1
0
Fork 0
cryptsetup/lib/crypto_backend/crypto_gcrypt.c
Daniel Baumann 309c0fd158
Adding upstream version 2:2.7.5.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 10:45:47 +02:00

695 lines
15 KiB
C

// SPDX-License-Identifier: LGPL-2.1-or-later
/*
* GCRYPT crypto backend implementation
*
* Copyright (C) 2010-2024 Red Hat, Inc. All rights reserved.
* Copyright (C) 2010-2024 Milan Broz
*/
#include <stdio.h>
#include <errno.h>
#include <strings.h>
#include <gcrypt.h>
#include <pthread.h>
#include "crypto_backend_internal.h"
static int crypto_backend_initialised = 0;
static int crypto_backend_secmem = 1;
static int crypto_backend_whirlpool_bug = -1;
static char version[64];
struct crypt_hash {
gcry_md_hd_t hd;
int hash_id;
int hash_len;
};
struct crypt_hmac {
gcry_md_hd_t hd;
int hash_id;
int hash_len;
};
struct crypt_cipher {
bool use_kernel;
union {
struct crypt_cipher_kernel kernel;
gcry_cipher_hd_t hd;
} u;
};
struct hash_alg {
const char *name;
const char *gcrypt_name;
};
/*
* Test for wrong Whirlpool variant,
* Ref: https://lists.gnupg.org/pipermail/gcrypt-devel/2014-January/002889.html
*/
static void crypt_hash_test_whirlpool_bug(void)
{
struct crypt_hash *h;
char buf[2] = "\0\0", hash_out1[64], hash_out2[64];
if (crypto_backend_whirlpool_bug >= 0)
return;
crypto_backend_whirlpool_bug = 0;
if (crypt_hash_init(&h, "whirlpool"))
return;
/* One shot */
if (crypt_hash_write(h, &buf[0], 2) ||
crypt_hash_final(h, hash_out1, 64)) {
crypt_hash_destroy(h);
return;
}
/* Split buf (crypt_hash_final resets hash state) */
if (crypt_hash_write(h, &buf[0], 1) ||
crypt_hash_write(h, &buf[1], 1) ||
crypt_hash_final(h, hash_out2, 64)) {
crypt_hash_destroy(h);
return;
}
crypt_hash_destroy(h);
if (memcmp(hash_out1, hash_out2, 64))
crypto_backend_whirlpool_bug = 1;
}
int crypt_backend_init(bool fips __attribute__((unused)))
{
int r;
if (crypto_backend_initialised)
return 0;
if (!gcry_control (GCRYCTL_INITIALIZATION_FINISHED_P)) {
if (!gcry_check_version (GCRYPT_REQ_VERSION)) {
return -ENOSYS;
}
/* If gcrypt compiled to support POSIX 1003.1e capabilities,
* it drops all privileges during secure memory initialisation.
* For now, the only workaround is to disable secure memory in gcrypt.
* cryptsetup always need at least cap_sys_admin privilege for dm-ioctl
* and it locks its memory space anyway.
*/
#if 0
gcry_control (GCRYCTL_DISABLE_SECMEM);
crypto_backend_secmem = 0;
#else
gcry_control (GCRYCTL_SUSPEND_SECMEM_WARN);
gcry_control (GCRYCTL_INIT_SECMEM, 16384, 0);
gcry_control (GCRYCTL_RESUME_SECMEM_WARN);
#endif
gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);
}
crypto_backend_initialised = 1;
crypt_hash_test_whirlpool_bug();
r = snprintf(version, sizeof(version), "gcrypt %s%s%s%s",
gcry_check_version(NULL),
crypto_backend_secmem ? "" : ", secmem disabled",
crypto_backend_whirlpool_bug > 0 ? ", flawed whirlpool" : "",
crypt_backend_flags() & CRYPT_BACKEND_ARGON2 ? ", argon2" : "");
if (r < 0 || (size_t)r >= sizeof(version))
return -EINVAL;
return 0;
}
void crypt_backend_destroy(void)
{
if (crypto_backend_initialised)
gcry_control(GCRYCTL_TERM_SECMEM);
crypto_backend_initialised = 0;
}
const char *crypt_backend_version(void)
{
return crypto_backend_initialised ? version : "";
}
uint32_t crypt_backend_flags(void)
{
uint32_t flags = 0;
#if HAVE_DECL_GCRY_KDF_ARGON2 && !USE_INTERNAL_ARGON2
flags |= CRYPT_BACKEND_ARGON2;
#endif
return flags;
}
static const char *crypt_hash_compat_name(const char *name, unsigned int *flags)
{
const char *hash_name = name;
int i;
static struct hash_alg hash_algs[] = {
{ "blake2b-160", "blake2b_160" },
{ "blake2b-256", "blake2b_256" },
{ "blake2b-384", "blake2b_384" },
{ "blake2b-512", "blake2b_512" },
{ "blake2s-128", "blake2s_128" },
{ "blake2s-160", "blake2s_160" },
{ "blake2s-224", "blake2s_224" },
{ "blake2s-256", "blake2s_256" },
{ NULL, NULL, }};
if (!name)
return NULL;
/* "whirlpool_gcryptbug" is out shortcut to flawed whirlpool
* in libgcrypt < 1.6.0 */
if (!strcasecmp(name, "whirlpool_gcryptbug")) {
#if GCRYPT_VERSION_NUMBER >= 0x010601
if (flags)
*flags |= GCRY_MD_FLAG_BUGEMU1;
#endif
hash_name = "whirlpool";
}
i = 0;
while (hash_algs[i].name) {
if (!strcasecmp(name, hash_algs[i].name)) {
hash_name = hash_algs[i].gcrypt_name;
break;
}
i++;
}
return hash_name;
}
/* HASH */
int crypt_hash_size(const char *name)
{
int hash_id;
assert(crypto_backend_initialised);
hash_id = gcry_md_map_name(crypt_hash_compat_name(name, NULL));
if (!hash_id)
return -EINVAL;
return gcry_md_get_algo_dlen(hash_id);
}
int crypt_hash_init(struct crypt_hash **ctx, const char *name)
{
struct crypt_hash *h;
unsigned int flags = 0;
assert(crypto_backend_initialised);
h = malloc(sizeof(*h));
if (!h)
return -ENOMEM;
h->hash_id = gcry_md_map_name(crypt_hash_compat_name(name, &flags));
if (!h->hash_id) {
free(h);
return -EINVAL;
}
if (gcry_md_open(&h->hd, h->hash_id, flags)) {
free(h);
return -EINVAL;
}
h->hash_len = gcry_md_get_algo_dlen(h->hash_id);
*ctx = h;
return 0;
}
static void crypt_hash_restart(struct crypt_hash *ctx)
{
gcry_md_reset(ctx->hd);
}
int crypt_hash_write(struct crypt_hash *ctx, const char *buffer, size_t length)
{
gcry_md_write(ctx->hd, buffer, length);
return 0;
}
int crypt_hash_final(struct crypt_hash *ctx, char *buffer, size_t length)
{
unsigned char *hash;
if (length > (size_t)ctx->hash_len)
return -EINVAL;
hash = gcry_md_read(ctx->hd, ctx->hash_id);
if (!hash)
return -EINVAL;
memcpy(buffer, hash, length);
crypt_hash_restart(ctx);
return 0;
}
void crypt_hash_destroy(struct crypt_hash *ctx)
{
gcry_md_close(ctx->hd);
free(ctx);
}
/* HMAC */
int crypt_hmac_size(const char *name)
{
return crypt_hash_size(name);
}
int crypt_hmac_init(struct crypt_hmac **ctx, const char *name,
const void *key, size_t key_length)
{
struct crypt_hmac *h;
unsigned int flags = GCRY_MD_FLAG_HMAC;
assert(crypto_backend_initialised);
h = malloc(sizeof(*h));
if (!h)
return -ENOMEM;
h->hash_id = gcry_md_map_name(crypt_hash_compat_name(name, &flags));
if (!h->hash_id) {
free(h);
return -EINVAL;
}
if (gcry_md_open(&h->hd, h->hash_id, flags)) {
free(h);
return -EINVAL;
}
if (gcry_md_setkey(h->hd, key, key_length)) {
gcry_md_close(h->hd);
free(h);
return -EINVAL;
}
h->hash_len = gcry_md_get_algo_dlen(h->hash_id);
*ctx = h;
return 0;
}
static void crypt_hmac_restart(struct crypt_hmac *ctx)
{
gcry_md_reset(ctx->hd);
}
int crypt_hmac_write(struct crypt_hmac *ctx, const char *buffer, size_t length)
{
gcry_md_write(ctx->hd, buffer, length);
return 0;
}
int crypt_hmac_final(struct crypt_hmac *ctx, char *buffer, size_t length)
{
unsigned char *hash;
if (length > (size_t)ctx->hash_len)
return -EINVAL;
hash = gcry_md_read(ctx->hd, ctx->hash_id);
if (!hash)
return -EINVAL;
memcpy(buffer, hash, length);
crypt_hmac_restart(ctx);
return 0;
}
void crypt_hmac_destroy(struct crypt_hmac *ctx)
{
gcry_md_close(ctx->hd);
free(ctx);
}
/* RNG */
int crypt_backend_rng(char *buffer, size_t length, int quality, int fips __attribute__((unused)))
{
switch(quality) {
case CRYPT_RND_NORMAL:
gcry_randomize(buffer, length, GCRY_STRONG_RANDOM);
break;
case CRYPT_RND_SALT:
case CRYPT_RND_KEY:
default:
gcry_randomize(buffer, length, GCRY_VERY_STRONG_RANDOM);
break;
}
return 0;
}
static int pbkdf2(const char *hash,
const char *password, size_t password_length,
const char *salt, size_t salt_length,
char *key, size_t key_length,
uint32_t iterations)
{
const char *hash_name = crypt_hash_compat_name(hash, NULL);
#if USE_INTERNAL_PBKDF2
return pkcs5_pbkdf2(hash_name, password, password_length, salt, salt_length,
iterations, key_length, key, 0);
#else /* USE_INTERNAL_PBKDF2 */
int hash_id = gcry_md_map_name(hash_name);
if (!hash_id)
return -EINVAL;
if (gcry_kdf_derive(password, password_length, GCRY_KDF_PBKDF2, hash_id,
salt, salt_length, iterations, key_length, key))
return -EINVAL;
return 0;
#endif /* USE_INTERNAL_PBKDF2 */
}
#if HAVE_DECL_GCRY_KDF_ARGON2 && !USE_INTERNAL_ARGON2
struct gcrypt_thread_job
{
pthread_t thread;
struct job_thread_param {
gcry_kdf_job_fn_t job;
void *p;
} work;
};
struct gcrypt_threads
{
pthread_attr_t attr;
unsigned int num_threads;
unsigned int max_threads;
struct gcrypt_thread_job *jobs_ctx;
};
static void *gcrypt_job_thread(void *p)
{
struct job_thread_param *param = p;
param->job(param->p);
pthread_exit(NULL);
}
static int gcrypt_wait_all_jobs(void *ctx)
{
unsigned int i;
struct gcrypt_threads *threads = ctx;
for (i = 0; i < threads->num_threads; i++) {
pthread_join(threads->jobs_ctx[i].thread, NULL);
threads->jobs_ctx[i].thread = 0;
}
threads->num_threads = 0;
return 0;
}
static int gcrypt_dispatch_job(void *ctx, gcry_kdf_job_fn_t job, void *p)
{
struct gcrypt_threads *threads = ctx;
if (threads->num_threads >= threads->max_threads)
return -1;
threads->jobs_ctx[threads->num_threads].work.job = job;
threads->jobs_ctx[threads->num_threads].work.p = p;
if (pthread_create(&threads->jobs_ctx[threads->num_threads].thread, &threads->attr,
gcrypt_job_thread, &threads->jobs_ctx[threads->num_threads].work))
return -1;
threads->num_threads++;
return 0;
}
static int gcrypt_argon2(const char *type,
const char *password, size_t password_length,
const char *salt, size_t salt_length,
char *key, size_t key_length,
uint32_t iterations, uint32_t memory, uint32_t parallel)
{
gcry_kdf_hd_t hd;
int atype, r = -EINVAL;
unsigned long param[4];
struct gcrypt_threads threads = {
.max_threads = parallel,
.num_threads = 0
};
const gcry_kdf_thread_ops_t ops = {
.jobs_context = &threads,
.dispatch_job = gcrypt_dispatch_job,
.wait_all_jobs = gcrypt_wait_all_jobs
};
if (!strcmp(type, "argon2i"))
atype = GCRY_KDF_ARGON2I;
else if (!strcmp(type, "argon2id"))
atype = GCRY_KDF_ARGON2ID;
else
return -EINVAL;
param[0] = key_length;
param[1] = iterations;
param[2] = memory;
param[3] = parallel;
if (gcry_kdf_open(&hd, GCRY_KDF_ARGON2, atype, param, 4,
password, password_length, salt, salt_length,
NULL, 0, NULL, 0)) {
free(threads.jobs_ctx);
return -EINVAL;
}
if (parallel == 1) {
/* Do not use threads here */
if (gcry_kdf_compute(hd, NULL))
goto out;
} else {
threads.jobs_ctx = calloc(threads.max_threads,
sizeof(struct gcrypt_thread_job));
if (!threads.jobs_ctx)
goto out;
if (pthread_attr_init(&threads.attr))
goto out;
if (gcry_kdf_compute(hd, &ops))
goto out;
}
if (gcry_kdf_final(hd, key_length, key))
goto out;
r = 0;
out:
gcry_kdf_close(hd);
pthread_attr_destroy(&threads.attr);
free(threads.jobs_ctx);
return r;
}
#endif
/* PBKDF */
int crypt_pbkdf(const char *kdf, const char *hash,
const char *password, size_t password_length,
const char *salt, size_t salt_length,
char *key, size_t key_length,
uint32_t iterations, uint32_t memory, uint32_t parallel)
{
if (!kdf)
return -EINVAL;
if (!strcmp(kdf, "pbkdf2"))
return pbkdf2(hash, password, password_length, salt, salt_length,
key, key_length, iterations);
else if (!strncmp(kdf, "argon2", 6))
#if HAVE_DECL_GCRY_KDF_ARGON2 && !USE_INTERNAL_ARGON2
return gcrypt_argon2(kdf, password, password_length, salt, salt_length,
key, key_length, iterations, memory, parallel);
#else
return argon2(kdf, password, password_length, salt, salt_length,
key, key_length, iterations, memory, parallel);
#endif
return -EINVAL;
}
/* Block ciphers */
static int _cipher_init(gcry_cipher_hd_t *hd, const char *name,
const char *mode, const void *buffer, size_t length)
{
int cipher_id, mode_id;
cipher_id = gcry_cipher_map_name(name);
if (cipher_id == GCRY_CIPHER_MODE_NONE)
return -ENOENT;
if (!strcmp(mode, "ecb"))
mode_id = GCRY_CIPHER_MODE_ECB;
else if (!strcmp(mode, "cbc"))
mode_id = GCRY_CIPHER_MODE_CBC;
#if HAVE_DECL_GCRY_CIPHER_MODE_XTS
else if (!strcmp(mode, "xts"))
mode_id = GCRY_CIPHER_MODE_XTS;
#endif
else
return -ENOENT;
if (gcry_cipher_open(hd, cipher_id, mode_id, 0))
return -EINVAL;
if (gcry_cipher_setkey(*hd, buffer, length)) {
gcry_cipher_close(*hd);
return -EINVAL;
}
return 0;
}
int crypt_cipher_init(struct crypt_cipher **ctx, const char *name,
const char *mode, const void *key, size_t key_length)
{
struct crypt_cipher *h;
int r;
h = malloc(sizeof(*h));
if (!h)
return -ENOMEM;
if (!_cipher_init(&h->u.hd, name, mode, key, key_length)) {
h->use_kernel = false;
*ctx = h;
return 0;
}
r = crypt_cipher_init_kernel(&h->u.kernel, name, mode, key, key_length);
if (r < 0) {
free(h);
return r;
}
h->use_kernel = true;
*ctx = h;
return 0;
}
void crypt_cipher_destroy(struct crypt_cipher *ctx)
{
if (ctx->use_kernel)
crypt_cipher_destroy_kernel(&ctx->u.kernel);
else
gcry_cipher_close(ctx->u.hd);
free(ctx);
}
int crypt_cipher_encrypt(struct crypt_cipher *ctx,
const char *in, char *out, size_t length,
const char *iv, size_t iv_length)
{
if (ctx->use_kernel)
return crypt_cipher_encrypt_kernel(&ctx->u.kernel, in, out, length, iv, iv_length);
if (iv && gcry_cipher_setiv(ctx->u.hd, iv, iv_length))
return -EINVAL;
if (gcry_cipher_encrypt(ctx->u.hd, out, length, in, length))
return -EINVAL;
return 0;
}
int crypt_cipher_decrypt(struct crypt_cipher *ctx,
const char *in, char *out, size_t length,
const char *iv, size_t iv_length)
{
if (ctx->use_kernel)
return crypt_cipher_decrypt_kernel(&ctx->u.kernel, in, out, length, iv, iv_length);
if (iv && gcry_cipher_setiv(ctx->u.hd, iv, iv_length))
return -EINVAL;
if (gcry_cipher_decrypt(ctx->u.hd, out, length, in, length))
return -EINVAL;
return 0;
}
bool crypt_cipher_kernel_only(struct crypt_cipher *ctx)
{
return ctx->use_kernel;
}
int crypt_bitlk_decrypt_key(const void *key, size_t key_length,
const char *in, char *out, size_t length,
const char *iv, size_t iv_length,
const char *tag, size_t tag_length)
{
#ifdef GCRY_CCM_BLOCK_LEN
gcry_cipher_hd_t hd;
uint64_t l[3];
int r = -EINVAL;
if (gcry_cipher_open(&hd, GCRY_CIPHER_AES256, GCRY_CIPHER_MODE_CCM, 0))
return -EINVAL;
if (gcry_cipher_setkey(hd, key, key_length))
goto out;
if (gcry_cipher_setiv(hd, iv, iv_length))
goto out;
l[0] = length;
l[1] = 0;
l[2] = tag_length;
if (gcry_cipher_ctl(hd, GCRYCTL_SET_CCM_LENGTHS, l, sizeof(l)))
goto out;
if (gcry_cipher_decrypt(hd, out, length, in, length))
goto out;
if (gcry_cipher_checktag(hd, tag, tag_length))
goto out;
r = 0;
out:
gcry_cipher_close(hd);
return r;
#else
return -ENOTSUP;
#endif
}
int crypt_backend_memeq(const void *m1, const void *m2, size_t n)
{
return crypt_internal_memeq(m1, m2, n);
}
#if !ENABLE_FIPS
bool crypt_fips_mode(void) { return false; }
#else
bool crypt_fips_mode(void)
{
static bool fips_mode = false, fips_checked = false;
if (fips_checked)
return fips_mode;
if (crypt_backend_init(false /* ignored */))
return false;
fips_mode = gcry_fips_mode_active();
fips_checked = true;
return fips_mode;
}
#endif /* ENABLE FIPS */