1
0
Fork 0
cryptsetup/lib/crypto_backend/crypto_nss.c
Daniel Baumann 309c0fd158
Adding upstream version 2:2.7.5.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 10:45:47 +02:00

393 lines
7.8 KiB
C

// SPDX-License-Identifier: LGPL-2.1-or-later
/*
* NSS crypto backend implementation
*
* Copyright (C) 2010-2024 Red Hat, Inc. All rights reserved.
* Copyright (C) 2010-2024 Milan Broz
*/
#include <stdio.h>
#include <errno.h>
#include <nss.h>
#include <pk11pub.h>
#include "crypto_backend_internal.h"
#define CONST_CAST(x) (x)(uintptr_t)
static int crypto_backend_initialised = 0;
static char version[64];
struct hash_alg {
const char *name;
SECOidTag oid;
CK_MECHANISM_TYPE ck_type;
int length;
unsigned int block_length;
};
static struct hash_alg hash_algs[] = {
{ "sha1", SEC_OID_SHA1, CKM_SHA_1_HMAC, 20, 64 },
{ "sha256", SEC_OID_SHA256, CKM_SHA256_HMAC, 32, 64 },
{ "sha384", SEC_OID_SHA384, CKM_SHA384_HMAC, 48, 128 },
{ "sha512", SEC_OID_SHA512, CKM_SHA512_HMAC, 64, 128 },
// { "ripemd160", SEC_OID_RIPEMD160, CKM_RIPEMD160_HMAC, 20, 64 },
{ NULL, 0, 0, 0 }
};
struct crypt_hash {
PK11Context *md;
const struct hash_alg *hash;
};
struct crypt_hmac {
PK11Context *md;
PK11SymKey *key;
PK11SlotInfo *slot;
const struct hash_alg *hash;
};
struct crypt_cipher {
struct crypt_cipher_kernel ck;
};
static struct hash_alg *_get_alg(const char *name)
{
int i = 0;
while (name && hash_algs[i].name) {
if (!strcmp(name, hash_algs[i].name))
return &hash_algs[i];
i++;
}
return NULL;
}
int crypt_backend_init(bool fips __attribute__((unused)))
{
int r;
if (crypto_backend_initialised)
return 0;
if (NSS_NoDB_Init(".") != SECSuccess)
return -EINVAL;
#if HAVE_DECL_NSS_GETVERSION
r = snprintf(version, sizeof(version), "NSS %s", NSS_GetVersion());
#else
r = snprintf(version, sizeof(version), "NSS");
#endif
if (r < 0 || (size_t)r >= sizeof(version))
return -EINVAL;
crypto_backend_initialised = 1;
return 0;
}
void crypt_backend_destroy(void)
{
crypto_backend_initialised = 0;
}
uint32_t crypt_backend_flags(void)
{
return 0;
}
const char *crypt_backend_version(void)
{
return crypto_backend_initialised ? version : "";
}
/* HASH */
int crypt_hash_size(const char *name)
{
struct hash_alg *ha = _get_alg(name);
return ha ? ha->length : -EINVAL;
}
int crypt_hash_init(struct crypt_hash **ctx, const char *name)
{
struct crypt_hash *h;
h = malloc(sizeof(*h));
if (!h)
return -ENOMEM;
h->hash = _get_alg(name);
if (!h->hash) {
free(h);
return -EINVAL;
}
h->md = PK11_CreateDigestContext(h->hash->oid);
if (!h->md) {
free(h);
return -EINVAL;
}
if (PK11_DigestBegin(h->md) != SECSuccess) {
PK11_DestroyContext(h->md, PR_TRUE);
free(h);
return -EINVAL;
}
*ctx = h;
return 0;
}
static int crypt_hash_restart(struct crypt_hash *ctx)
{
if (PK11_DigestBegin(ctx->md) != SECSuccess)
return -EINVAL;
return 0;
}
int crypt_hash_write(struct crypt_hash *ctx, const char *buffer, size_t length)
{
if (PK11_DigestOp(ctx->md, CONST_CAST(unsigned char *)buffer, length) != SECSuccess)
return -EINVAL;
return 0;
}
int crypt_hash_final(struct crypt_hash *ctx, char *buffer, size_t length)
{
unsigned char tmp[64];
unsigned int tmp_len;
if (length > (size_t)ctx->hash->length)
return -EINVAL;
if (PK11_DigestFinal(ctx->md, tmp, &tmp_len, length) != SECSuccess)
return -EINVAL;
memcpy(buffer, tmp, length);
crypt_backend_memzero(tmp, sizeof(tmp));
if (tmp_len < length)
return -EINVAL;
if (crypt_hash_restart(ctx))
return -EINVAL;
return 0;
}
void crypt_hash_destroy(struct crypt_hash *ctx)
{
PK11_DestroyContext(ctx->md, PR_TRUE);
memset(ctx, 0, sizeof(*ctx));
free(ctx);
}
/* HMAC */
int crypt_hmac_size(const char *name)
{
return crypt_hash_size(name);
}
int crypt_hmac_init(struct crypt_hmac **ctx, const char *name,
const void *key, size_t key_length)
{
struct crypt_hmac *h;
SECItem keyItem;
SECItem noParams;
keyItem.type = siBuffer;
keyItem.data = CONST_CAST(unsigned char *)key;
keyItem.len = (int)key_length;
noParams.type = siBuffer;
noParams.data = 0;
noParams.len = 0;
h = malloc(sizeof(*h));
if (!h)
return -ENOMEM;
memset(h, 0, sizeof(*h));
h->hash = _get_alg(name);
if (!h->hash)
goto err;
h->slot = PK11_GetInternalKeySlot();
if (!h->slot)
goto err;
h->key = PK11_ImportSymKey(h->slot, h->hash->ck_type, PK11_OriginUnwrap,
CKA_SIGN, &keyItem, NULL);
if (!h->key)
goto err;
h->md = PK11_CreateContextBySymKey(h->hash->ck_type, CKA_SIGN, h->key,
&noParams);
if (!h->md)
goto err;
if (PK11_DigestBegin(h->md) != SECSuccess)
goto err;
*ctx = h;
return 0;
err:
crypt_hmac_destroy(h);
return -EINVAL;
}
static int crypt_hmac_restart(struct crypt_hmac *ctx)
{
if (PK11_DigestBegin(ctx->md) != SECSuccess)
return -EINVAL;
return 0;
}
int crypt_hmac_write(struct crypt_hmac *ctx, const char *buffer, size_t length)
{
if (PK11_DigestOp(ctx->md, CONST_CAST(unsigned char *)buffer, length) != SECSuccess)
return -EINVAL;
return 0;
}
int crypt_hmac_final(struct crypt_hmac *ctx, char *buffer, size_t length)
{
unsigned char tmp[64];
unsigned int tmp_len;
if (length > (size_t)ctx->hash->length)
return -EINVAL;
if (PK11_DigestFinal(ctx->md, tmp, &tmp_len, length) != SECSuccess)
return -EINVAL;
memcpy(buffer, tmp, length);
crypt_backend_memzero(tmp, sizeof(tmp));
if (tmp_len < length)
return -EINVAL;
if (crypt_hmac_restart(ctx))
return -EINVAL;
return 0;
}
void crypt_hmac_destroy(struct crypt_hmac *ctx)
{
if (ctx->key)
PK11_FreeSymKey(ctx->key);
if (ctx->slot)
PK11_FreeSlot(ctx->slot);
if (ctx->md)
PK11_DestroyContext(ctx->md, PR_TRUE);
memset(ctx, 0, sizeof(*ctx));
free(ctx);
}
/* RNG */
int crypt_backend_rng(char *buffer, size_t length, int quality __attribute__((unused)), int fips)
{
if (fips)
return -EINVAL;
if (PK11_GenerateRandom((unsigned char *)buffer, length) != SECSuccess)
return -EINVAL;
return 0;
}
/* PBKDF */
int crypt_pbkdf(const char *kdf, const char *hash,
const char *password, size_t password_length,
const char *salt, size_t salt_length,
char *key, size_t key_length,
uint32_t iterations, uint32_t memory, uint32_t parallel)
{
struct hash_alg *ha;
if (!kdf)
return -EINVAL;
if (!strcmp(kdf, "pbkdf2")) {
ha = _get_alg(hash);
if (!ha)
return -EINVAL;
return pkcs5_pbkdf2(hash, password, password_length, salt, salt_length,
iterations, key_length, key, ha->block_length);
} else if (!strncmp(kdf, "argon2", 6)) {
return argon2(kdf, password, password_length, salt, salt_length,
key, key_length, iterations, memory, parallel);
}
return -EINVAL;
}
/* Block ciphers */
int crypt_cipher_init(struct crypt_cipher **ctx, const char *name,
const char *mode, const void *key, size_t key_length)
{
struct crypt_cipher *h;
int r;
h = malloc(sizeof(*h));
if (!h)
return -ENOMEM;
r = crypt_cipher_init_kernel(&h->ck, name, mode, key, key_length);
if (r < 0) {
free(h);
return r;
}
*ctx = h;
return 0;
}
void crypt_cipher_destroy(struct crypt_cipher *ctx)
{
crypt_cipher_destroy_kernel(&ctx->ck);
free(ctx);
}
int crypt_cipher_encrypt(struct crypt_cipher *ctx,
const char *in, char *out, size_t length,
const char *iv, size_t iv_length)
{
return crypt_cipher_encrypt_kernel(&ctx->ck, in, out, length, iv, iv_length);
}
int crypt_cipher_decrypt(struct crypt_cipher *ctx,
const char *in, char *out, size_t length,
const char *iv, size_t iv_length)
{
return crypt_cipher_decrypt_kernel(&ctx->ck, in, out, length, iv, iv_length);
}
bool crypt_cipher_kernel_only(struct crypt_cipher *ctx __attribute__((unused)))
{
return true;
}
int crypt_bitlk_decrypt_key(const void *key, size_t key_length,
const char *in, char *out, size_t length,
const char *iv, size_t iv_length,
const char *tag, size_t tag_length)
{
return crypt_bitlk_decrypt_key_kernel(key, key_length, in, out, length,
iv, iv_length, tag, tag_length);
}
int crypt_backend_memeq(const void *m1, const void *m2, size_t n)
{
return NSS_SecureMemcmp(m1, m2, n);
}
bool crypt_fips_mode(void)
{
return false;
}