283 lines
9.9 KiB
C
283 lines
9.9 KiB
C
/*
|
|
* Argon2 reference source code package - reference C implementations
|
|
*
|
|
* Copyright 2015
|
|
* Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
|
|
*
|
|
* You may use this work under the terms of a Creative Commons CC0 1.0
|
|
* License/Waiver or the Apache Public License 2.0, at your option. The terms of
|
|
* these licenses can be found at:
|
|
*
|
|
* - CC0 1.0 Universal : https://creativecommons.org/publicdomain/zero/1.0
|
|
* - Apache 2.0 : https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* You should have received a copy of both of these licenses along with this
|
|
* software. If not, they may be obtained at the above URLs.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "argon2.h"
|
|
#include "core.h"
|
|
|
|
#include "blake2/blake2.h"
|
|
#include "blake2/blamka-round-opt.h"
|
|
|
|
/*
|
|
* Function fills a new memory block and optionally XORs the old block over the new one.
|
|
* Memory must be initialized.
|
|
* @param state Pointer to the just produced block. Content will be updated(!)
|
|
* @param ref_block Pointer to the reference block
|
|
* @param next_block Pointer to the block to be XORed over. May coincide with @ref_block
|
|
* @param with_xor Whether to XOR into the new block (1) or just overwrite (0)
|
|
* @pre all block pointers must be valid
|
|
*/
|
|
#if defined(__AVX512F__)
|
|
static void fill_block(__m512i *state, const block *ref_block,
|
|
block *next_block, int with_xor) {
|
|
__m512i block_XY[ARGON2_512BIT_WORDS_IN_BLOCK];
|
|
unsigned int i;
|
|
|
|
if (with_xor) {
|
|
for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) {
|
|
state[i] = _mm512_xor_si512(
|
|
state[i], _mm512_loadu_si512((const __m512i *)ref_block->v + i));
|
|
block_XY[i] = _mm512_xor_si512(
|
|
state[i], _mm512_loadu_si512((const __m512i *)next_block->v + i));
|
|
}
|
|
} else {
|
|
for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) {
|
|
block_XY[i] = state[i] = _mm512_xor_si512(
|
|
state[i], _mm512_loadu_si512((const __m512i *)ref_block->v + i));
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
BLAKE2_ROUND_1(
|
|
state[8 * i + 0], state[8 * i + 1], state[8 * i + 2], state[8 * i + 3],
|
|
state[8 * i + 4], state[8 * i + 5], state[8 * i + 6], state[8 * i + 7]);
|
|
}
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
BLAKE2_ROUND_2(
|
|
state[2 * 0 + i], state[2 * 1 + i], state[2 * 2 + i], state[2 * 3 + i],
|
|
state[2 * 4 + i], state[2 * 5 + i], state[2 * 6 + i], state[2 * 7 + i]);
|
|
}
|
|
|
|
for (i = 0; i < ARGON2_512BIT_WORDS_IN_BLOCK; i++) {
|
|
state[i] = _mm512_xor_si512(state[i], block_XY[i]);
|
|
_mm512_storeu_si512((__m512i *)next_block->v + i, state[i]);
|
|
}
|
|
}
|
|
#elif defined(__AVX2__)
|
|
static void fill_block(__m256i *state, const block *ref_block,
|
|
block *next_block, int with_xor) {
|
|
__m256i block_XY[ARGON2_HWORDS_IN_BLOCK];
|
|
unsigned int i;
|
|
|
|
if (with_xor) {
|
|
for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
|
|
state[i] = _mm256_xor_si256(
|
|
state[i], _mm256_loadu_si256((const __m256i *)ref_block->v + i));
|
|
block_XY[i] = _mm256_xor_si256(
|
|
state[i], _mm256_loadu_si256((const __m256i *)next_block->v + i));
|
|
}
|
|
} else {
|
|
for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
|
|
block_XY[i] = state[i] = _mm256_xor_si256(
|
|
state[i], _mm256_loadu_si256((const __m256i *)ref_block->v + i));
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
BLAKE2_ROUND_1(state[8 * i + 0], state[8 * i + 4], state[8 * i + 1], state[8 * i + 5],
|
|
state[8 * i + 2], state[8 * i + 6], state[8 * i + 3], state[8 * i + 7]);
|
|
}
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
BLAKE2_ROUND_2(state[ 0 + i], state[ 4 + i], state[ 8 + i], state[12 + i],
|
|
state[16 + i], state[20 + i], state[24 + i], state[28 + i]);
|
|
}
|
|
|
|
for (i = 0; i < ARGON2_HWORDS_IN_BLOCK; i++) {
|
|
state[i] = _mm256_xor_si256(state[i], block_XY[i]);
|
|
_mm256_storeu_si256((__m256i *)next_block->v + i, state[i]);
|
|
}
|
|
}
|
|
#else
|
|
static void fill_block(__m128i *state, const block *ref_block,
|
|
block *next_block, int with_xor) {
|
|
__m128i block_XY[ARGON2_OWORDS_IN_BLOCK];
|
|
unsigned int i;
|
|
|
|
if (with_xor) {
|
|
for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
|
|
state[i] = _mm_xor_si128(
|
|
state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i));
|
|
block_XY[i] = _mm_xor_si128(
|
|
state[i], _mm_loadu_si128((const __m128i *)next_block->v + i));
|
|
}
|
|
} else {
|
|
for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
|
|
block_XY[i] = state[i] = _mm_xor_si128(
|
|
state[i], _mm_loadu_si128((const __m128i *)ref_block->v + i));
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
BLAKE2_ROUND(state[8 * i + 0], state[8 * i + 1], state[8 * i + 2],
|
|
state[8 * i + 3], state[8 * i + 4], state[8 * i + 5],
|
|
state[8 * i + 6], state[8 * i + 7]);
|
|
}
|
|
|
|
for (i = 0; i < 8; ++i) {
|
|
BLAKE2_ROUND(state[8 * 0 + i], state[8 * 1 + i], state[8 * 2 + i],
|
|
state[8 * 3 + i], state[8 * 4 + i], state[8 * 5 + i],
|
|
state[8 * 6 + i], state[8 * 7 + i]);
|
|
}
|
|
|
|
for (i = 0; i < ARGON2_OWORDS_IN_BLOCK; i++) {
|
|
state[i] = _mm_xor_si128(state[i], block_XY[i]);
|
|
_mm_storeu_si128((__m128i *)next_block->v + i, state[i]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void next_addresses(block *address_block, block *input_block) {
|
|
/*Temporary zero-initialized blocks*/
|
|
#if defined(__AVX512F__)
|
|
__m512i zero_block[ARGON2_512BIT_WORDS_IN_BLOCK];
|
|
__m512i zero2_block[ARGON2_512BIT_WORDS_IN_BLOCK];
|
|
#elif defined(__AVX2__)
|
|
__m256i zero_block[ARGON2_HWORDS_IN_BLOCK];
|
|
__m256i zero2_block[ARGON2_HWORDS_IN_BLOCK];
|
|
#else
|
|
__m128i zero_block[ARGON2_OWORDS_IN_BLOCK];
|
|
__m128i zero2_block[ARGON2_OWORDS_IN_BLOCK];
|
|
#endif
|
|
|
|
memset(zero_block, 0, sizeof(zero_block));
|
|
memset(zero2_block, 0, sizeof(zero2_block));
|
|
|
|
/*Increasing index counter*/
|
|
input_block->v[6]++;
|
|
|
|
/*First iteration of G*/
|
|
fill_block(zero_block, input_block, address_block, 0);
|
|
|
|
/*Second iteration of G*/
|
|
fill_block(zero2_block, address_block, address_block, 0);
|
|
}
|
|
|
|
void fill_segment(const argon2_instance_t *instance,
|
|
argon2_position_t position) {
|
|
block *ref_block = NULL, *curr_block = NULL;
|
|
block address_block, input_block;
|
|
uint64_t pseudo_rand, ref_index, ref_lane;
|
|
uint32_t prev_offset, curr_offset;
|
|
uint32_t starting_index, i;
|
|
#if defined(__AVX512F__)
|
|
__m512i state[ARGON2_512BIT_WORDS_IN_BLOCK];
|
|
#elif defined(__AVX2__)
|
|
__m256i state[ARGON2_HWORDS_IN_BLOCK];
|
|
#else
|
|
__m128i state[ARGON2_OWORDS_IN_BLOCK];
|
|
#endif
|
|
int data_independent_addressing;
|
|
|
|
if (instance == NULL) {
|
|
return;
|
|
}
|
|
|
|
data_independent_addressing =
|
|
(instance->type == Argon2_i) ||
|
|
(instance->type == Argon2_id && (position.pass == 0) &&
|
|
(position.slice < ARGON2_SYNC_POINTS / 2));
|
|
|
|
if (data_independent_addressing) {
|
|
init_block_value(&input_block, 0);
|
|
|
|
input_block.v[0] = position.pass;
|
|
input_block.v[1] = position.lane;
|
|
input_block.v[2] = position.slice;
|
|
input_block.v[3] = instance->memory_blocks;
|
|
input_block.v[4] = instance->passes;
|
|
input_block.v[5] = instance->type;
|
|
}
|
|
|
|
starting_index = 0;
|
|
|
|
if ((0 == position.pass) && (0 == position.slice)) {
|
|
starting_index = 2; /* we have already generated the first two blocks */
|
|
|
|
/* Don't forget to generate the first block of addresses: */
|
|
if (data_independent_addressing) {
|
|
next_addresses(&address_block, &input_block);
|
|
}
|
|
}
|
|
|
|
/* Offset of the current block */
|
|
curr_offset = position.lane * instance->lane_length +
|
|
position.slice * instance->segment_length + starting_index;
|
|
|
|
if (0 == curr_offset % instance->lane_length) {
|
|
/* Last block in this lane */
|
|
prev_offset = curr_offset + instance->lane_length - 1;
|
|
} else {
|
|
/* Previous block */
|
|
prev_offset = curr_offset - 1;
|
|
}
|
|
|
|
memcpy(state, ((instance->memory + prev_offset)->v), ARGON2_BLOCK_SIZE);
|
|
|
|
for (i = starting_index; i < instance->segment_length;
|
|
++i, ++curr_offset, ++prev_offset) {
|
|
/*1.1 Rotating prev_offset if needed */
|
|
if (curr_offset % instance->lane_length == 1) {
|
|
prev_offset = curr_offset - 1;
|
|
}
|
|
|
|
/* 1.2 Computing the index of the reference block */
|
|
/* 1.2.1 Taking pseudo-random value from the previous block */
|
|
if (data_independent_addressing) {
|
|
if (i % ARGON2_ADDRESSES_IN_BLOCK == 0) {
|
|
next_addresses(&address_block, &input_block);
|
|
}
|
|
pseudo_rand = address_block.v[i % ARGON2_ADDRESSES_IN_BLOCK];
|
|
} else {
|
|
pseudo_rand = instance->memory[prev_offset].v[0];
|
|
}
|
|
|
|
/* 1.2.2 Computing the lane of the reference block */
|
|
ref_lane = ((pseudo_rand >> 32)) % instance->lanes;
|
|
|
|
if ((position.pass == 0) && (position.slice == 0)) {
|
|
/* Can not reference other lanes yet */
|
|
ref_lane = position.lane;
|
|
}
|
|
|
|
/* 1.2.3 Computing the number of possible reference block within the
|
|
* lane.
|
|
*/
|
|
position.index = i;
|
|
ref_index = index_alpha(instance, &position, pseudo_rand & 0xFFFFFFFF,
|
|
ref_lane == position.lane);
|
|
|
|
/* 2 Creating a new block */
|
|
ref_block =
|
|
instance->memory + instance->lane_length * ref_lane + ref_index;
|
|
curr_block = instance->memory + curr_offset;
|
|
if (ARGON2_VERSION_10 == instance->version) {
|
|
/* version 1.2.1 and earlier: overwrite, not XOR */
|
|
fill_block(state, ref_block, curr_block, 0);
|
|
} else {
|
|
if(0 == position.pass) {
|
|
fill_block(state, ref_block, curr_block, 0);
|
|
} else {
|
|
fill_block(state, ref_block, curr_block, 1);
|
|
}
|
|
}
|
|
}
|
|
}
|