker->loop->loop, &sock->read_timer);
UV_RUNTIME_CHECK(uv_timer_init, r);
uv_handle_set_data((uv_handle_t *)&sock->read_timer, sock);
r = uv_udp_open(&sock->uv_handle.udp, sock->fd);
if (r != 0) {
isc__nm_incstats(sock, STATID_OPENFAIL);
return isc_uverr2result(r);
}
isc__nm_incstats(sock, STATID_OPEN);
/*
* uv_udp_open() enables REUSE_ADDR, we need to disable it again.
*/
result = isc__nm_socket_reuse(sock->fd, 0);
RUNTIME_CHECK(result == ISC_R_SUCCESS);
if (sock->iface.type.sa.sa_family == AF_INET6) {
uv_bind_flags |= UV_UDP_IPV6ONLY;
}
#if HAVE_DECL_UV_UDP_LINUX_RECVERR
uv_bind_flags |= UV_UDP_LINUX_RECVERR;
#endif
r = uv_udp_bind(&sock->uv_handle.udp, &sock->iface.type.sa,
uv_bind_flags);
if (r != 0) {
isc__nm_incstats(sock, STATID_BINDFAIL);
return isc_uverr2result(r);
}
isc__nm_set_network_buffers(sock->worker->netmgr,
&sock->uv_handle.handle);
/*
* On FreeBSD the UDP connect() call sometimes results in a
* spurious transient EADDRINUSE. Try a few more times before
* giving up.
*/
do {
r = uv_udp_connect(&sock->uv_handle.udp, &req->peer.type.sa);
} while (r == UV_EADDRINUSE && --req->connect_tries > 0);
if (r != 0) {
isc__nm_incstats(sock, STATID_CONNECTFAIL);
return isc_uverr2result(r);
}
isc__nm_incstats(sock, STATID_CONNECT);
return ISC_R_SUCCESS;
}
void
isc_nm_udpconnect(isc_nm_t *mgr, isc_sockaddr_t *local, isc_sockaddr_t *peer,
isc_nm_cb_t cb, void *cbarg, unsigned int timeout) {
isc_result_t result = ISC_R_SUCCESS;
isc_nmsocket_t *sock = NULL;
isc__nm_uvreq_t *req = NULL;
sa_family_t sa_family;
isc__networker_t *worker = NULL;
uv_os_sock_t fd = -1;
REQUIRE(VALID_NM(mgr));
REQUIRE(local != NULL);
REQUIRE(peer != NULL);
worker = &mgr->workers[isc_tid()];
if (isc__nm_closing(worker)) {
cb(NULL, ISC_R_SHUTTINGDOWN, cbarg);
return;
}
sa_family = peer->type.sa.sa_family;
result = isc__nm_socket(sa_family, SOCK_DGRAM, 0, &fd);
if (result != ISC_R_SUCCESS) {
cb(NULL, result, cbarg);
return;
}
/* Initialize the new socket */
sock = isc_mempool_get(worker->nmsocket_pool);
isc__nmsocket_init(sock, worker, isc_nm_udpsocket, local, NULL);
sock->connect_cb = cb;
sock->connect_cbarg = cbarg;
sock->read_timeout = timeout;
sock->peer = *peer;
sock->client = true;
sock->fd = fd;
(void)isc__nm_socket_disable_pmtud(sock->fd, sa_family);
(void)isc__nm_socket_min_mtu(sock->fd, sa_family);
/* Initialize the request */
req = isc__nm_uvreq_get(sock);
req->cb.connect = cb;
req->cbarg = cbarg;
req->peer = *peer;
req->local = *local;
req->handle = isc__nmhandle_get(sock, &req->peer, &sock->iface);
sock->active = true;
sock->connecting = true;
result = udp_connect_direct(sock, req);
if (result != ISC_R_SUCCESS) {
sock->active = false;
isc__nm_failed_connect_cb(sock, req, result, true);
isc__nmsocket_detach(&sock);
return;
}
sock->connecting = false;
sock->connected = true;
isc__nm_connectcb(sock, req, ISC_R_SUCCESS, true);
isc__nmsocket_detach(&sock);
}
void
isc__nm_udp_failed_read_cb(isc_nmsocket_t *sock, isc_result_t result,
bool async) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(result != ISC_R_SUCCESS);
REQUIRE(sock->tid == isc_tid());
/*
* For UDP server socket, we don't have child socket via
* "accept", so we:
* - we continue to read
* - we don't clear the callbacks
* - we don't destroy it (only stoplistening could do that)
*/
if (sock->client) {
isc__nmsocket_timer_stop(sock);
isc__nm_stop_reading(sock);
}
/* Nobody expects the callback if isc_nm_read() wasn't called */
if (sock->reading) {
sock->reading = false;
if (sock->recv_cb != NULL) {
isc__nm_uvreq_t *req = isc__nm_get_read_req(sock, NULL);
isc__nm_readcb(sock, req, result, async);
}
}
if (sock->client) {
isc__nmsocket_clearcb(sock);
isc__nmsocket_prep_destroy(sock);
return;
}
}
void
isc__nm_udp_read(isc_nmhandle_t *handle, isc_nm_recv_cb_t cb, void *cbarg) {
isc_nmsocket_t *sock = NULL;
isc_result_t result;
REQUIRE(VALID_NMHANDLE(handle));
sock = handle->sock;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(sock->statichandle == handle);
REQUIRE(sock->tid == isc_tid());
/*
* We need to initialize the callback before checking for shutdown
* conditions, so the callback is always called even on error condition.
*/
sock->recv_cb = cb;
sock->recv_cbarg = cbarg;
sock->reading = true;
if (isc__nm_closing(sock->worker)) {
result = ISC_R_SHUTTINGDOWN;
goto fail;
}
if (isc__nmsocket_closing(sock)) {
result = ISC_R_CANCELED;
goto fail;
}
result = isc__nm_start_reading(sock);
if (result != ISC_R_SUCCESS) {
goto fail;
}
isc__nmsocket_timer_restart(sock);
return;
fail:
sock->reading = true; /* required by the next call */
isc__nm_failed_read_cb(sock, result, true);
}
static void
udp_close_cb(uv_handle_t *handle) {
isc_nmsocket_t *sock = uv_handle_get_data(handle);
uv_handle_set_data(handle, NULL);
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->tid == isc_tid());
REQUIRE(sock->closing);
REQUIRE(!sock->closed);
sock->closed = true;
isc__nm_incstats(sock, STATID_CLOSE);
if (sock->parent != NULL) {
/* listening socket (listen) */
isc__nmsocket_detach(&sock);
} else {
/* client and server sockets */
sock->connected = false;
isc__nmsocket_prep_destroy(sock);
}
}
void
isc__nm_udp_close(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(sock->tid == isc_tid());
REQUIRE(!sock->closing);
sock->closing = true;
isc__nmsocket_clearcb(sock);
isc__nmsocket_timer_stop(sock);
isc__nm_stop_reading(sock);
/*
* The order of the close operation is important here, the uv_close()
* gets scheduled in the reverse order, so we need to close the timer
* last, so its gone by the time we destroy the socket
*/
/* 2. close the listening socket */
isc__nmsocket_clearcb(sock);
isc__nm_stop_reading(sock);
uv_close(&sock->uv_handle.handle, udp_close_cb);
/* 1. close the read timer */
isc__nmsocket_timer_stop(sock);
uv_close((uv_handle_t *)&sock->read_timer, NULL);
}
void
isc__nm_udp_shutdown(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->tid == isc_tid());
REQUIRE(sock->type == isc_nm_udpsocket);
/*
* If the socket is active, mark it inactive and
* continue. If it isn't active, stop now.
*/
if (!sock->active) {
return;
}
sock->active = false;
/* uv_udp_connect is synchronous, we can't be in connected state */
REQUIRE(!sock->connecting);
/*
* When the client detaches the last handle, the
* sock->statichandle would be NULL, in that case, nobody is
* interested in the callback.
*/
if (sock->statichandle != NULL) {
isc__nm_failed_read_cb(sock, ISC_R_SHUTTINGDOWN, false);
return;
}
/* Destroy the non-listening socket */
if (sock->parent == NULL) {
isc__nmsocket_prep_destroy(sock);
return;
}
/* Destroy the listening socket if on the same loop */
if (sock->tid == sock->parent->tid) {
isc__nmsocket_prep_destroy(sock->parent);
}
}