1
0
Fork 0
bind9/tests/dns/rdata_test.c
Daniel Baumann f66ff7eae6
Adding upstream version 1:9.20.9.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 13:32:37 +02:00

3213 lines
104 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* SPDX-License-Identifier: MPL-2.0
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
#include <inttypes.h>
#include <sched.h> /* IWYU pragma: keep */
#include <setjmp.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define UNIT_TESTING
#include <cmocka.h>
#include <openssl_shim.h>
#include <openssl/err.h>
#include <isc/commandline.h>
#include <isc/hex.h>
#include <isc/lex.h>
#include <isc/stdio.h>
#include <isc/types.h>
#include <isc/util.h>
#include <dns/rdata.h>
#include <tests/dns.h>
/*
* An array of these structures is passed to compare_ok().
*/
struct compare_ok {
const char *text1; /* text passed to fromtext_*() */
const char *text2; /* text passed to fromtext_*() */
int answer; /* -1, 0, 1 */
int lineno; /* source line defining this RDATA */
};
typedef struct compare_ok compare_ok_t;
struct textvsunknown {
const char *text1;
const char *text2;
};
typedef struct textvsunknown textvsunknown_t;
/*
* An array of these structures is passed to check_text_ok().
*/
typedef struct text_ok {
const char *text_in; /* text passed to fromtext_*() */
const char *text_out; /* text expected from totext_*();
* NULL indicates text_in is invalid */
unsigned int loop;
} text_ok_t;
/*
* An array of these structures is passed to check_wire_ok().
*/
typedef struct wire_ok {
unsigned char data[512]; /* RDATA in wire format */
size_t len; /* octets of data to parse */
bool ok; /* is this RDATA valid? */
unsigned int loop;
} wire_ok_t;
#define COMPARE(r1, r2, answer) { r1, r2, answer, __LINE__ }
#define COMPARE_SENTINEL() { NULL, NULL, 0, __LINE__ }
#define TEXT_VALID_CHANGED(data_in, data_out) { data_in, data_out, 0 }
#define TEXT_VALID(data) { data, data, 0 }
#define TEXT_VALID_LOOP(loop, data) { data, data, loop }
#define TEXT_VALID_LOOPCHG(loop, data_in, data_out) { data_in, data_out, loop }
#define TEXT_INVALID(data) { data, NULL, 0 }
#define TEXT_SENTINEL() TEXT_INVALID(NULL)
#define VARGC(...) (sizeof((unsigned char[]){ __VA_ARGS__ }))
#define WIRE_TEST(ok, loop, ...) \
{ { __VA_ARGS__ }, VARGC(__VA_ARGS__), ok, loop }
#define WIRE_VALID(...) WIRE_TEST(true, 0, __VA_ARGS__)
#define WIRE_VALID_LOOP(loop, ...) WIRE_TEST(true, loop, __VA_ARGS__)
/*
* WIRE_INVALID() test cases must always have at least one octet specified to
* distinguish them from WIRE_SENTINEL(). Use the 'empty_ok' parameter passed
* to check_wire_ok() for indicating whether empty RDATA is allowed for a given
* RR type or not.
*/
#define WIRE_INVALID(FIRST, ...) WIRE_TEST(false, 0, FIRST, __VA_ARGS__)
#define WIRE_SENTINEL() WIRE_TEST(false, 0)
static void
detect_uncleared_libcrypto_error(void) {
const char *file, *func, *data;
int line, flags;
long err;
bool leak = false;
while ((err = ERR_get_error_all(&file, &line, &func, &data, &flags)) !=
0L)
{
fprintf(stderr,
"# Uncleared libcrypto error: %s:%d %s %s %ld %x\n",
file, line, func, data, err, flags);
leak = true;
}
assert_false(leak);
}
/*
* Call dns_rdata_fromwire() for data in 'src', which is 'srclen' octets in
* size and represents RDATA of given 'type' and 'class'. Store the resulting
* uncompressed wire form in 'dst', which is 'dstlen' octets in size, and make
* 'rdata' refer to that uncompressed wire form.
*/
static isc_result_t
wire_to_rdata(const unsigned char *src, size_t srclen, dns_rdataclass_t rdclass,
dns_rdatatype_t type, unsigned char *dst, size_t dstlen,
dns_rdata_t *rdata) {
isc_buffer_t source, target;
isc_result_t result;
/*
* Set up len-octet buffer pointing at data.
*/
isc_buffer_constinit(&source, src, srclen);
isc_buffer_add(&source, srclen);
isc_buffer_setactive(&source, srclen);
/*
* Initialize target buffer.
*/
isc_buffer_init(&target, dst, dstlen);
/*
* Try converting input data into uncompressed wire form.
*/
result = dns_rdata_fromwire(rdata, rdclass, type, &source,
DNS_DECOMPRESS_ALWAYS, &target);
detect_uncleared_libcrypto_error();
return result;
}
/*
* Call dns_rdata_towire() for rdata and write to result to dst.
*/
static isc_result_t
rdata_towire(dns_rdata_t *rdata, unsigned char *dst, size_t dstlen,
size_t *length) {
isc_buffer_t target;
dns_compress_t cctx;
isc_result_t result;
/*
* Initialize target buffer.
*/
isc_buffer_init(&target, dst, dstlen);
/*
* Try converting input data into uncompressed wire form.
*/
dns_compress_init(&cctx, mctx, 0);
result = dns_rdata_towire(rdata, &cctx, &target);
detect_uncleared_libcrypto_error();
dns_compress_invalidate(&cctx);
*length = isc_buffer_usedlength(&target);
return result;
}
static isc_result_t
additionaldata_cb(void *arg, const dns_name_t *name, dns_rdatatype_t qtype,
dns_rdataset_t *found DNS__DB_FLARG) {
UNUSED(arg);
UNUSED(name);
UNUSED(qtype);
UNUSED(found);
return ISC_R_SUCCESS;
}
/*
* call dns_rdata_additionaldata() for rdata.
*/
static isc_result_t
rdata_additionadata(dns_rdata_t *rdata) {
return dns_rdata_additionaldata(rdata, dns_rootname, additionaldata_cb,
NULL);
}
/*
* Call dns_rdata_checknames() with various owner names chosen to
* match well known forms.
*
* We are currently only checking that the calls do not trigger
* assertion failures.
*
* XXXMPA A future extension could be to record the expected
* result and the expected value of 'bad'.
*/
static void
rdata_checknames(dns_rdata_t *rdata) {
dns_fixedname_t fixed, bfixed;
dns_name_t *name, *bad;
isc_result_t result;
name = dns_fixedname_initname(&fixed);
bad = dns_fixedname_initname(&bfixed);
(void)dns_rdata_checknames(rdata, dns_rootname, NULL);
(void)dns_rdata_checknames(rdata, dns_rootname, bad);
result = dns_name_fromstring(name, "example.net", dns_rootname, 0,
NULL);
assert_int_equal(result, ISC_R_SUCCESS);
(void)dns_rdata_checknames(rdata, name, NULL);
(void)dns_rdata_checknames(rdata, name, bad);
result = dns_name_fromstring(name, "in-addr.arpa", dns_rootname, 0,
NULL);
assert_int_equal(result, ISC_R_SUCCESS);
(void)dns_rdata_checknames(rdata, name, NULL);
(void)dns_rdata_checknames(rdata, name, bad);
result = dns_name_fromstring(name, "ip6.arpa", dns_rootname, 0, NULL);
assert_int_equal(result, ISC_R_SUCCESS);
(void)dns_rdata_checknames(rdata, name, NULL);
(void)dns_rdata_checknames(rdata, name, bad);
}
/*
* Test whether converting rdata to a type-specific struct and then back to
* rdata results in the same uncompressed wire form. This checks whether
* tostruct_*() and fromstruct_*() routines for given RR class and type behave
* consistently.
*
* This function is called for every correctly processed input RDATA, from both
* check_text_ok_single() and check_wire_ok_single().
*/
static void
check_struct_conversions(dns_rdata_t *rdata, size_t structsize,
unsigned int loop) {
dns_rdataclass_t rdclass = rdata->rdclass;
dns_rdatatype_t type = rdata->type;
isc_result_t result;
isc_buffer_t target;
void *rdata_struct;
char buf[1024];
unsigned int count = 0;
rdata_struct = isc_mem_allocate(mctx, structsize);
assert_non_null(rdata_struct);
/*
* Convert from uncompressed wire form into type-specific struct.
*/
result = dns_rdata_tostruct(rdata, rdata_struct, NULL);
detect_uncleared_libcrypto_error();
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Convert from type-specific struct into uncompressed wire form.
*/
isc_buffer_init(&target, buf, sizeof(buf));
result = dns_rdata_fromstruct(NULL, rdclass, type, rdata_struct,
&target);
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Ensure results are consistent.
*/
assert_int_equal(isc_buffer_usedlength(&target), rdata->length);
assert_memory_equal(buf, rdata->data, rdata->length);
/*
* Check that one can walk hip rendezvous servers and
* https/svcb parameters.
*/
switch (type) {
case dns_rdatatype_hip: {
dns_rdata_hip_t *hip = rdata_struct;
for (result = dns_rdata_hip_first(hip); result == ISC_R_SUCCESS;
result = dns_rdata_hip_next(hip))
{
dns_name_t name;
dns_name_init(&name, NULL);
dns_rdata_hip_current(hip, &name);
assert_int_not_equal(dns_name_countlabels(&name), 0);
assert_true(dns_name_isabsolute(&name));
count++;
}
assert_int_equal(result, ISC_R_NOMORE);
assert_int_equal(count, loop);
break;
}
case dns_rdatatype_https: {
dns_rdata_in_https_t *https = rdata_struct;
for (result = dns_rdata_in_https_first(https);
result == ISC_R_SUCCESS;
result = dns_rdata_in_https_next(https))
{
isc_region_t region;
dns_rdata_in_https_current(https, &region);
assert_true(region.length >= 4);
count++;
}
assert_int_equal(result, ISC_R_NOMORE);
assert_int_equal(count, loop);
break;
}
case dns_rdatatype_svcb: {
dns_rdata_in_svcb_t *svcb = rdata_struct;
for (result = dns_rdata_in_svcb_first(svcb);
result == ISC_R_SUCCESS;
result = dns_rdata_in_svcb_next(svcb))
{
isc_region_t region;
dns_rdata_in_svcb_current(svcb, &region);
assert_true(region.length >= 4);
count++;
}
assert_int_equal(result, ISC_R_NOMORE);
assert_int_equal(count, loop);
break;
}
}
isc_mem_free(mctx, rdata_struct);
}
/*
* Check whether converting supplied text form RDATA into uncompressed wire
* form succeeds (tests fromtext_*()). If so, try converting it back into text
* form and see if it results in the original text (tests totext_*()).
*/
static void
check_text_ok_single(const text_ok_t *text_ok, dns_rdataclass_t rdclass,
dns_rdatatype_t type, size_t structsize) {
unsigned char buf_fromtext[1024], buf_fromwire[1024], buf_towire[1024];
dns_rdata_t rdata = DNS_RDATA_INIT, rdata2 = DNS_RDATA_INIT;
char buf_totext[1024] = { 0 };
isc_buffer_t target;
isc_result_t result;
size_t length = 0;
if (debug) {
fprintf(stdout, "#check_text_ok_single(%s)\n",
text_ok->text_in);
}
/*
* Try converting text form RDATA into uncompressed wire form.
*/
result = dns_test_rdatafromstring(&rdata, rdclass, type, buf_fromtext,
sizeof(buf_fromtext),
text_ok->text_in, false);
/*
* Check whether result is as expected.
*/
if (text_ok->text_out != NULL) {
if (debug && result != ISC_R_SUCCESS) {
fprintf(stdout, "# '%s'\n", text_ok->text_in);
fprintf(stdout, "# result=%s\n",
isc_result_totext(result));
}
assert_int_equal(result, ISC_R_SUCCESS);
} else {
if (debug && result == ISC_R_SUCCESS) {
fprintf(stdout, "#'%s'\n", text_ok->text_in);
}
assert_int_not_equal(result, ISC_R_SUCCESS);
}
/*
* If text form RDATA was not parsed correctly, performing any
* additional checks is pointless.
*/
if (result != ISC_R_SUCCESS) {
return;
}
/*
* Try converting uncompressed wire form RDATA back into text form and
* check whether the resulting text is the same as the original one.
*/
isc_buffer_init(&target, buf_totext, sizeof(buf_totext));
result = dns_rdata_totext(&rdata, NULL, &target);
detect_uncleared_libcrypto_error();
if (result != ISC_R_SUCCESS && debug) {
size_t i;
fprintf(stdout, "# dns_rdata_totext -> %s",
isc_result_totext(result));
for (i = 0; i < rdata.length; i++) {
if ((i % 16) == 0) {
fprintf(stdout, "\n#");
}
fprintf(stdout, " %02x", rdata.data[i]);
}
fprintf(stdout, "\n");
}
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Ensure buf_totext is properly NUL terminated as dns_rdata_totext()
* may attempt different output formats writing into the apparently
* unused part of the buffer.
*/
isc_buffer_putuint8(&target, 0);
if (debug && strcmp(buf_totext, text_ok->text_out) != 0) {
fprintf(stdout, "# '%s' != '%s'\n", buf_totext,
text_ok->text_out);
}
assert_string_equal(buf_totext, text_ok->text_out);
if (debug) {
fprintf(stdout, "#dns_rdata_totext -> '%s'\n", buf_totext);
}
/*
* Ensure that fromtext_*() output is valid input for fromwire_*().
*/
result = wire_to_rdata(rdata.data, rdata.length, rdclass, type,
buf_fromwire, sizeof(buf_fromwire), &rdata2);
assert_int_equal(result, ISC_R_SUCCESS);
assert_int_equal(rdata.length, rdata2.length);
assert_memory_equal(rdata.data, buf_fromwire, rdata.length);
/*
* Ensure that fromtext_*() output is valid input for towire_*().
*/
result = rdata_towire(&rdata, buf_towire, sizeof(buf_towire), &length);
assert_int_equal(result, ISC_R_SUCCESS);
assert_int_equal(rdata.length, length);
assert_memory_equal(rdata.data, buf_towire, length);
/*
* Test that additionaldata_*() succeeded.
*/
result = rdata_additionadata(&rdata);
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Exercise checknames_*().
*/
rdata_checknames(&rdata);
/*
* Perform two-way conversion checks between uncompressed wire form and
* type-specific struct.
*/
check_struct_conversions(&rdata, structsize, text_ok->loop);
}
/*
* Test whether converting rdata to text form and then parsing the result of
* that conversion again results in the same uncompressed wire form. This
* checks whether totext_*() output is parsable by fromtext_*() for given RR
* class and type.
*
* This function is called for every input RDATA which is successfully parsed
* by check_wire_ok_single() and whose type is not a meta-type.
*/
static void
check_text_conversions(dns_rdata_t *rdata) {
char buf_totext[1024] = { 0 };
unsigned char buf_fromtext[1024];
isc_result_t result;
isc_buffer_t target;
dns_rdata_t rdata2 = DNS_RDATA_INIT;
/*
* Convert uncompressed wire form RDATA into text form. This
* conversion must succeed since input RDATA was successfully
* parsed by check_wire_ok_single().
*/
isc_buffer_init(&target, buf_totext, sizeof(buf_totext));
result = dns_rdata_totext(rdata, NULL, &target);
detect_uncleared_libcrypto_error();
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Ensure buf_totext is properly NUL terminated as dns_rdata_totext()
* may attempt different output formats writing into the apparently
* unused part of the buffer.
*/
isc_buffer_putuint8(&target, 0);
if (debug) {
fprintf(stdout, "#'%s'\n", buf_totext);
}
/*
* Try parsing text form RDATA output by dns_rdata_totext() again.
*/
result = dns_test_rdatafromstring(&rdata2, rdata->rdclass, rdata->type,
buf_fromtext, sizeof(buf_fromtext),
buf_totext, false);
if (debug && result != ISC_R_SUCCESS) {
fprintf(stdout, "# result = %s\n", isc_result_totext(result));
fprintf(stdout, "# '%s'\n", buf_fromtext);
}
assert_int_equal(result, ISC_R_SUCCESS);
assert_int_equal(rdata2.length, rdata->length);
assert_memory_equal(buf_fromtext, rdata->data, rdata->length);
}
/*
* Test whether converting rdata to multi-line text form and then parsing the
* result of that conversion again results in the same uncompressed wire form.
* This checks whether multi-line totext_*() output is parsable by fromtext_*()
* for given RR class and type.
*
* This function is called for every input RDATA which is successfully parsed
* by check_wire_ok_single() and whose type is not a meta-type.
*/
static void
check_multiline_text_conversions(dns_rdata_t *rdata) {
char buf_totext[1024] = { 0 };
unsigned char buf_fromtext[1024];
isc_result_t result;
isc_buffer_t target;
dns_rdata_t rdata2 = DNS_RDATA_INIT;
unsigned int flags;
/*
* Convert uncompressed wire form RDATA into multi-line text form.
* This conversion must succeed since input RDATA was successfully
* parsed by check_wire_ok_single().
*/
isc_buffer_init(&target, buf_totext, sizeof(buf_totext));
flags = dns_master_styleflags(&dns_master_style_default);
result = dns_rdata_tofmttext(rdata, dns_rootname, flags, 80 - 32, 4,
"\n", &target);
detect_uncleared_libcrypto_error();
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Ensure buf_totext is properly NUL terminated as
* dns_rdata_tofmttext() may attempt different output formats
* writing into the apparently unused part of the buffer.
*/
isc_buffer_putuint8(&target, 0);
if (debug) {
fprintf(stdout, "#'%s'\n", buf_totext);
}
/*
* Try parsing multi-line text form RDATA output by
* dns_rdata_tofmttext() again.
*/
result = dns_test_rdatafromstring(&rdata2, rdata->rdclass, rdata->type,
buf_fromtext, sizeof(buf_fromtext),
buf_totext, false);
assert_int_equal(result, ISC_R_SUCCESS);
assert_int_equal(rdata2.length, rdata->length);
assert_memory_equal(buf_fromtext, rdata->data, rdata->length);
}
/*
* Test whether supplied wire form RDATA is properly handled as being either
* valid or invalid for an RR of given rdclass and type.
*/
static void
check_wire_ok_single(const wire_ok_t *wire_ok, dns_rdataclass_t rdclass,
dns_rdatatype_t type, size_t structsize) {
unsigned char buf[1024], buf_towire[1024];
isc_result_t result;
dns_rdata_t rdata = DNS_RDATA_INIT;
size_t length = 0;
/*
* Try converting wire data into uncompressed wire form.
*/
result = wire_to_rdata(wire_ok->data, wire_ok->len, rdclass, type, buf,
sizeof(buf), &rdata);
/*
* Check whether result is as expected.
*/
if (wire_ok->ok) {
assert_int_equal(result, ISC_R_SUCCESS);
} else {
assert_int_not_equal(result, ISC_R_SUCCESS);
}
if (result != ISC_R_SUCCESS) {
return;
}
/*
* If data was parsed correctly, perform two-way conversion checks
* between uncompressed wire form and type-specific struct.
*
* If the RR type is not a meta-type, additionally perform two-way
* conversion checks between:
*
* - uncompressed wire form and text form,
* - uncompressed wire form and multi-line text form.
*/
check_struct_conversions(&rdata, structsize, wire_ok->loop);
if (!dns_rdatatype_ismeta(rdata.type)) {
check_text_conversions(&rdata);
check_multiline_text_conversions(&rdata);
}
/*
* Ensure that fromwire_*() output is valid input for towire_*().
*/
result = rdata_towire(&rdata, buf_towire, sizeof(buf_towire), &length);
assert_int_equal(result, ISC_R_SUCCESS);
assert_int_equal(rdata.length, length);
assert_memory_equal(rdata.data, buf_towire, length);
/*
* Test that additionaldata_*() succeeded.
*/
result = rdata_additionadata(&rdata);
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Exercise checknames_*().
*/
rdata_checknames(&rdata);
}
/*
* Test fromtext_*() and totext_*() routines for given RR class and type for
* each text form RDATA in the supplied array. See the comment for
* check_text_ok_single() for an explanation of how exactly these routines are
* tested.
*/
static void
check_text_ok(const text_ok_t *text_ok, dns_rdataclass_t rdclass,
dns_rdatatype_t type, size_t structsize) {
size_t i;
/*
* Check all entries in the supplied array.
*/
for (i = 0; text_ok[i].text_in != NULL; i++) {
check_text_ok_single(&text_ok[i], rdclass, type, structsize);
}
}
/*
* For each wire form RDATA in the supplied array, check whether it is properly
* handled as being either valid or invalid for an RR of given rdclass and
* type, then check whether trying to process a zero-length wire data buffer
* yields the expected result. This checks whether the fromwire_*() routine
* for given RR class and type behaves as expected.
*/
static void
check_wire_ok(const wire_ok_t *wire_ok, bool empty_ok, dns_rdataclass_t rdclass,
dns_rdatatype_t type, size_t structsize) {
wire_ok_t empty_wire = WIRE_TEST(empty_ok, 0);
size_t i;
/*
* Check all entries in the supplied array.
*/
for (i = 0; wire_ok[i].len != 0; i++) {
if (debug) {
fprintf(stderr, "calling check_wire_ok_single on %zu\n",
i);
}
check_wire_ok_single(&wire_ok[i], rdclass, type, structsize);
}
/*
* Check empty wire data.
*/
check_wire_ok_single(&empty_wire, rdclass, type, structsize);
}
/*
* Check that two records compare as expected with dns_rdata_compare().
*/
static void
check_compare_ok_single(const compare_ok_t *compare_ok,
dns_rdataclass_t rdclass, dns_rdatatype_t type) {
dns_rdata_t rdata1 = DNS_RDATA_INIT, rdata2 = DNS_RDATA_INIT;
unsigned char buf1[1024], buf2[1024];
isc_result_t result;
int answer;
result = dns_test_rdatafromstring(&rdata1, rdclass, type, buf1,
sizeof(buf1), compare_ok->text1,
false);
if (result != ISC_R_SUCCESS) {
fail_msg("# line %d: '%s': expected success, got failure",
compare_ok->lineno, compare_ok->text1);
}
result = dns_test_rdatafromstring(&rdata2, rdclass, type, buf2,
sizeof(buf2), compare_ok->text2,
false);
if (result != ISC_R_SUCCESS) {
fail_msg("# line %d: '%s': expected success, got failure",
compare_ok->lineno, compare_ok->text2);
}
answer = dns_rdata_compare(&rdata1, &rdata2);
detect_uncleared_libcrypto_error();
if (compare_ok->answer == 0 && answer != 0) {
fail_msg("# line %d: dns_rdata_compare('%s', '%s'): "
"expected equal, got %s",
compare_ok->lineno, compare_ok->text1,
compare_ok->text2,
(answer > 0) ? "greater than" : "less than");
}
if (compare_ok->answer < 0 && answer >= 0) {
fail_msg("# line %d: dns_rdata_compare('%s', '%s'): "
"expected less than, got %s",
compare_ok->lineno, compare_ok->text1,
compare_ok->text2,
(answer == 0) ? "equal" : "greater than");
}
if (compare_ok->answer > 0 && answer <= 0) {
fail_msg("line %d: dns_rdata_compare('%s', '%s'): "
"expected greater than, got %s",
compare_ok->lineno, compare_ok->text1,
compare_ok->text2,
(answer == 0) ? "equal" : "less than");
}
}
/*
* Check that all the records sets in compare_ok compare as expected
* with dns_rdata_compare().
*/
static void
check_compare_ok(const compare_ok_t *compare_ok, dns_rdataclass_t rdclass,
dns_rdatatype_t type) {
size_t i;
/*
* Check all entries in the supplied array.
*/
for (i = 0; compare_ok[i].text1 != NULL; i++) {
check_compare_ok_single(&compare_ok[i], rdclass, type);
}
}
/*
* Test whether supplied sets of text form and/or wire form RDATA are handled
* as expected.
*
* The empty_ok argument denotes whether an attempt to parse a zero-length wire
* data buffer should succeed or not (it is valid for some RR types). There is
* no point in performing a similar check for empty text form RDATA, because
* dns_rdata_fromtext() returns ISC_R_UNEXPECTEDEND before calling fromtext_*()
* for the given RR class and type.
*/
static void
check_rdata(const text_ok_t *text_ok, const wire_ok_t *wire_ok,
const compare_ok_t *compare_ok, bool empty_ok,
dns_rdataclass_t rdclass, dns_rdatatype_t type, size_t structsize) {
if (text_ok != NULL) {
check_text_ok(text_ok, rdclass, type, structsize);
}
if (wire_ok != NULL) {
check_wire_ok(wire_ok, empty_ok, rdclass, type, structsize);
}
if (compare_ok != NULL) {
check_compare_ok(compare_ok, rdclass, type);
}
}
/*
* Check presentation vs unknown format of the record.
*/
static void
check_textvsunknown_single(const textvsunknown_t *textvsunknown,
dns_rdataclass_t rdclass, dns_rdatatype_t type) {
dns_rdata_t rdata1 = DNS_RDATA_INIT, rdata2 = DNS_RDATA_INIT;
unsigned char buf1[1024], buf2[1024];
isc_result_t result;
result = dns_test_rdatafromstring(&rdata1, rdclass, type, buf1,
sizeof(buf1), textvsunknown->text1,
false);
if (debug && result != ISC_R_SUCCESS) {
fprintf(stdout, "# '%s'\n", textvsunknown->text1);
fprintf(stdout, "# result=%s\n", isc_result_totext(result));
}
assert_int_equal(result, ISC_R_SUCCESS);
result = dns_test_rdatafromstring(&rdata2, rdclass, type, buf2,
sizeof(buf2), textvsunknown->text2,
false);
if (debug && result != ISC_R_SUCCESS) {
fprintf(stdout, "# '%s'\n", textvsunknown->text2);
fprintf(stdout, "# result=%s\n", isc_result_totext(result));
}
assert_int_equal(result, ISC_R_SUCCESS);
if (debug && rdata1.length != rdata2.length) {
fprintf(stdout, "# '%s'\n", textvsunknown->text1);
fprintf(stdout, "# rdata1.length (%u) != rdata2.length (%u)\n",
rdata1.length, rdata2.length);
}
assert_int_equal(rdata1.length, rdata2.length);
if (debug && memcmp(rdata1.data, rdata2.data, rdata1.length) != 0) {
unsigned int i;
fprintf(stdout, "# '%s'\n", textvsunknown->text1);
for (i = 0; i < rdata1.length; i++) {
if (rdata1.data[i] != rdata2.data[i]) {
fprintf(stderr, "# %u: %02x != %02x\n", i,
rdata1.data[i], rdata2.data[i]);
}
}
}
assert_memory_equal(rdata1.data, rdata2.data, rdata1.length);
}
static void
check_textvsunknown(const textvsunknown_t *textvsunknown,
dns_rdataclass_t rdclass, dns_rdatatype_t type) {
size_t i;
/*
* Check all entries in the supplied array.
*/
for (i = 0; textvsunknown[i].text1 != NULL; i++) {
check_textvsunknown_single(&textvsunknown[i], rdclass, type);
}
}
/*
* Common tests for RR types based on KEY that require key data:
*
* - CDNSKEY (RFC 7344)
* - DNSKEY (RFC 4034)
* - RKEY (draft-reid-dnsext-rkey-00)
*/
static void
key_required(void **state, dns_rdatatype_t type, size_t size) {
wire_ok_t wire_ok[] = { /*
* RDATA must be at least 5 octets in size:
*
* - 2 octets for Flags,
* - 1 octet for Protocol,
* - 1 octet for Algorithm,
* - Public Key must not be empty.
*
* RFC 2535 section 3.1.2 allows the Public Key
* to be empty if bits 0-1 of Flags are both
* set, but that only applies to KEY records:
* for the RR types tested here, the Public Key
* must not be empty.
*/
WIRE_INVALID(0x00),
WIRE_INVALID(0x00, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00),
WIRE_INVALID(0xc0, 0x00, 0x00, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00, 0x00),
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00),
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(NULL, wire_ok, NULL, false, dns_rdataclass_in, type, size);
}
/* APL RDATA manipulations */
ISC_RUN_TEST_IMPL(apl) {
text_ok_t text_ok[] = {
/* empty list */
TEXT_VALID(""),
/* min,max prefix IPv4 */
TEXT_VALID("1:0.0.0.0/0"), TEXT_VALID("1:127.0.0.1/32"),
/* min,max prefix IPv6 */
TEXT_VALID("2:::/0"), TEXT_VALID("2:::1/128"),
/* negated */
TEXT_VALID("!1:0.0.0.0/0"), TEXT_VALID("!1:127.0.0.1/32"),
TEXT_VALID("!2:::/0"), TEXT_VALID("!2:::1/128"),
/* bits set after prefix length - not disallowed */
TEXT_VALID("1:127.0.0.0/0"), TEXT_VALID("2:8000::/0"),
/* multiple */
TEXT_VALID("1:0.0.0.0/0 1:127.0.0.1/32"),
TEXT_VALID("1:0.0.0.0/0 !1:127.0.0.1/32"),
/* family 0, prefix 0, positive */
TEXT_VALID("\\# 4 00000000"),
/* family 0, prefix 0, negative */
TEXT_VALID("\\# 4 00000080"),
/* prefix too long */
TEXT_INVALID("1:0.0.0.0/33"), TEXT_INVALID("2:::/129"),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = { /* zero length */
WIRE_VALID(),
/* prefix too big IPv4 */
WIRE_INVALID(0x00, 0x01, 33U, 0x00),
/* prefix too big IPv6 */
WIRE_INVALID(0x00, 0x02, 129U, 0x00),
/* trailing zero octet in afdpart */
WIRE_INVALID(0x00, 0x00, 0x00, 0x01, 0x00),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
check_rdata(text_ok, wire_ok, NULL, true, dns_rdataclass_in,
dns_rdatatype_apl, sizeof(dns_rdata_in_apl_t));
}
/*
* http://broadband-forum.org/ftp/pub/approved-specs/af-saa-0069.000.pdf
*
* ATMA RRs have the following RDATA format:
*
* 1 1 1 1 1 1
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | FORMAT | |
* +--+--+--+--+--+--+--+--+ |
* / ADDRESS /
* | |
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
*
* The fields have the following meaning:
*
* * FORMAT: One octet that indicates the format of ADDRESS. The two
* possible values for FORMAT are value 0 indicating ATM End System Address
* (AESA) format and value 1 indicating E.164 format.
*
* * ADDRESS: Variable length string of octets containing the ATM address of
* the node to which this RR pertains.
*
* When the format value is 0, indicating that the address is in AESA format,
* the address is coded as described in ISO 8348/AD 2 using the preferred
* binary encoding of the ISO NSAP format. When the format value is 1,
* indicating that the address is in E.164 format, the Address/Number Digits
* appear in the order in which they would be entered on a numeric keypad.
* Digits are coded in IA5 characters with the leftmost bit of each digit set
* to 0. This ATM address appears in ATM End System Address Octets field (AESA
* format) or the Address/Number Digits field (E.164 format) of the Called
* party number information element [ATMUNI3.1]. Subaddress information is
* intentionally not included because E.164 subaddress information is used for
* routing.
*
* ATMA RRs cause no additional section processing.
*/
ISC_RUN_TEST_IMPL(atma) {
text_ok_t text_ok[] = { TEXT_VALID("00"),
TEXT_VALID_CHANGED("0.0", "00"),
/*
* multiple consecutive periods
*/
TEXT_INVALID("0..0"),
/*
* trailing period
*/
TEXT_INVALID("00."),
/*
* leading period
*/
TEXT_INVALID(".00"),
/*
* Not full octets.
*/
TEXT_INVALID("000"),
/*
* E.164
*/
TEXT_VALID("+61200000000"),
/*
* E.164 with periods
*/
TEXT_VALID_CHANGED("+61.2.0000.0000", "+6120000"
"0000"),
/*
* E.164 with period at end
*/
TEXT_INVALID("+61200000000."),
/*
* E.164 with multiple consecutive periods
*/
TEXT_INVALID("+612..00000000"),
/*
* E.164 with period before the leading digit.
*/
TEXT_INVALID("+.61200000000"),
/*
* Sentinel.
*/
TEXT_SENTINEL() };
wire_ok_t wire_ok[] = {
/*
* Too short.
*/
WIRE_INVALID(0x00), WIRE_INVALID(0x01),
/*
* all digits
*/
WIRE_VALID(0x01, '6', '1', '2', '0', '0', '0'),
/*
* non digit
*/
WIRE_INVALID(0x01, '+', '6', '1', '2', '0', '0', '0'),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_atma, sizeof(dns_rdata_in_atma_t));
}
/* AMTRELAY RDATA manipulations */
ISC_RUN_TEST_IMPL(amtrelay) {
text_ok_t text_ok[] = {
TEXT_INVALID(""), TEXT_INVALID("0"), TEXT_INVALID("0 0"),
/* gateway type 0 */
TEXT_VALID("0 0 0"), TEXT_VALID("0 1 0"),
TEXT_INVALID("0 2 0"), /* discovery out of range */
TEXT_VALID("255 1 0"), /* max precedence */
TEXT_INVALID("256 1 0"), /* precedence out of range */
/* IPv4 gateway */
TEXT_INVALID("0 0 1"), /* no address */
TEXT_VALID("0 0 1 0.0.0.0"),
TEXT_INVALID("0 0 1 0.0.0.0 x"), /* extra */
TEXT_INVALID("0 0 1 0.0.0.0.0"), /* bad address */
TEXT_INVALID("0 0 1 ::"), /* bad address */
TEXT_INVALID("0 0 1 ."), /* bad address */
/* IPv6 gateway */
TEXT_INVALID("0 0 2"), /* no address */
TEXT_VALID("0 0 2 ::"), TEXT_INVALID("0 0 2 :: xx"), /* extra */
TEXT_INVALID("0 0 2 0.0.0.0"), /* bad address */
TEXT_INVALID("0 0 2 ."), /* bad address */
/* hostname gateway */
TEXT_INVALID("0 0 3"), /* no name */
/* IPv4 is a valid name */
TEXT_VALID_CHANGED("0 0 3 0.0.0.0", "0 0 3 0.0.0.0."),
/* IPv6 is a valid name */
TEXT_VALID_CHANGED("0 0 3 ::", "0 0 3 ::."),
TEXT_VALID_CHANGED("0 0 3 example", "0 0 3 example."),
TEXT_VALID("0 0 3 example."),
TEXT_INVALID("0 0 3 example. x"), /* extra */
/* unknown gateway */
TEXT_VALID("\\# 2 0004"), TEXT_VALID("\\# 2 0084"),
TEXT_VALID("\\# 2 007F"), TEXT_VALID("\\# 3 000400"),
TEXT_VALID("\\# 3 008400"), TEXT_VALID("\\# 3 00FF00"),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = {
WIRE_INVALID(0x00), WIRE_VALID(0x00, 0x00),
WIRE_VALID(0x00, 0x80), WIRE_INVALID(0x00, 0x00, 0x00),
WIRE_INVALID(0x00, 0x80, 0x00),
WIRE_INVALID(0x00, 0x01), WIRE_INVALID(0x00, 0x01, 0x00),
WIRE_INVALID(0x00, 0x01, 0x00, 0x00),
WIRE_INVALID(0x00, 0x01, 0x00, 0x00, 0x00),
WIRE_VALID(0x00, 0x01, 0x00, 0x00, 0x00, 0x00),
WIRE_INVALID(0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00),
WIRE_INVALID(0x00, 0x02), WIRE_INVALID(0x00, 0x02, 0x00),
WIRE_VALID(0x00, 0x02, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14,
0x15),
WIRE_INVALID(0x00, 0x02, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16),
WIRE_INVALID(0x00, 0x03), WIRE_VALID(0x00, 0x03, 0x00),
WIRE_INVALID(0x00, 0x03, 0x00, 0x00), /* extra */
WIRE_VALID(0x00, 0x04), WIRE_VALID(0x00, 0x04, 0x00),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_amtrelay, sizeof(dns_rdata_amtrelay_t));
}
ISC_RUN_TEST_IMPL(cdnskey) {
key_required(state, dns_rdatatype_cdnskey, sizeof(dns_rdata_cdnskey_t));
}
/*
* CSYNC tests.
*
* RFC 7477:
*
* 2.1. The CSYNC Resource Record Format
*
* 2.1.1. The CSYNC Resource Record Wire Format
*
* The CSYNC RDATA consists of the following fields:
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | SOA Serial |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Flags | Type Bit Map /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* / Type Bit Map (continued) /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 2.1.1.1. The SOA Serial Field
*
* The SOA Serial field contains a copy of the 32-bit SOA serial number
* from the child zone. If the soaminimum flag is set, parental agents
* querying children's authoritative servers MUST NOT act on data from
* zones advertising an SOA serial number less than this value. See
* [RFC1982] for properly implementing "less than" logic. If the
* soaminimum flag is not set, parental agents MUST ignore the value in
* the SOA Serial field. Clients can set the field to any value if the
* soaminimum flag is unset, such as the number zero.
*
* (...)
*
* 2.1.1.2. The Flags Field
*
* The Flags field contains 16 bits of boolean flags that define
* operations that affect the processing of the CSYNC record. The flags
* defined in this document are as follows:
*
* 0x00 0x01: "immediate"
*
* 0x00 0x02: "soaminimum"
*
* The definitions for how the flags are to be used can be found in
* Section 3.
*
* The remaining flags are reserved for use by future specifications.
* Undefined flags MUST be set to 0 by CSYNC publishers. Parental
* agents MUST NOT process a CSYNC record if it contains a 1 value for a
* flag that is unknown to or unsupported by the parental agent.
*
* 2.1.1.2.1. The Type Bit Map Field
*
* The Type Bit Map field indicates the record types to be processed by
* the parental agent, according to the procedures in Section 3. The
* Type Bit Map field is encoded in the same way as the Type Bit Map
* field of the NSEC record, described in [RFC4034], Section 4.1.2. If
* a bit has been set that a parental agent implementation does not
* understand, the parental agent MUST NOT act upon the record.
* Specifically, a parental agent must not simply copy the data, and it
* must understand the semantics associated with a bit in the Type Bit
* Map field that has been set to 1.
*/
ISC_RUN_TEST_IMPL(csync) {
text_ok_t text_ok[] = { TEXT_INVALID(""),
TEXT_INVALID("0"),
TEXT_VALID("0 0"),
TEXT_VALID("0 0 A"),
TEXT_VALID("0 0 NS"),
TEXT_VALID("0 0 AAAA"),
TEXT_VALID("0 0 A AAAA"),
TEXT_VALID("0 0 A NS AAAA"),
TEXT_INVALID("0 0 A NS AAAA BOGUS"),
TEXT_SENTINEL() };
wire_ok_t wire_ok[] = {
/*
* Short.
*/
WIRE_INVALID(0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Serial + flags only.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Bad type map.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Bad type map.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Good type map.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x02),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_csync, sizeof(dns_rdata_csync_t));
}
ISC_RUN_TEST_IMPL(dnskey) {
key_required(state, dns_rdatatype_dnskey, sizeof(dns_rdata_dnskey_t));
}
/*
* DOA tests.
*
* draft-durand-doa-over-dns-03:
*
* 3.2. DOA RDATA Wire Format
*
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 0: | |
* | DOA-ENTERPRISE |
* | |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 4: | |
* | DOA-TYPE |
* | |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 8: | DOA-LOCATION | DOA-MEDIA-TYPE /
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 10: / /
* / DOA-MEDIA-TYPE (continued) /
* / /
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* / /
* / DOA-DATA /
* / /
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
*
* DOA-ENTERPRISE: a 32-bit unsigned integer in network order.
*
* DOA-TYPE: a 32-bit unsigned integer in network order.
*
* DOA-LOCATION: an 8-bit unsigned integer.
*
* DOA-MEDIA-TYPE: A <character-string> (see [RFC1035]). The first
* octet of the <character-string> contains the number of characters to
* follow.
*
* DOA-DATA: A variable length blob of binary data. The length of the
* DOA-DATA is not contained within the wire format of the RR and has to
* be computed from the RDLENGTH of the entire RR once other fields have
* been taken into account.
*
* 3.3. DOA RDATA Presentation Format
*
* The DOA-ENTERPRISE field is presented as an unsigned 32-bit decimal
* integer with range 0 - 4,294,967,295.
*
* The DOA-TYPE field is presented as an unsigned 32-bit decimal integer
* with range 0 - 4,294,967,295.
*
* The DOA-LOCATION field is presented as an unsigned 8-bit decimal
* integer with range 0 - 255.
*
* The DOA-MEDIA-TYPE field is presented as a single <character-string>.
*
* The DOA-DATA is presented as Base64 encoded data [RFC4648] unless the
* DOA-DATA is empty in which case it is presented as a single dash
* character ("-", ASCII 45). White space is permitted within Base64
* data.
*/
ISC_RUN_TEST_IMPL(doa) {
text_ok_t text_ok[] = {
/*
* Valid, non-empty DOA-DATA.
*/
TEXT_VALID("0 0 1 \"text/plain\" Zm9v"),
/*
* Valid, non-empty DOA-DATA with whitespace in between.
*/
TEXT_VALID_CHANGED("0 0 1 \"text/plain\" Zm 9v", "0 0 1 "
"\"text/"
"plain\" "
"Zm9v"),
/*
* Valid, unquoted DOA-MEDIA-TYPE, non-empty DOA-DATA.
*/
TEXT_VALID_CHANGED("0 0 1 text/plain Zm9v", "0 0 1 "
"\"text/plain\" "
"Zm9v"),
/*
* Invalid, quoted non-empty DOA-DATA.
*/
TEXT_INVALID("0 0 1 \"text/plain\" \"Zm9v\""),
/*
* Valid, empty DOA-DATA.
*/
TEXT_VALID("0 0 1 \"text/plain\" -"),
/*
* Invalid, quoted empty DOA-DATA.
*/
TEXT_INVALID("0 0 1 \"text/plain\" \"-\""),
/*
* Invalid, missing "-" in empty DOA-DATA.
*/
TEXT_INVALID("0 0 1 \"text/plain\""),
/*
* Valid, undefined DOA-LOCATION.
*/
TEXT_VALID("0 0 100 \"text/plain\" Zm9v"),
/*
* Invalid, DOA-LOCATION too big.
*/
TEXT_INVALID("0 0 256 \"text/plain\" ZM9v"),
/*
* Valid, empty DOA-MEDIA-TYPE, non-empty DOA-DATA.
*/
TEXT_VALID("0 0 2 \"\" aHR0cHM6Ly93d3cuaXNjLm9yZy8="),
/*
* Valid, empty DOA-MEDIA-TYPE, empty DOA-DATA.
*/
TEXT_VALID("0 0 1 \"\" -"),
/*
* Valid, DOA-MEDIA-TYPE with a space.
*/
TEXT_VALID("0 0 1 \"plain text\" Zm9v"),
/*
* Invalid, missing DOA-MEDIA-TYPE.
*/
TEXT_INVALID("1234567890 1234567890 1"),
/*
* Valid, DOA-DATA over 255 octets.
*/
TEXT_VALID("1234567890 1234567890 1 \"image/gif\" "
"R0lGODlhKAAZAOMCAGZmZgBmmf///zOZzMz//5nM/zNmmWbM"
"/5nMzMzMzACZ/////////////////////yH5BAEKAA8ALAAA"
"AAAoABkAAATH8IFJK5U2a4337F5ogRkpnoCJrly7PrCKyh8c"
"3HgAhzT35MDbbtO7/IJIHbGiOiaTxVTpSVWWLqNq1UVyapNS"
"1wd3OAxug0LhnCubcVhsxysQnOt4ATpvvzHlFzl1AwODhWeF"
"AgRpen5/UhheAYMFdUB4SFcpGEGGdQeCAqBBLTuSk30EeXd9"
"pEsAbKGxjHqDSE0Sp6ixN4N1BJmbc7lIhmsBich1awPAjkY1"
"SZR8bJWrz382SGqIBQQFQd4IsUTaX+ceuudPEQA7"),
/*
* Invalid, bad Base64 in DOA-DATA.
*/
TEXT_INVALID("1234567890 1234567890 1 \"image/gif\" R0lGODl"),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = {
/*
* Valid, empty DOA-MEDIA-TYPE, empty DOA-DATA.
*/
WIRE_VALID(0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78, 0x01,
0x00),
/*
* Invalid, missing DOA-MEDIA-TYPE.
*/
WIRE_INVALID(0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78,
0x01),
/*
* Invalid, malformed DOA-MEDIA-TYPE length.
*/
WIRE_INVALID(0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78,
0x01, 0xff),
/*
* Valid, empty DOA-DATA.
*/
WIRE_VALID(0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78, 0x01,
0x03, 0x66, 0x6f, 0x6f),
/*
* Valid, non-empty DOA-DATA.
*/
WIRE_VALID(0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78, 0x01,
0x03, 0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72),
/*
* Valid, DOA-DATA over 255 octets.
*/
WIRE_VALID(0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78, 0x01,
0x06, 0x62, 0x69, 0x6e, 0x61, 0x72, 0x79, 0x00, 0x66,
0x99, 0xff, 0xff, 0xff, 0x33, 0x99, 0xcc, 0xcc, 0xff,
0xff, 0x99, 0xcc, 0xff, 0x33, 0x66, 0x99, 0x66, 0xcc,
0xff, 0x99, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0x00, 0x99,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x21, 0xf9,
0x04, 0x01, 0x0a, 0x00, 0x0f, 0x00, 0x2c, 0x00, 0x00,
0x00, 0x00, 0x28, 0x00, 0x19, 0x00, 0x00, 0x04, 0xc7,
0xf0, 0x81, 0x49, 0x2b, 0x95, 0x36, 0x6b, 0x8d, 0xf7,
0xec, 0x5e, 0x68, 0x81, 0x19, 0x29, 0x9e, 0x80, 0x89,
0xae, 0x5c, 0xbb, 0x3e, 0xb0, 0x8a, 0xca, 0x1f, 0x1c,
0xdc, 0x78, 0x00, 0x87, 0x34, 0xf7, 0xe4, 0xc0, 0xdb,
0x6e, 0xd3, 0xbb, 0xfc, 0x82, 0x48, 0x1d, 0xb1, 0xa2,
0x3a, 0x26, 0x93, 0xc5, 0x54, 0xe9, 0x49, 0x55, 0x96,
0x2e, 0xa3, 0x6a, 0xd5, 0x45, 0x72, 0x6a, 0x93, 0x52,
0xd7, 0x07, 0x77, 0x38, 0x0c, 0x6e, 0x83, 0x42, 0xe1,
0x9c, 0x2b, 0x9b, 0x71, 0x58, 0x6c, 0xc7, 0x2b, 0x10,
0x9c, 0xeb, 0x78, 0x01, 0x3a, 0x6f, 0xbf, 0x31, 0xe5,
0x17, 0x39, 0x75, 0x03, 0x03, 0x83, 0x85, 0x67, 0x85,
0x02, 0x04, 0x69, 0x7a, 0x7e, 0x7f, 0x52, 0x18, 0x5e,
0x01, 0x83, 0x05, 0x75, 0x40, 0x78, 0x48, 0x57, 0x29,
0x18, 0x41, 0x86, 0x75, 0x07, 0x82, 0x02, 0xa0, 0x41,
0x2d, 0x3b, 0x92, 0x93, 0x7d, 0x04, 0x79, 0x77, 0x7d,
0xa4, 0x4b, 0x00, 0x6c, 0xa1, 0xb1, 0x8c, 0x7a, 0x83,
0x48, 0x4d, 0x12, 0xa7, 0xa8, 0xb1, 0x37, 0x83, 0x75,
0x04, 0x99, 0x9b, 0x73, 0xb9, 0x48, 0x86, 0x6b, 0x01,
0x89, 0xc8, 0x75, 0x6b, 0x03, 0xc0, 0x8e, 0x46, 0x35,
0x49, 0x94, 0x7c, 0x6c, 0x95, 0xab, 0xcf, 0x7f, 0x36,
0x48, 0x6a, 0x88, 0x05, 0x04, 0x05, 0x41, 0xde, 0x08,
0xb1, 0x44, 0xda, 0x5f, 0xe7, 0x1e, 0xba, 0xe7, 0x4f,
0x11, 0x00, 0x3b),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_doa, sizeof(dns_rdata_doa_t));
}
/*
* DS tests.
*
* RFC 4034:
*
* 5.1. DS RDATA Wire Format
*
* The RDATA for a DS RR consists of a 2 octet Key Tag field, a 1 octet
* Algorithm field, a 1 octet Digest Type field, and a Digest field.
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Key Tag | Algorithm | Digest Type |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* / /
* / Digest /
* / /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 5.1.1. The Key Tag Field
*
* The Key Tag field lists the key tag of the DNSKEY RR referred to by
* the DS record, in network byte order.
*
* The Key Tag used by the DS RR is identical to the Key Tag used by
* RRSIG RRs. Appendix B describes how to compute a Key Tag.
*
* 5.1.2. The Algorithm Field
*
* The Algorithm field lists the algorithm number of the DNSKEY RR
* referred to by the DS record.
*
* The algorithm number used by the DS RR is identical to the algorithm
* number used by RRSIG and DNSKEY RRs. Appendix A.1 lists the
* algorithm number types.
*
* 5.1.3. The Digest Type Field
*
* The DS RR refers to a DNSKEY RR by including a digest of that DNSKEY
* RR. The Digest Type field identifies the algorithm used to construct
* the digest. Appendix A.2 lists the possible digest algorithm types.
*
* 5.1.4. The Digest Field
*
* The DS record refers to a DNSKEY RR by including a digest of that
* DNSKEY RR.
*
* The digest is calculated by concatenating the canonical form of the
* fully qualified owner name of the DNSKEY RR with the DNSKEY RDATA,
* and then applying the digest algorithm.
*
* digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
*
* "|" denotes concatenation
*
* DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
*
* The size of the digest may vary depending on the digest algorithm and
* DNSKEY RR size. As of the time of this writing, the only defined
* digest algorithm is SHA-1, which produces a 20 octet digest.
*/
ISC_RUN_TEST_IMPL(ds) {
text_ok_t text_ok[] = {
/*
* Invalid, empty record.
*/
TEXT_INVALID(""),
/*
* Invalid, no algorithm.
*/
TEXT_INVALID("0"),
/*
* Invalid, no digest type.
*/
TEXT_INVALID("0 0"),
/*
* Invalid, no digest.
*/
TEXT_INVALID("0 0 0"),
/*
* Valid, 1-octet digest for a reserved digest type.
*/
TEXT_VALID("0 0 0 00"),
/*
* Invalid, short SHA-1 digest.
*/
TEXT_INVALID("0 0 1 00"),
TEXT_INVALID("0 0 1 4FDCE83016EDD29077621FE568F8DADDB5809B"),
/*
* Valid, 20-octet SHA-1 digest.
*/
TEXT_VALID("0 0 1 4FDCE83016EDD29077621FE568F8DADDB5809B6A"),
/*
* Invalid, excessively long SHA-1 digest.
*/
TEXT_INVALID("0 0 1 4FDCE83016EDD29077621FE568F8DADDB5809B"
"6A00"),
/*
* Invalid, short SHA-256 digest.
*/
TEXT_INVALID("0 0 2 00"),
TEXT_INVALID("0 0 2 D001BD422FFDA9B745425B71DC17D007E69186"
"9BD59C5F237D9BF85434C313"),
/*
* Valid, 32-octet SHA-256 digest.
*/
TEXT_VALID_CHANGED("0 0 2 "
"D001BD422FFDA9B745425B71DC17D007E691869B"
"D59C5F237D9BF85434C3133F",
"0 0 2 "
"D001BD422FFDA9B745425B71DC17D007E691869B"
"D59C5F237D9BF854 34C3133F"),
/*
* Invalid, excessively long SHA-256 digest.
*/
TEXT_INVALID("0 0 2 D001BD422FFDA9B745425B71DC17D007E69186"
"9BD59C5F237D9BF85434C3133F00"),
/*
* Valid, GOST is no longer supported, hence no length checks.
*/
TEXT_VALID("0 0 3 00"),
/*
* Invalid, short SHA-384 digest.
*/
TEXT_INVALID("0 0 4 00"),
TEXT_INVALID("0 0 4 AC748D6C5AA652904A8763D64B7DFFFFA98152"
"BE12128D238BEBB4814B648F5A841E15CAA2DE348891"
"A37A699F65E5"),
/*
* Valid, 48-octet SHA-384 digest.
*/
TEXT_VALID_CHANGED("0 0 4 "
"AC748D6C5AA652904A8763D64B7DFFFFA98152BE"
"12128D238BEBB4814B648F5A841E15CAA2DE348891A"
"37A"
"699F65E54D",
"0 0 4 "
"AC748D6C5AA652904A8763D64B7DFFFFA98152BE"
"12128D238BEBB481 "
"4B648F5A841E15CAA2DE348891A37A"
"699F65E54D"),
/*
* Invalid, excessively long SHA-384 digest.
*/
TEXT_INVALID("0 0 4 AC748D6C5AA652904A8763D64B7DFFFFA98152"
"BE12128D238BEBB4814B648F5A841E15CAA2DE348891"
"A37A699F65E54D00"),
/*
* Valid, 1-octet digest for an unassigned digest type.
*/
TEXT_VALID("0 0 5 00"),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = {
/*
* Invalid, truncated key tag.
*/
WIRE_INVALID(0x00),
/*
* Invalid, no algorithm.
*/
WIRE_INVALID(0x00, 0x00),
/*
* Invalid, no digest type.
*/
WIRE_INVALID(0x00, 0x00, 0x00),
/*
* Invalid, no digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00),
/*
* Valid, 1-octet digest for a reserved digest type.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Invalid, short SHA-1 digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x01, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00, 0x01, 0x4F, 0xDC, 0xE8, 0x30,
0x16, 0xED, 0xD2, 0x90, 0x77, 0x62, 0x1F, 0xE5,
0x68, 0xF8, 0xDA, 0xDD, 0xB5, 0x80, 0x9B),
/*
* Valid, 20-octet SHA-1 digest.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x01, 0x4F, 0xDC, 0xE8, 0x30, 0x16,
0xED, 0xD2, 0x90, 0x77, 0x62, 0x1F, 0xE5, 0x68, 0xF8,
0xDA, 0xDD, 0xB5, 0x80, 0x9B, 0x6A),
/*
* Invalid, excessively long SHA-1 digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x01, 0x4F, 0xDC, 0xE8, 0x30,
0x16, 0xED, 0xD2, 0x90, 0x77, 0x62, 0x1F, 0xE5,
0x68, 0xF8, 0xDA, 0xDD, 0xB5, 0x80, 0x9B, 0x6A,
0x00),
/*
* Invalid, short SHA-256 digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x02, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00, 0x02, 0xD0, 0x01, 0xBD, 0x42,
0x2F, 0xFD, 0xA9, 0xB7, 0x45, 0x42, 0x5B, 0x71,
0xDC, 0x17, 0xD0, 0x07, 0xE6, 0x91, 0x86, 0x9B,
0xD5, 0x9C, 0x5F, 0x23, 0x7D, 0x9B, 0xF8, 0x54,
0x34, 0xC3, 0x13),
/*
* Valid, 32-octet SHA-256 digest.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x02, 0xD0, 0x01, 0xBD, 0x42, 0x2F,
0xFD, 0xA9, 0xB7, 0x45, 0x42, 0x5B, 0x71, 0xDC, 0x17,
0xD0, 0x07, 0xE6, 0x91, 0x86, 0x9B, 0xD5, 0x9C, 0x5F,
0x23, 0x7D, 0x9B, 0xF8, 0x54, 0x34, 0xC3, 0x13,
0x3F),
/*
* Invalid, excessively long SHA-256 digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x02, 0xD0, 0x01, 0xBD, 0x42,
0x2F, 0xFD, 0xA9, 0xB7, 0x45, 0x42, 0x5B, 0x71,
0xDC, 0x17, 0xD0, 0x07, 0xE6, 0x91, 0x86, 0x9B,
0xD5, 0x9C, 0x5F, 0x23, 0x7D, 0x9B, 0xF8, 0x54,
0x34, 0xC3, 0x13, 0x3F, 0x00),
/*
* Valid, GOST is no longer supported, hence no length checks.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x03, 0x00),
/*
* Invalid, short SHA-384 digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x04, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00, 0x04, 0xAC, 0x74, 0x8D, 0x6C,
0x5A, 0xA6, 0x52, 0x90, 0x4A, 0x87, 0x63, 0xD6,
0x4B, 0x7D, 0xFF, 0xFF, 0xA9, 0x81, 0x52, 0xBE,
0x12, 0x12, 0x8D, 0x23, 0x8B, 0xEB, 0xB4, 0x81,
0x4B, 0x64, 0x8F, 0x5A, 0x84, 0x1E, 0x15, 0xCA,
0xA2, 0xDE, 0x34, 0x88, 0x91, 0xA3, 0x7A, 0x69,
0x9F, 0x65, 0xE5),
/*
* Valid, 48-octet SHA-384 digest.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x04, 0xAC, 0x74, 0x8D, 0x6C, 0x5A,
0xA6, 0x52, 0x90, 0x4A, 0x87, 0x63, 0xD6, 0x4B, 0x7D,
0xFF, 0xFF, 0xA9, 0x81, 0x52, 0xBE, 0x12, 0x12, 0x8D,
0x23, 0x8B, 0xEB, 0xB4, 0x81, 0x4B, 0x64, 0x8F, 0x5A,
0x84, 0x1E, 0x15, 0xCA, 0xA2, 0xDE, 0x34, 0x88, 0x91,
0xA3, 0x7A, 0x69, 0x9F, 0x65, 0xE5, 0x4D),
/*
* Invalid, excessively long SHA-384 digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x04, 0xAC, 0x74, 0x8D, 0x6C,
0x5A, 0xA6, 0x52, 0x90, 0x4A, 0x87, 0x63, 0xD6,
0x4B, 0x7D, 0xFF, 0xFF, 0xA9, 0x81, 0x52, 0xBE,
0x12, 0x12, 0x8D, 0x23, 0x8B, 0xEB, 0xB4, 0x81,
0x4B, 0x64, 0x8F, 0x5A, 0x84, 0x1E, 0x15, 0xCA,
0xA2, 0xDE, 0x34, 0x88, 0x91, 0xA3, 0x7A, 0x69,
0x9F, 0x65, 0xE5, 0x4D, 0x00),
WIRE_VALID(0x00, 0x00, 0x04, 0x00, 0x00),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_ds, sizeof(dns_rdata_ds_t));
}
/*
* EDNS Client Subnet tests.
*
* RFC 7871:
*
* 6. Option Format
*
* This protocol uses an EDNS0 [RFC6891] option to include client
* address information in DNS messages. The option is structured as
* follows:
*
* +0 (MSB) +1 (LSB)
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 0: | OPTION-CODE |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 2: | OPTION-LENGTH |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 4: | FAMILY |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 6: | SOURCE PREFIX-LENGTH | SCOPE PREFIX-LENGTH |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 8: | ADDRESS... /
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
*
* o (Defined in [RFC6891]) OPTION-CODE, 2 octets, for ECS is 8 (0x00
* 0x08).
*
* o (Defined in [RFC6891]) OPTION-LENGTH, 2 octets, contains the
* length of the payload (everything after OPTION-LENGTH) in octets.
*
* o FAMILY, 2 octets, indicates the family of the address contained in
* the option, using address family codes as assigned by IANA in
* Address Family Numbers [Address_Family_Numbers].
*
* The format of the address part depends on the value of FAMILY. This
* document only defines the format for FAMILY 1 (IPv4) and FAMILY 2
* (IPv6), which are as follows:
*
* o SOURCE PREFIX-LENGTH, an unsigned octet representing the leftmost
* number of significant bits of ADDRESS to be used for the lookup.
* In responses, it mirrors the same value as in the queries.
*
* o SCOPE PREFIX-LENGTH, an unsigned octet representing the leftmost
* number of significant bits of ADDRESS that the response covers.
* In queries, it MUST be set to 0.
*
* o ADDRESS, variable number of octets, contains either an IPv4 or
* IPv6 address, depending on FAMILY, which MUST be truncated to the
* number of bits indicated by the SOURCE PREFIX-LENGTH field,
* padding with 0 bits to pad to the end of the last octet needed.
*
* o A server receiving an ECS option that uses either too few or too
* many ADDRESS octets, or that has non-zero ADDRESS bits set beyond
* SOURCE PREFIX-LENGTH, SHOULD return FORMERR to reject the packet,
* as a signal to the software developer making the request to fix
* their implementation.
*
* All fields are in network byte order ("big-endian", per [RFC1700],
* Data Notation).
*/
ISC_RUN_TEST_IMPL(edns_client_subnet) {
wire_ok_t wire_ok[] = {
/*
* Option code with no content.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 0x00),
/*
* Option code family 0, source 0, scope 0.
*/
WIRE_VALID(0x00, 0x08, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00),
/*
* Option code family 1 (IPv4), source 0, scope 0.
*/
WIRE_VALID(0x00, 0x08, 0x00, 0x04, 0x00, 0x01, 0x00, 0x00),
/*
* Option code family 2 (IPv6) , source 0, scope 0.
*/
WIRE_VALID(0x00, 0x08, 0x00, 0x04, 0x00, 0x02, 0x00, 0x00),
/*
* Extra octet.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00,
0x00),
/*
* Source too long for IPv4.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 8, 0x00, 0x01, 33, 0x00, 0x00,
0x00, 0x00, 0x00),
/*
* Source too long for IPv6.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 20, 0x00, 0x02, 129, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Scope too long for IPv4.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 8, 0x00, 0x01, 0x00, 33, 0x00,
0x00, 0x00, 0x00),
/*
* Scope too long for IPv6.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 20, 0x00, 0x02, 0x00, 129, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* When family=0, source and scope should be 0.
*/
WIRE_VALID(0x00, 0x08, 0x00, 4, 0x00, 0x00, 0x00, 0x00),
/*
* When family=0, source and scope should be 0.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 5, 0x00, 0x00, 0x01, 0x00, 0x00),
/*
* When family=0, source and scope should be 0.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 5, 0x00, 0x00, 0x00, 0x01, 0x00),
/*
* Length too short for source IPv4.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 7, 0x00, 0x01, 32, 0x00, 0x00,
0x00, 0x00),
/*
* Length too short for source IPv6.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 19, 0x00, 0x02, 128, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
check_rdata(NULL, wire_ok, NULL, true, dns_rdataclass_in,
dns_rdatatype_opt, sizeof(dns_rdata_opt_t));
}
/*
* http://ana-3.lcs.mit.edu/~jnc/nimrod/dns.txt
*
* The RDATA portion of both the NIMLOC and EID records contains
* uninterpreted binary data. The representation in the text master file
* is an even number of hex characters (0 to 9, a to f), case is not
* significant. For readability, whitespace may be included in the value
* field and should be ignored when reading a master file.
*/
ISC_RUN_TEST_IMPL(eid) {
text_ok_t text_ok[] = { TEXT_VALID("AABBCC"),
TEXT_VALID_CHANGED("AA bb cc", "AABBCC"),
TEXT_INVALID("aab"),
/*
* Sentinel.
*/
TEXT_SENTINEL() };
wire_ok_t wire_ok[] = { WIRE_VALID(0x00), WIRE_VALID(0xAA, 0xBB, 0xCC),
/*
* Sentinel.
*/
WIRE_SENTINEL() };
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_eid, sizeof(dns_rdata_in_eid_t));
}
/*
* test that an oversized HIP record will be rejected
*/
ISC_RUN_TEST_IMPL(hip) {
text_ok_t text_ok[] = {
/* RFC 8005 examples. */
TEXT_VALID_LOOP(0, "2 200100107B1A74DF365639CC39F1D578 "
"AwEAAbdxyhNuSutc5EMzxTs9LBPCIkOFH8cI"
"vM4p9+LrV4e19WzK00+CI6zBCQTdtWsuxKbW"
"Iy87UOoJTwkUs7lBu+Upr1gsNrut79ryra+b"
"SRGQb1slImA8YVJyuIDsj7kwzG7jnERNqnWx"
"Z48AWkskmdHaVDP4BcelrTI3rMXdXF5D"),
TEXT_VALID_LOOP(1, "2 200100107B1A74DF365639CC39F1D578 "
"AwEAAbdxyhNuSutc5EMzxTs9LBPCIkOFH8cI"
"vM4p9+LrV4e19WzK00+CI6zBCQTdtWsuxKbW"
"Iy87UOoJTwkUs7lBu+Upr1gsNrut79ryra+b"
"SRGQb1slImA8YVJyuIDsj7kwzG7jnERNqnWx"
"Z48AWkskmdHaVDP4BcelrTI3rMXdXF5D "
"rvs1.example.com."),
TEXT_VALID_LOOP(2, "2 200100107B1A74DF365639CC39F1D578 "
"AwEAAbdxyhNuSutc5EMzxTs9LBPCIkOFH8cI"
"vM4p9+LrV4e19WzK00+CI6zBCQTdtWsuxKbW"
"Iy87UOoJTwkUs7lBu+Upr1gsNrut79ryra+b"
"SRGQb1slImA8YVJyuIDsj7kwzG7jnERNqnWx"
"Z48AWkskmdHaVDP4BcelrTI3rMXdXF5D "
"rvs1.example.com. rvs2.example.com."),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
unsigned char hipwire[DNS_RDATA_MAXLENGTH] = { 0x01, 0x00, 0x00, 0x01,
0x00, 0x00, 0x04, 0x41,
0x42, 0x43, 0x44, 0x00 };
unsigned char buf[1024 * 1024];
dns_rdata_t rdata = DNS_RDATA_INIT;
isc_result_t result;
size_t i;
/*
* Fill the rest of input buffer with compression pointers.
*/
for (i = 12; i < sizeof(hipwire) - 2; i += 2) {
hipwire[i] = 0xc0;
hipwire[i + 1] = 0x06;
}
result = wire_to_rdata(hipwire, sizeof(hipwire), dns_rdataclass_in,
dns_rdatatype_hip, buf, sizeof(buf), &rdata);
assert_int_equal(result, DNS_R_FORMERR);
check_text_ok(text_ok, dns_rdataclass_in, dns_rdatatype_hip,
sizeof(dns_rdata_hip_t));
}
/*
* ISDN tests.
*
* RFC 1183:
*
* 3.2. The ISDN RR
*
* The ISDN RR is defined with mnemonic ISDN and type code 20 (decimal).
*
* An ISDN (Integrated Service Digital Network) number is simply a
* telephone number. The intent of the members of the CCITT is to
* upgrade all telephone and data network service to a common service.
*
* The numbering plan (E.163/E.164) is the same as the familiar
* international plan for POTS (an un-official acronym, meaning Plain
* Old Telephone Service). In E.166, CCITT says "An E.163/E.164
* telephony subscriber may become an ISDN subscriber without a number
* change."
*
* ISDN has the following format:
*
* <owner> <ttl> <class> ISDN <ISDN-address> <sa>
*
* The <ISDN-address> field is required; <sa> is optional.
*
* <ISDN-address> identifies the ISDN number of <owner> and DDI (Direct
* Dial In) if any, as defined by E.164 [8] and E.163 [7], the ISDN and
* PSTN (Public Switched Telephone Network) numbering plan. E.163
* defines the country codes, and E.164 the form of the addresses. Its
* format in master files is a <character-string> syntactically
* identical to that used in TXT and HINFO.
*
* <sa> specifies the subaddress (SA). The format of <sa> in master
* files is a <character-string> syntactically identical to that used in
* TXT and HINFO.
*
* The format of ISDN is class insensitive. ISDN RRs cause no
* additional section processing.
*
* The <ISDN-address> is a string of characters, normally decimal
* digits, beginning with the E.163 country code and ending with the DDI
* if any. Note that ISDN, in Q.931, permits any IA5 character in the
* general case.
*
* The <sa> is a string of hexadecimal digits. For digits 0-9, the
* concrete encoding in the Q.931 call setup information element is
* identical to BCD.
*
* For example:
*
* Relay.Prime.COM. IN ISDN 150862028003217
* sh.Prime.COM. IN ISDN 150862028003217 004
*
* (Note: "1" is the country code for the North American Integrated
* Numbering Area, i.e., the system of "area codes" familiar to people
* in those countries.)
*
* The RR data is the ASCII representation of the digits. It is encoded
* as one or two <character-string>s, i.e., count followed by
* characters.
*/
ISC_RUN_TEST_IMPL(isdn) {
wire_ok_t wire_ok[] = { /*
* "".
*/
WIRE_VALID(0x00),
/*
* "\001".
*/
WIRE_VALID(0x01, 0x01),
/*
* "\001" "".
*/
WIRE_VALID(0x01, 0x01, 0x00),
/*
* "\001" "\001".
*/
WIRE_VALID(0x01, 0x01, 0x01, 0x01),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
check_rdata(NULL, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_isdn, sizeof(dns_rdata_isdn_t));
}
/*
* KEY tests.
*/
ISC_RUN_TEST_IMPL(key) {
wire_ok_t wire_ok[] = {
/*
* RDATA is comprised of:
*
* - 2 octets for Flags,
* - 1 octet for Protocol,
* - 1 octet for Algorithm,
* - variable number of octets for Public Key.
*
* RFC 2535 section 3.1.2 states that if bits
* 0-1 of Flags are both set, the RR stops after
* the algorithm octet and thus its length must
* be 4 octets. In any other case, though, the
* Public Key part must not be empty.
*
* Algorithms PRIVATEDNS (253) and PRIVATEOID (254)
* have an algorithm identifier embedded and the start
* of the public key.
*/
WIRE_INVALID(0x00), WIRE_INVALID(0x00, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00),
WIRE_VALID(0xc0, 0x00, 0x00, 0x00),
WIRE_INVALID(0xc0, 0x00, 0x00, 0x00, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00, 0x00),
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00),
/* PRIVATEDNS example. without key data */
WIRE_VALID(0x00, 0x00, 0x00, 253, 0x07, 'e', 'x', 'a', 'm', 'p',
'l', 'e', 0x00),
/* PRIVATEDNS example. + keydata */
WIRE_VALID(0x00, 0x00, 0x00, 253, 0x07, 'e', 'x', 'a', 'm', 'p',
'l', 'e', 0x00, 0x00),
/* PRIVATEDNS compression pointer. */
WIRE_INVALID(0x00, 0x00, 0x00, 253, 0xc0, 0x00, 0x00),
/* PRIVATEOID */
WIRE_INVALID(0x00, 0x00, 0x00, 254, 0x00),
/* PRIVATEOID 1.3.6.1.4.1.2495 without key data */
WIRE_VALID(0x00, 0x00, 0x00, 254, 0x09, 0x06, 0x07, 0x2b, 0x06,
0x01, 0x04, 0x01, 0x93, 0x3f),
/* PRIVATEOID 1.3.6.1.4.1.2495 + keydata */
WIRE_VALID(0x00, 0x00, 0x00, 254, 0x09, 0x06, 0x07, 0x2b, 0x06,
0x01, 0x04, 0x01, 0x93, 0x3f, 0x00),
/* PRIVATEOID malformed OID - high-bit set on last octet */
WIRE_INVALID(0x00, 0x00, 0x00, 254, 0x06, 0x07, 0x2b, 0x06,
0x01, 0x04, 0x01, 0x93, 0xbf, 0x00),
/* PRIVATEOID malformed OID - wrong tag */
WIRE_INVALID(0x00, 0x00, 0x00, 254, 0x09, 0x07, 0x07, 0x2b,
0x06, 0x01, 0x04, 0x01, 0x93, 0x3f, 0x00),
WIRE_SENTINEL()
};
text_ok_t text_ok[] = { /* PRIVATEDNS example. */
TEXT_VALID("0 0 253 B2V4YW1wbGUA"),
/* PRIVATEDNS example. + keydata */
TEXT_VALID("0 0 253 B2V4YW1wbGUAAA=="),
/* PRIVATEDNS compression pointer. */
TEXT_INVALID("0 0 253 wAAA"),
/* PRIVATEOID */
TEXT_INVALID("0 0 254 AA=="),
/* PRIVATEOID 1.3.6.1.4.1.2495 */
TEXT_VALID("0 0 254 CQYHKwYBBAGTPw=="),
/* PRIVATEOID 1.3.6.1.4.1.2495 + keydata */
TEXT_VALID("0 0 254 CQYHKwYBBAGTPwA="),
/* PRIVATEOID malformed OID - high-bit set on
last octet */
TEXT_INVALID("0 0 254 CQYHKwYBBAGTvwA="),
/* PRIVATEOID malformed OID - wrong tag */
TEXT_INVALID("0 0 254 CQcHKwYBBAGTPwA="),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_key, sizeof(dns_rdata_key_t));
}
/*
* LOC tests.
*/
ISC_RUN_TEST_IMPL(loc) {
text_ok_t text_ok[] = {
TEXT_VALID_CHANGED("0 N 0 E 0", "0 0 0.000 N 0 0 0.000 E 0.00m "
"1m 10000m 10m"),
TEXT_VALID_CHANGED("0 S 0 W 0", "0 0 0.000 N 0 0 0.000 E 0.00m "
"1m 10000m 10m"),
TEXT_VALID_CHANGED("0 0 N 0 0 E 0", "0 0 0.000 N 0 0 0.000 E "
"0.00m 1m 10000m 10m"),
TEXT_VALID_CHANGED("0 0 0 N 0 0 0 E 0",
"0 0 0.000 N 0 0 0.000 E 0.00m 1m 10000m "
"10m"),
TEXT_VALID_CHANGED("0 0 0 N 0 0 0 E 0",
"0 0 0.000 N 0 0 0.000 E 0.00m 1m 10000m "
"10m"),
TEXT_VALID_CHANGED("0 0 0. N 0 0 0. E 0",
"0 0 0.000 N 0 0 0.000 E 0.00m 1m 10000m "
"10m"),
TEXT_VALID_CHANGED("0 0 .0 N 0 0 .0 E 0",
"0 0 0.000 N 0 0 0.000 E 0.00m 1m 10000m "
"10m"),
TEXT_INVALID("0 North 0 East 0"),
TEXT_INVALID("0 South 0 West 0"),
TEXT_INVALID("0 0 . N 0 0 0. E 0"),
TEXT_INVALID("0 0 0. N 0 0 . E 0"),
TEXT_INVALID("0 0 0. N 0 0 0. E m"),
TEXT_INVALID("0 0 0. N 0 0 0. E 0 ."),
TEXT_INVALID("0 0 0. N 0 0 0. E 0 m"),
TEXT_INVALID("0 0 0. N 0 0 0. E 0 0 ."),
TEXT_INVALID("0 0 0. N 0 0 0. E 0 0 m"),
TEXT_INVALID("0 0 0. N 0 0 0. E 0 0 0 ."),
TEXT_INVALID("0 0 0. N 0 0 0. E 0 0 0 m"),
TEXT_VALID_CHANGED("90 N 180 E 0", "90 0 0.000 N 180 0 0.000 E "
"0.00m 1m 10000m 10m"),
TEXT_INVALID("90 1 N 180 E 0"),
TEXT_INVALID("90 0 1 N 180 E 0"),
TEXT_INVALID("90 N 180 1 E 0"),
TEXT_INVALID("90 N 180 0 1 E 0"),
TEXT_VALID_CHANGED("90 S 180 W 0", "90 0 0.000 S 180 0 0.000 W "
"0.00m 1m 10000m 10m"),
TEXT_INVALID("90 1 S 180 W 0"),
TEXT_INVALID("90 0 1 S 180 W 0"),
TEXT_INVALID("90 S 180 1 W 0"),
TEXT_INVALID("90 S 180 0 1 W 0"),
TEXT_INVALID("0 0 0.000 E 0 0 0.000 E -0.95m 1m 10000m 10m"),
TEXT_VALID("0 0 0.000 N 0 0 0.000 E -0.95m 1m 10000m 10m"),
TEXT_VALID("0 0 0.000 N 0 0 0.000 E -0.05m 1m 10000m 10m"),
TEXT_VALID("0 0 0.000 N 0 0 0.000 E -100000.00m 1m 10000m 10m"),
TEXT_VALID("0 0 0.000 N 0 0 0.000 E 42849672.95m 1m 10000m "
"10m"),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
check_rdata(text_ok, 0, NULL, false, dns_rdataclass_in,
dns_rdatatype_loc, sizeof(dns_rdata_loc_t));
}
/*
* http://ana-3.lcs.mit.edu/~jnc/nimrod/dns.txt
*
* The RDATA portion of both the NIMLOC and EID records contains
* uninterpreted binary data. The representation in the text master file
* is an even number of hex characters (0 to 9, a to f), case is not
* significant. For readability, whitespace may be included in the value
* field and should be ignored when reading a master file.
*/
ISC_RUN_TEST_IMPL(nimloc) {
text_ok_t text_ok[] = { TEXT_VALID("AABBCC"),
TEXT_VALID_CHANGED("AA bb cc", "AABBCC"),
TEXT_INVALID("aab"),
/*
* Sentinel.
*/
TEXT_SENTINEL() };
wire_ok_t wire_ok[] = { WIRE_VALID(0x00), WIRE_VALID(0xAA, 0xBB, 0xCC),
/*
* Sentinel.
*/
WIRE_SENTINEL() };
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_nimloc, sizeof(dns_rdata_in_nimloc_t));
}
/*
* NSEC tests.
*
* RFC 4034:
*
* 4.1. NSEC RDATA Wire Format
*
* The RDATA of the NSEC RR is as shown below:
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* / Next Domain Name /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* / Type Bit Maps /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 4.1.1. The Next Domain Name Field
*
* The Next Domain field contains the next owner name (in the canonical
* ordering of the zone) that has authoritative data or contains a
* delegation point NS RRset; see Section 6.1 for an explanation of
* canonical ordering. The value of the Next Domain Name field in the
* last NSEC record in the zone is the name of the zone apex (the owner
* name of the zone's SOA RR). This indicates that the owner name of
* the NSEC RR is the last name in the canonical ordering of the zone.
*
* A sender MUST NOT use DNS name compression on the Next Domain Name
* field when transmitting an NSEC RR.
*
* Owner names of RRsets for which the given zone is not authoritative
* (such as glue records) MUST NOT be listed in the Next Domain Name
* unless at least one authoritative RRset exists at the same owner
* name.
*
* 4.1.2. The Type Bit Maps Field
*
* The Type Bit Maps field identifies the RRset types that exist at the
* NSEC RR's owner name.
*
* The RR type space is split into 256 window blocks, each representing
* the low-order 8 bits of the 16-bit RR type space. Each block that
* has at least one active RR type is encoded using a single octet
* window number (from 0 to 255), a single octet bitmap length (from 1
* to 32) indicating the number of octets used for the window block's
* bitmap, and up to 32 octets (256 bits) of bitmap.
*
* Blocks are present in the NSEC RR RDATA in increasing numerical
* order.
*
* Type Bit Maps Field = ( Window Block # | Bitmap Length | Bitmap )+
*
* where "|" denotes concatenation.
*
* Each bitmap encodes the low-order 8 bits of RR types within the
* window block, in network bit order. The first bit is bit 0. For
* window block 0, bit 1 corresponds to RR type 1 (A), bit 2 corresponds
* to RR type 2 (NS), and so forth. For window block 1, bit 1
* corresponds to RR type 257, and bit 2 to RR type 258. If a bit is
* set, it indicates that an RRset of that type is present for the NSEC
* RR's owner name. If a bit is clear, it indicates that no RRset of
* that type is present for the NSEC RR's owner name.
*
* Bits representing pseudo-types MUST be clear, as they do not appear
* in zone data. If encountered, they MUST be ignored upon being read.
*/
ISC_RUN_TEST_IMPL(nsec) {
text_ok_t text_ok[] = { TEXT_INVALID(""), TEXT_INVALID("."),
TEXT_VALID(". RRSIG"), TEXT_SENTINEL() };
wire_ok_t wire_ok[] = { WIRE_INVALID(0x00), WIRE_INVALID(0x00, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00),
WIRE_VALID(0x00, 0x00, 0x01, 0x02),
WIRE_SENTINEL() };
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_nsec, sizeof(dns_rdata_nsec_t));
}
/*
* NSEC3 tests.
*
* RFC 5155.
*/
ISC_RUN_TEST_IMPL(nsec3) {
text_ok_t text_ok[] = { TEXT_INVALID(""),
TEXT_INVALID("."),
TEXT_INVALID(". RRSIG"),
TEXT_INVALID("1 0 10 76931F"),
TEXT_INVALID("1 0 10 76931F "
"IMQ912BREQP1POLAH3RMONG&"
"UED541AS"),
TEXT_INVALID("1 0 10 76931F "
"IMQ912BREQP1POLAH3RMONGAUED541AS "
"A RRSIG BADTYPE"),
TEXT_VALID("1 0 10 76931F "
"AJHVGTICN6K0VDA53GCHFMT219SRRQLM A "
"RRSIG"),
TEXT_VALID("1 0 10 76931F "
"AJHVGTICN6K0VDA53GCHFMT219SRRQLM"),
TEXT_VALID("1 0 10 - "
"AJHVGTICN6K0VDA53GCHFMT219SRRQLM"),
TEXT_SENTINEL() };
check_rdata(text_ok, NULL, NULL, false, dns_rdataclass_in,
dns_rdatatype_nsec3, sizeof(dns_rdata_nsec3_t));
}
/* NXT RDATA manipulations */
ISC_RUN_TEST_IMPL(nxt) {
compare_ok_t compare_ok[] = {
COMPARE("a. A SIG", "a. A SIG", 0),
/*
* Records that differ only in the case of the next
* name should be equal.
*/
COMPARE("A. A SIG", "a. A SIG", 0),
/*
* Sorting on name field.
*/
COMPARE("A. A SIG", "b. A SIG", -1),
COMPARE("b. A SIG", "A. A SIG", 1),
/* bit map differs */
COMPARE("b. A SIG", "b. A AAAA SIG", -1),
/* order of bit map does not matter */
COMPARE("b. A SIG AAAA", "b. A AAAA SIG", 0), COMPARE_SENTINEL()
};
check_rdata(NULL, NULL, compare_ok, false, dns_rdataclass_in,
dns_rdatatype_nxt, sizeof(dns_rdata_nxt_t));
}
ISC_RUN_TEST_IMPL(rkey) {
text_ok_t text_ok[] = { /*
* Valid, flags set to 0 and a key is present.
*/
TEXT_VALID("0 0 0 aaaa"),
/*
* Invalid, non-zero flags.
*/
TEXT_INVALID("1 0 0 aaaa"),
TEXT_INVALID("65535 0 0 aaaa"),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = { /*
* Valid, flags set to 0 and a key is present.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Invalid, non-zero flags.
*/
WIRE_INVALID(0x00, 0x01, 0x00, 0x00, 0x00),
WIRE_INVALID(0xff, 0xff, 0x00, 0x00, 0x00),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
key_required(state, dns_rdatatype_rkey, sizeof(dns_rdata_rkey_t));
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_rkey, sizeof(dns_rdata_rkey_t));
}
ISC_RUN_TEST_IMPL(resinfo) {
text_ok_t text_ok[] = {
TEXT_VALID_CHANGED("qnamemin exterr=15,16,17 "
"infourl=https://resolver.example.com/guide",
"\"qnamemin\" \"exterr=15,16,17\" "
"\"infourl=https://resolver.example.com/"
"guide\""),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
check_rdata(text_ok, NULL, NULL, false, dns_rdataclass_in,
dns_rdatatype_resinfo, sizeof(dns_rdata_rkey_t));
}
/* SSHFP RDATA manipulations */
ISC_RUN_TEST_IMPL(sshfp) {
text_ok_t text_ok[] = { TEXT_INVALID(""), /* too short */
TEXT_INVALID("0"), /* reserved, too short */
TEXT_VALID("0 0"), /* no finger print */
TEXT_VALID("0 0 AA"), /* reserved */
TEXT_INVALID("0 1 AA"), /* too short SHA 1
* digest */
TEXT_INVALID("0 2 AA"), /* too short SHA 256
* digest */
TEXT_VALID("0 3 AA"), /* unknown finger print
* type */
/* good length SHA 1 digest */
TEXT_VALID("1 1 "
"00112233445566778899AABBCCDDEEFF171"
"81920"),
/* good length SHA 256 digest */
TEXT_VALID("4 2 "
"A87F1B687AC0E57D2A081A2F282672334D9"
"0ED316D2B818CA9580EA3 84D92401"),
/*
* totext splits the fingerprint into chunks and
* emits uppercase hex.
*/
TEXT_VALID_CHANGED("1 2 "
"00112233445566778899aabbccd"
"deeff "
"00112233445566778899AABBCCD"
"DEEFF",
"1 2 "
"00112233445566778899AABBCCD"
"DEEFF"
"00112233445566778899AABB "
"CCDDEEFF"),
TEXT_SENTINEL() };
wire_ok_t wire_ok[] = {
WIRE_INVALID(0x00), /* reserved too short */
WIRE_VALID(0x00, 0x00), /* reserved no finger print */
WIRE_VALID(0x00, 0x00, 0x00), /* reserved */
/* too short SHA 1 digests */
WIRE_INVALID(0x00, 0x01), WIRE_INVALID(0x00, 0x01, 0x00),
WIRE_INVALID(0x00, 0x01, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD,
0xEE, 0xFF, 0x17, 0x18, 0x19),
/* good length SHA 1 digest */
WIRE_VALID(0x00, 0x01, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66,
0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
0x17, 0x18, 0x19, 0x20),
/* too long SHA 1 digest */
WIRE_INVALID(0x00, 0x01, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD,
0xEE, 0xFF, 0x17, 0x18, 0x19, 0x20, 0x21),
/* too short SHA 256 digests */
WIRE_INVALID(0x00, 0x02), WIRE_INVALID(0x00, 0x02, 0x00),
WIRE_INVALID(0x00, 0x02, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD,
0xEE, 0xFF, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22,
0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30,
0x31),
/* good length SHA 256 digest */
WIRE_VALID(0x00, 0x02, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66,
0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
0x26, 0x27, 0x28, 0x29, 0x30, 0x31, 0x32),
/* too long SHA 256 digest */
WIRE_INVALID(0x00, 0x02, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD,
0xEE, 0xFF, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22,
0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30,
0x31, 0x32, 0x33),
/* unknown digest, * no fingerprint */
WIRE_VALID(0x00, 0x03), WIRE_VALID(0x00, 0x03, 0x00), /* unknown
* digest
*/
WIRE_SENTINEL()
};
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_sshfp, sizeof(dns_rdata_sshfp_t));
}
ISC_RUN_TEST_IMPL(wallet) {
text_ok_t text_ok[] = { TEXT_VALID_CHANGED("cid-example wid-example",
"\"cid-example\" "
"\"wid-example\""),
/*
* Sentinel.
*/
TEXT_SENTINEL() };
check_rdata(text_ok, NULL, NULL, false, dns_rdataclass_in,
dns_rdatatype_wallet, sizeof(dns_rdata_rkey_t));
}
/*
* WKS tests.
*
* RFC 1035:
*
* 3.4.2. WKS RDATA format
*
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | ADDRESS |
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | PROTOCOL | |
* +--+--+--+--+--+--+--+--+ |
* | |
* / <BIT MAP> /
* / /
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
*
* where:
*
* ADDRESS An 32 bit Internet address
*
* PROTOCOL An 8 bit IP protocol number
*
* <BIT MAP> A variable length bit map. The bit map must be a
* multiple of 8 bits long.
*
* The WKS record is used to describe the well known services supported by
* a particular protocol on a particular internet address. The PROTOCOL
* field specifies an IP protocol number, and the bit map has one bit per
* port of the specified protocol. The first bit corresponds to port 0,
* the second to port 1, etc. If the bit map does not include a bit for a
* protocol of interest, that bit is assumed zero. The appropriate values
* and mnemonics for ports and protocols are specified in [RFC-1010].
*
* For example, if PROTOCOL=TCP (6), the 26th bit corresponds to TCP port
* 25 (SMTP). If this bit is set, a SMTP server should be listening on TCP
* port 25; if zero, SMTP service is not supported on the specified
* address.
*/
ISC_RUN_TEST_IMPL(wks) {
text_ok_t text_ok[] = { /*
* Valid, IPv4 address in dotted-quad form.
*/
TEXT_VALID("127.0.0.1 6"),
/*
* Invalid, IPv4 address not in dotted-quad
* form.
*/
TEXT_INVALID("127.1 6"),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = { /*
* Too short.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 0x00),
/*
* Minimal TCP.
*/
WIRE_VALID(0x00, 0x08, 0x00, 0x00, 6),
/*
* Minimal UDP.
*/
WIRE_VALID(0x00, 0x08, 0x00, 0x00, 17),
/*
* Minimal other.
*/
WIRE_VALID(0x00, 0x08, 0x00, 0x00, 1),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_wks, sizeof(dns_rdata_in_wks_t));
}
ISC_RUN_TEST_IMPL(https_svcb) {
/*
* Known keys: mandatory, apln, no-default-alpn, port,
* ipv4hint, port, ipv6hint, dohpath.
*/
text_ok_t text_ok[] = {
/* unknown key invalid */
TEXT_INVALID("1 . unknown="),
/* no domain */
TEXT_INVALID("0"),
/* minimal record */
TEXT_VALID_LOOP(0, "0 ."),
/* Alias form possible future extension */
TEXT_VALID_LOOP(1, "0 . alpn=\"h2\""),
/* no "key" prefix */
TEXT_INVALID("2 svc.example.net. 0=\"2222\""),
/* no key value */
TEXT_INVALID("2 svc.example.net. key"),
/* no key value */
TEXT_INVALID("2 svc.example.net. key=\"2222\""),
/* zero pad invalid */
TEXT_INVALID("2 svc.example.net. key07=\"2222\""),
TEXT_VALID_LOOP(1, "2 svc.example.net. key8=\"2222\""),
TEXT_VALID_LOOPCHG(1, "2 svc.example.net. key8=2222",
"2 svc.example.net. key8=\"2222\""),
TEXT_VALID_LOOPCHG(1, "2 svc.example.net. alpn=h2",
"2 svc.example.net. alpn=\"h2\""),
TEXT_VALID_LOOPCHG(1, "2 svc.example.net. alpn=h3",
"2 svc.example.net. alpn=\"h3\""),
/* alpn has 2 sub field "h2" and "h3" */
TEXT_VALID_LOOPCHG(1, "2 svc.example.net. alpn=h2,h3",
"2 svc.example.net. alpn=\"h2,h3\""),
/* apln has 2 sub fields "h1,h2" and "h3" (comma escaped) */
TEXT_VALID_LOOPCHG(1, "2 svc.example.net. alpn=h1\\\\,h2,h3",
"2 svc.example.net. alpn=\"h1\\\\,h2,h3\""),
TEXT_VALID_LOOP(1, "2 svc.example.net. port=50"),
/* no-default-alpn, alpn is required */
TEXT_INVALID("2 svc.example.net. no-default-alpn"),
/* no-default-alpn with alpn present */
TEXT_VALID_LOOPCHG(
2, "2 svc.example.net. no-default-alpn alpn=h2",
"2 svc.example.net. alpn=\"h2\" no-default-alpn"),
/* empty hint */
TEXT_INVALID("2 svc.example.net. ipv4hint="),
TEXT_VALID_LOOP(1, "2 svc.example.net. "
"ipv4hint=10.50.0.1,10.50.0.2"),
/* empty hint */
TEXT_INVALID("2 svc.example.net. ipv6hint="),
TEXT_VALID_LOOP(1, "2 svc.example.net. ipv6hint=::1,2002::1"),
TEXT_VALID_LOOP(1, "2 svc.example.net. ech=abcdefghijkl"),
/* bad base64 */
TEXT_INVALID("2 svc.example.net. ech=abcdefghijklm"),
TEXT_VALID_LOOP(1, "2 svc.example.net. key8=\"2222\""),
/* Out of key order on input (alpn == key1). */
TEXT_VALID_LOOPCHG(2,
"2 svc.example.net. key8=\"2222\" alpn=h2",
"2 svc.example.net. alpn=\"h2\" "
"key8=\"2222\""),
TEXT_VALID_LOOP(1, "2 svc.example.net. key65535=\"2222\""),
TEXT_INVALID("2 svc.example.net. key65536=\"2222\""),
TEXT_VALID_LOOP(1, "2 svc.example.net. key10"),
TEXT_VALID_LOOPCHG(1, "2 svc.example.net. key11=",
"2 svc.example.net. key11"),
TEXT_VALID_LOOPCHG(1, "2 svc.example.net. key12=\"\"",
"2 svc.example.net. key12"),
/* empty alpn-id sub fields */
TEXT_INVALID("2 svc.example.net. alpn"),
TEXT_INVALID("2 svc.example.net. alpn="),
TEXT_INVALID("2 svc.example.net. alpn=,h1"),
TEXT_INVALID("2 svc.example.net. alpn=h1,"),
TEXT_INVALID("2 svc.example.net. alpn=h1,,h2"),
/* empty alpn-id sub fields - RFC 1035 escaped commas */
TEXT_INVALID("2 svc.example.net. alpn=\\,abc"),
TEXT_INVALID("2 svc.example.net. alpn=abc\\,"),
TEXT_INVALID("2 svc.example.net. alpn=a\\,\\,abc"),
/* mandatory */
TEXT_VALID_LOOP(2, "2 svc.example.net. mandatory=alpn "
"alpn=\"h2\""),
TEXT_VALID_LOOP(3, "2 svc.example.net. mandatory=alpn,port "
"alpn=\"h2\" port=443"),
TEXT_VALID_LOOPCHG(3,
"2 svc.example.net. mandatory=port,alpn "
"alpn=\"h2\" port=443",
"2 svc.example.net. mandatory=alpn,port "
"alpn=\"h2\" port=443"),
TEXT_INVALID("2 svc.example.net. mandatory=mandatory"),
TEXT_INVALID("2 svc.example.net. mandatory=port"),
TEXT_INVALID("2 svc.example.net. mandatory=,port port=433"),
TEXT_INVALID("2 svc.example.net. mandatory=port, port=433"),
TEXT_INVALID("2 svc.example.net. "
"mandatory=alpn,,port alpn=h2 port=433"),
/* mandatory w/ unknown key values */
TEXT_VALID_LOOP(2, "2 svc.example.net. mandatory=key8 key8"),
TEXT_VALID_LOOP(3, "2 svc.example.net. mandatory=key8,key9 "
"key8 key9"),
TEXT_VALID_LOOPCHG(
3, "2 svc.example.net. mandatory=key9,key8 key8 key9",
"2 svc.example.net. mandatory=key8,key9 key8 key9"),
TEXT_INVALID("2 svc.example.net. "
"mandatory=key8,key8"),
TEXT_INVALID("2 svc.example.net. mandatory=,key8"),
TEXT_INVALID("2 svc.example.net. mandatory=key8,"),
TEXT_INVALID("2 svc.example.net. "
"mandatory=key8,,key8"),
/* Invalid test vectors */
TEXT_INVALID("1 foo.example.com. ( key123=abc key123=def )"),
TEXT_INVALID("1 foo.example.com. mandatory"),
TEXT_INVALID("1 foo.example.com. alpn"),
TEXT_INVALID("1 foo.example.com. port"),
TEXT_INVALID("1 foo.example.com. ipv4hint"),
TEXT_INVALID("1 foo.example.com. ipv6hint"),
TEXT_INVALID("1 foo.example.com. no-default-alpn=abc"),
TEXT_INVALID("1 foo.example.com. mandatory=key123"),
TEXT_INVALID("1 foo.example.com. mandatory=mandatory"),
TEXT_INVALID("1 foo.example.com. ( mandatory=key123,key123 "
"key123=abc)"),
/* dohpath tests */
TEXT_VALID_LOOPCHG(1, "1 example.net. dohpath=/{dns}",
"1 example.net. key7=\"/{dns}\""),
TEXT_VALID_LOOPCHG(1, "1 example.net. dohpath=/{+dns}",
"1 example.net. key7=\"/{+dns}\""),
TEXT_VALID_LOOPCHG(1, "1 example.net. dohpath=/{#dns}",
"1 example.net. key7=\"/{#dns}\""),
TEXT_VALID_LOOPCHG(1, "1 example.net. dohpath=/{.dns}",
"1 example.net. key7=\"/{.dns}\""),
TEXT_VALID_LOOPCHG(1, "1 example.net. dohpath=\"/{;dns}\"",
"1 example.net. key7=\"/{;dns}\""),
TEXT_VALID_LOOPCHG(1, "1 example.net. dohpath=/{?dns}",
"1 example.net. key7=\"/{?dns}\""),
TEXT_VALID_LOOPCHG(1, "1 example.net. dohpath=/some/path{?dns}",
"1 example.net. key7=\"/some/path{?dns}\""),
TEXT_VALID_LOOPCHG(1, "1 example.net. dohpath=/{dns:9999}",
"1 example.net. key7=\"/{dns:9999}\""),
TEXT_VALID_LOOPCHG(1, "1 example.net. dohpath=/{dns*}",
"1 example.net. key7=\"/{dns*}\""),
TEXT_VALID_LOOPCHG(
1, "1 example.net. dohpath=/some/path?key=value{&dns}",
"1 example.net. key7=\"/some/path?key=value{&dns}\""),
TEXT_VALID_LOOPCHG(1,
"1 example.net. "
"dohpath=/some/path?key=value{&dns,x*}",
"1 example.net. "
"key7=\"/some/path?key=value{&dns,x*}\""),
TEXT_INVALID("1 example.com. dohpath=not-relative"),
TEXT_INVALID("1 example.com. dohpath=/{?no_dns_variable}"),
TEXT_INVALID("1 example.com. dohpath=/novariable"),
TEXT_INVALID("1 example.com. dohpath=/{?dnsx}"),
/* index too big > 9999 */
TEXT_INVALID("1 example.com. dohpath=/{?dns:10000}"),
/* index not postive */
TEXT_INVALID("1 example.com. dohpath=/{?dns:0}"),
/* index leading zero */
TEXT_INVALID("1 example.com. dohpath=/{?dns:01}"),
/* two operators */
TEXT_INVALID("1 example.com. dohpath=/{??dns}"),
/* invalid % encoding */
TEXT_INVALID("1 example.com. dohpath=/%a{?dns}"),
/* invalid % encoding */
TEXT_INVALID("1 example.com. dohpath=/{?dns,%a}"),
/* incomplete macro */
TEXT_INVALID("1 example.com. dohpath=/{?dns" /*}*/),
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = {
/*
* Too short
*/
WIRE_INVALID(0x00, 0x00),
/*
* Minimal length record.
*/
WIRE_VALID(0x00, 0x00, 0x00),
/*
* Alias with invalid dohpath.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x00),
/*
* Bad key7= length (longer than rdata).
*/
WIRE_INVALID(0x00, 0x01, 0x00, 0x00, 0x07, 0x00, 0x01),
/*
* Port (0x03) too small (zero and one octets).
*/
WIRE_INVALID(0x00, 0x01, 0x00, 0x00, 0x03, 0x00, 0x00),
WIRE_INVALID(0x00, 0x01, 0x00, 0x00, 0x03, 0x00, 0x01, 0x00),
/* Valid port */
WIRE_VALID_LOOP(1, 0x00, 0x01, 0x00, 0x00, 0x03, 0x00, 0x02,
0x00, 0x00),
/*
* Port (0x03) too big (three octets).
*/
WIRE_INVALID(0x00, 0x01, 0x00, 0x00, 0x03, 0x00, 0x03, 0x00,
0x00, 0x00),
/*
* Duplicate keys.
*/
WIRE_INVALID(0x01, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00,
0x80, 0x00, 0x00),
/*
* Out of order keys.
*/
WIRE_INVALID(0x01, 0x01, 0x00, 0x00, 0x81, 0x00, 0x00, 0x00,
0x80, 0x00, 0x00),
/*
* Empty of mandatory key list.
*/
WIRE_INVALID(0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* "mandatory=mandatory" is invalid
*/
WIRE_INVALID(0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00,
0x00),
/*
* Out of order mandatory key list.
*/
WIRE_INVALID(0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00,
0x80, 0x00, 0x71, 0x00, 0x71, 0x00, 0x00, 0x00,
0x80, 0x00, 0x00),
/*
* Alpn(0x00 0x01) (length 0x00 0x09) "h1,h2" + "h3"
*/
WIRE_VALID_LOOP(0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x00, 0x09,
5, 'h', '1', ',', 'h', '2', 2, 'h', '3'),
/*
* Alpn(0x00 0x01) (length 0x00 0x09) "h1\h2" + "h3"
*/
WIRE_VALID_LOOP(0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x00, 0x09,
5, 'h', '1', '\\', 'h', '2', 2, 'h', '3'),
/*
* no-default-alpn (0x00 0x02) without alpn, alpn is required.
*/
WIRE_INVALID(0x00, 0x00, 0x01, 0x00, 0x00, 0x02, 0x00, 0x00),
/*
* Alpn(0x00 0x01) with zero length elements is invalid
*/
WIRE_INVALID(0x00, 0x00, 0x01, 0x00, 0x00, 0x01, 0x00, 0x05,
0x00, 0x00, 0x00, 0x00, 0x00),
WIRE_SENTINEL()
};
/* Test vectors from RFCXXXX */
textvsunknown_t textvsunknown[] = {
/* AliasForm */
{ "0 foo.example.com", "\\# 19 ( 00 00 03 66 6f 6f 07 65 78 61 "
"6d 70 6c 65 03 63 6f 6d 00)" },
/* ServiceForm */
{ "1 .", "\\# 3 ( 00 01 00)" },
/* Port example */
{ "16 foo.example.com port=53",
"\\# 25 ( 00 10 03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 63 6f "
"6d 00 00 03 00 02 00 35 )" },
/* Unregistered keys with unquoted value. */
{ "1 foo.example.com key667=hello",
"\\# 28 ( 00 01 03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 63 6f "
"6d 00 02 9b 00 05 68 65 6c 6c 6f )" },
/*
* Quoted decimal-escaped character.
* 1 foo.example.com key667="hello\210qoo"
*/
{ "1 foo.example.com key667=\"hello\\210qoo\"",
"\\# 32 ( 00 01 03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 63 6f "
"6d 00 02 9b 00 09 68 65 6c 6c 6f d2 71 6f 6f )" },
/*
* IPv6 hints example, quoted.
* 1 foo.example.com ipv6hint="2001:db8::1,2001:db8::53:1"
*/
{ "1 foo.example.com ipv6hint=\"2001:db8::1,2001:db8::53:1\"",
"\\# 55 ( 00 01 03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 63 6f "
"6d 00 00 06 00 20 20 01 0d b8 00 00 00 00 00 00 00 00 00 00 "
"00 01 20 01 0d b8 00 00 00 00 00 00 00 00 00 53 00 01 )" },
/* SvcParamValues and mandatory out of order. */
{ "16 foo.example.org alpn=h2,h3-19 mandatory=ipv4hint,alpn "
"ipv4hint=192.0.2.1",
"\\# 48 ( 00 10 03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 6f 72 "
"67 00 00 00 00 04 00 01 00 04 00 01 00 09 02 68 32 05 68 33 "
"2d 31 39 00 04 00 04 c0 00 02 01 )" },
/*
* Quoted ALPN with escaped comma and backslash.
* 16 foo.example.org alpn="f\\\\oo\\,bar,h2"
*/
{ "16 foo.example.org alpn=\"f\\\\\\\\oo\\\\,bar,h2\"",
"\\# 35 ( 00 10 03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 6f 72 "
"67 00 00 01 00 0c 08 66 5c 6f 6f 2c 62 61 72 02 68 32 )" },
/*
* Unquoted ALPN with escaped comma and backslash.
* 16 foo.example.org alpn=f\\\092oo\092,bar,h2
*/
{ "16 foo.example.org alpn=f\\\\\\092oo\\092,bar,h2",
"\\# 35 ( 00 10 03 66 6f 6f 07 65 78 61 6d 70 6c 65 03 6f 72 "
"67 00 00 01 00 0c 08 66 5c 6f 6f 2c 62 61 72 02 68 32 )" },
{ NULL, NULL }
};
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_svcb, sizeof(dns_rdata_in_svcb_t));
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_https, sizeof(dns_rdata_in_https_t));
check_textvsunknown(textvsunknown, dns_rdataclass_in,
dns_rdatatype_svcb);
check_textvsunknown(textvsunknown, dns_rdataclass_in,
dns_rdatatype_https);
}
/*
* ZONEMD tests.
*
* Excerpted from RFC 8976:
*
* The ZONEMD RDATA wire format is encoded as follows:
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Serial |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Scheme |Hash Algorithm | |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
* | Digest |
* / /
* / /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 2.2.1. The Serial Field
*
* The Serial field is a 32-bit unsigned integer in network byte order.
* It is the serial number from the zone's SOA record ([RFC1035],
* Section 3.3.13) for which the zone digest was generated.
*
* It is included here to clearly bind the ZONEMD RR to a particular
* version of the zone's content. Without the serial number, a stand-
* alone ZONEMD digest has no obvious association to any particular
* instance of a zone.
*
* 2.2.2. The Scheme Field
*
* The Scheme field is an 8-bit unsigned integer that identifies the
* methods by which data is collated and presented as input to the
* hashing function.
*
* Herein, SIMPLE, with Scheme value 1, is the only standardized Scheme
* defined for ZONEMD records and it MUST be supported by
* implementations. The "ZONEMD Schemes" registry is further described
* in Section 5.
*
* Scheme values 240-254 are allocated for Private Use.
*
* 2.2.3. The Hash Algorithm Field
*
* The Hash Algorithm field is an 8-bit unsigned integer that identifies
* the cryptographic hash algorithm used to construct the digest.
*
* Herein, SHA384 ([RFC6234]), with Hash Algorithm value 1, is the only
* standardized Hash Algorithm defined for ZONEMD records that MUST be
* supported by implementations. When SHA384 is used, the size of the
* Digest field is 48 octets. The result of the SHA384 digest algorithm
* MUST NOT be truncated, and the entire 48-octet digest is published in
* the ZONEMD record.
*
* SHA512 ([RFC6234]), with Hash Algorithm value 2, is also defined for
* ZONEMD records and SHOULD be supported by implementations. When
* SHA512 is used, the size of the Digest field is 64 octets. The
* result of the SHA512 digest algorithm MUST NOT be truncated, and the
* entire 64-octet digest is published in the ZONEMD record.
*
* Hash Algorithm values 240-254 are allocated for Private Use.
*
* The "ZONEMD Hash Algorithms" registry is further described in
* Section 5.
*
* 2.2.4. The Digest Field
*
* The Digest field is a variable-length sequence of octets containing
* the output of the hash algorithm. The length of the Digest field is
* determined by deducting the fixed size of the Serial, Scheme, and
* Hash Algorithm fields from the RDATA size in the ZONEMD RR header.
*
* The Digest field MUST NOT be shorter than 12 octets. Digests for the
* SHA384 and SHA512 hash algorithms specified herein are never
* truncated. Digests for future hash algorithms MAY be truncated but
* MUST NOT be truncated to a length that results in less than 96 bits
* (12 octets) of equivalent strength.
*
* Section 3 describes how to calculate the digest for a zone.
* Section 4 describes how to use the digest to verify the contents of a
* zone.
*
*/
ISC_RUN_TEST_IMPL(zonemd) {
text_ok_t text_ok[] = {
TEXT_INVALID(""),
/* No digest scheme or digest type*/
TEXT_INVALID("0"),
/* No digest type */
TEXT_INVALID("0 0"),
/* No digest */
TEXT_INVALID("0 0 0"),
/* No digest */
TEXT_INVALID("99999999 0 0"),
/* No digest */
TEXT_INVALID("2019020700 0 0"),
/* Digest too short */
TEXT_INVALID("2019020700 1 1 DEADBEEF"),
/* Digest too short */
TEXT_INVALID("2019020700 1 2 DEADBEEF"),
/* Digest too short */
TEXT_INVALID("2019020700 1 3 DEADBEEFDEADBEEFDEADBE"),
/* Digest type unknown */
TEXT_VALID("2019020700 1 3 DEADBEEFDEADBEEFDEADBEEF"),
/* Digest type max */
TEXT_VALID("2019020700 1 255 DEADBEEFDEADBEEFDEADBEEF"),
/* Digest type too big */
TEXT_INVALID("2019020700 0 256 DEADBEEFDEADBEEFDEADBEEF"),
/* Scheme max */
TEXT_VALID("2019020700 255 3 DEADBEEFDEADBEEFDEADBEEF"),
/* Scheme too big */
TEXT_INVALID("2019020700 256 3 DEADBEEFDEADBEEFDEADBEEF"),
/* SHA384 */
TEXT_VALID("2019020700 1 1 "
"7162D2BB75C047A53DE98767C9192BEB"
"14DB01E7E2267135DAF0230A 19BA4A31"
"6AF6BF64AA5C7BAE24B2992850300509"),
/* SHA512 */
TEXT_VALID("2019020700 1 2 "
"08CFA1115C7B948C4163A901270395EA"
"226A930CD2CBCF2FA9A5E6EB 85F37C8A"
"4E114D884E66F176EAB121CB02DB7D65"
"2E0CC4827E7A3204 F166B47E5613FD27"),
/* SHA384 too short and with private scheme */
TEXT_INVALID("2021042801 0 1 "
"7162D2BB75C047A53DE98767C9192BEB"
"6AF6BF64AA5C7BAE24B2992850300509"),
/* SHA512 too short and with private scheme */
TEXT_INVALID("2021042802 5 2 "
"A897B40072ECAE9E4CA3F1F227DE8F5E"
"480CDEBB16DFC64C1C349A7B5F6C71AB"
"E8A88B76EF0BA1604EC25752E946BF98"),
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = {
/*
* Short.
*/
WIRE_INVALID(0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Short 11-octet digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00),
/*
* Minimal, 12-octet hash for an undefined digest type.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00),
/*
* SHA-384 is defined, so we insist there be a digest of
* the expected length.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00),
/*
* 48-octet digest, valid for SHA-384.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa,
0xce),
/*
* 56-octet digest, too long for SHA-384.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0xde, 0xad,
0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad,
0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad,
0xbe, 0xef, 0xfa, 0xce),
/*
* 56-octet digest, too short for SHA-512
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0xde, 0xad,
0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad,
0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad,
0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad),
/*
* 64-octet digest, just right for SHA-512
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef),
/*
* 72-octet digest, too long for SHA-512
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x01, 0x02, 0xde, 0xad,
0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad,
0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad,
0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce),
/*
* 56-octet digest, valid for an undefined digest type.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_zonemd, sizeof(dns_rdata_zonemd_t));
}
ISC_RUN_TEST_IMPL(atcname) {
unsigned int i;
#define UNR "# Unexpected result from dns_rdatatype_atcname for type %u\n"
for (i = 0; i < 0xffffU; i++) {
bool tf = dns_rdatatype_atcname((dns_rdatatype_t)i);
switch (i) {
case dns_rdatatype_nsec:
case dns_rdatatype_key:
case dns_rdatatype_rrsig:
if (!tf) {
print_message(UNR, i);
}
assert_true(tf);
break;
default:
if (tf) {
print_message(UNR, i);
}
assert_false(tf);
break;
}
}
#undef UNR
}
ISC_RUN_TEST_IMPL(atparent) {
unsigned int i;
#define UNR "# Unexpected result from dns_rdatatype_atparent for type %u\n"
for (i = 0; i < 0xffffU; i++) {
bool tf = dns_rdatatype_atparent((dns_rdatatype_t)i);
switch (i) {
case dns_rdatatype_ds:
if (!tf) {
print_message(UNR, i);
}
assert_true(tf);
break;
default:
if (tf) {
print_message(UNR, i);
}
assert_false(tf);
break;
}
}
#undef UNR
}
ISC_RUN_TEST_IMPL(iszonecutauth) {
unsigned int i;
#define UNR "# Unexpected result from dns_rdatatype_iszonecutauth for type %u\n"
for (i = 0; i < 0xffffU; i++) {
bool tf = dns_rdatatype_iszonecutauth((dns_rdatatype_t)i);
switch (i) {
case dns_rdatatype_ns:
case dns_rdatatype_ds:
case dns_rdatatype_nsec:
case dns_rdatatype_key:
case dns_rdatatype_rrsig:
if (!tf) {
print_message(UNR, i);
}
assert_true(tf);
break;
default:
if (tf) {
print_message(UNR, i);
}
assert_false(tf);
break;
}
}
#undef UNR
}
ISC_TEST_LIST_START
/* types */
ISC_TEST_ENTRY(amtrelay)
ISC_TEST_ENTRY(apl)
ISC_TEST_ENTRY(atma)
ISC_TEST_ENTRY(cdnskey)
ISC_TEST_ENTRY(csync)
ISC_TEST_ENTRY(dnskey)
ISC_TEST_ENTRY(doa)
ISC_TEST_ENTRY(ds)
ISC_TEST_ENTRY(eid)
ISC_TEST_ENTRY(hip)
ISC_TEST_ENTRY(https_svcb)
ISC_TEST_ENTRY(isdn)
ISC_TEST_ENTRY(key)
ISC_TEST_ENTRY(loc)
ISC_TEST_ENTRY(nimloc)
ISC_TEST_ENTRY(nsec)
ISC_TEST_ENTRY(nsec3)
ISC_TEST_ENTRY(nxt)
ISC_TEST_ENTRY(rkey)
ISC_TEST_ENTRY(resinfo)
ISC_TEST_ENTRY(sshfp)
ISC_TEST_ENTRY(wallet)
ISC_TEST_ENTRY(wks)
ISC_TEST_ENTRY(zonemd)
/* other tests */
ISC_TEST_ENTRY(edns_client_subnet)
ISC_TEST_ENTRY(atcname)
ISC_TEST_ENTRY(atparent)
ISC_TEST_ENTRY(iszonecutauth)
ISC_TEST_LIST_END
ISC_TEST_MAIN