/* Test of substitute. Copyright (C) 2024-2025 Free Software Foundation, Inc. This file is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This file is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Written by Collin Funk , 2024. */ #include /* Specification. */ #include /* Check for uint16_t and uint32_t. */ uint16_t t1; uint32_t t2; /* The next POSIX revision requires 64-bit types. Gnulib doesn't. */ #if 0 uint64_t t3; #endif /* "These macros shall be suitable for use in #if preprocessing directives." */ #if BYTE_ORDER == LITTLE_ENDIAN int a = 17; #endif #if BYTE_ORDER == BIG_ENDIAN int a = 19; #endif /* "The macros BIG_ENDIAN and LITTLE_ENDIAN shall have distinct values." */ static_assert (LITTLE_ENDIAN != BIG_ENDIAN); static_assert (BYTE_ORDER == LITTLE_ENDIAN || BYTE_ORDER == BIG_ENDIAN); #include #include "macros.h" /* Test byte order conversion functions with constant values. */ static void test_convert_constant (void) { #if BYTE_ORDER == BIG_ENDIAN /* 16-bit. */ ASSERT (be16toh (UINT16_C (0x1234)) == UINT16_C (0x1234)); ASSERT (htobe16 (UINT16_C (0x1234)) == UINT16_C (0x1234)); ASSERT (le16toh (UINT16_C (0x1234)) == UINT16_C (0x3412)); ASSERT (htole16 (UINT16_C (0x1234)) == UINT16_C (0x3412)); /* 32-bit. */ ASSERT (be32toh (UINT32_C (0x12345678)) == UINT32_C (0x12345678)); ASSERT (htobe32 (UINT32_C (0x12345678)) == UINT32_C (0x12345678)); ASSERT (le32toh (UINT32_C (0x12345678)) == UINT32_C (0x78563412)); ASSERT (htole32 (UINT32_C (0x12345678)) == UINT32_C (0x78563412)); /* 64-bit. */ # ifdef UINT64_MAX ASSERT (be64toh (UINT64_C (0x1234567890ABCDEF)) == UINT64_C (0x1234567890ABCDEF)); ASSERT (htobe64 (UINT64_C (0x1234567890ABCDEF)) == UINT64_C (0x1234567890ABCDEF)); ASSERT (le64toh (UINT64_C (0x1234567890ABCDEF)) == UINT64_C (0xEFCDAB9078563412)); ASSERT (htole64 (UINT64_C (0x1234567890ABCDEF)) == UINT64_C (0xEFCDAB9078563412)); # endif #else /* 16-bit. */ ASSERT (be16toh (UINT16_C (0x1234)) == UINT16_C (0x3412)); ASSERT (htobe16 (UINT16_C (0x1234)) == UINT16_C (0x3412)); ASSERT (le16toh (UINT16_C (0x1234)) == UINT16_C (0x1234)); ASSERT (htole16 (UINT16_C (0x1234)) == UINT16_C (0x1234)); /* 32-bit. */ ASSERT (be32toh (UINT32_C (0x12345678)) == UINT32_C (0x78563412)); ASSERT (htobe32 (UINT32_C (0x12345678)) == UINT32_C (0x78563412)); ASSERT (le32toh (UINT32_C (0x12345678)) == UINT32_C (0x12345678)); ASSERT (htole32 (UINT32_C (0x12345678)) == UINT32_C (0x12345678)); /* 64-bit. */ # ifdef UINT64_MAX ASSERT (be64toh (UINT64_C (0x1234567890ABCDEF)) == UINT64_C (0xEFCDAB9078563412)); ASSERT (htobe64 (UINT64_C (0x1234567890ABCDEF)) == UINT64_C (0xEFCDAB9078563412)); ASSERT (le64toh (UINT64_C (0x1234567890ABCDEF)) == UINT64_C (0x1234567890ABCDEF)); ASSERT (htole64 (UINT64_C (0x1234567890ABCDEF)) == UINT64_C (0x1234567890ABCDEF)); # endif #endif } /* Test that the byte order conversion functions evaluate their arguments once. */ static void test_convert_eval_once (void) { /* 16-bit. */ { uint16_t value = 0; ASSERT (be16toh (value++) == 0); ASSERT (value == 1); } { uint16_t value = 0; ASSERT (htobe16 (value++) == 0); ASSERT (value == 1); } { uint16_t value = 0; ASSERT (le16toh (value++) == 0); ASSERT (value == 1); } { uint16_t value = 0; ASSERT (htole16 (value++) == 0); ASSERT (value == 1); } /* 32-bit. */ { uint32_t value = 0; ASSERT (be32toh (value++) == 0); ASSERT (value == 1); } { uint32_t value = 0; ASSERT (htobe32 (value++) == 0); ASSERT (value == 1); } { uint32_t value = 0; ASSERT (le32toh (value++) == 0); ASSERT (value == 1); } { uint32_t value = 0; ASSERT (htole32 (value++) == 0); ASSERT (value == 1); } /* 64-bit. */ #ifdef UINT64_MAX { uint64_t value = 0; ASSERT (be64toh (value++) == 0); ASSERT (value == 1); } { uint64_t value = 0; ASSERT (htobe64 (value++) == 0); ASSERT (value == 1); } { uint64_t value = 0; ASSERT (le64toh (value++) == 0); ASSERT (value == 1); } { uint64_t value = 0; ASSERT (htole64 (value++) == 0); ASSERT (value == 1); } #endif } /* Test that the byte order conversion functions accept floating-point arguments. */ static void test_convert_double (void) { /* 16-bit. */ ASSERT (be16toh (0.0) == 0); ASSERT (htobe16 (0.0) == 0); ASSERT (le16toh (0.0) == 0); ASSERT (htole16 (0.0) == 0); /* 32-bit. */ ASSERT (be32toh (0.0) == 0); ASSERT (htobe32 (0.0) == 0); ASSERT (le32toh (0.0) == 0); ASSERT (htole32 (0.0) == 0); /* 64-bit. */ #ifdef UINT64_MAX ASSERT (be64toh (0.0) == 0); ASSERT (htobe64 (0.0) == 0); ASSERT (le64toh (0.0) == 0); ASSERT (htole64 (0.0) == 0); #endif } int main (void) { test_convert_constant (); test_convert_eval_once (); test_convert_double (); return test_exit_status; }