160 lines
4.1 KiB
C
160 lines
4.1 KiB
C
// SPDX-License-Identifier: LGPL-2.1-or-later
|
|
/*
|
|
* Reed-Solomon encoder, based on libfec
|
|
*
|
|
* Copyright (C) 2002, Phil Karn, KA9Q
|
|
* libcryptsetup modifications
|
|
* Copyright (C) 2017-2024 Red Hat, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "rs.h"
|
|
|
|
/* Initialize a Reed-Solomon codec
|
|
* symsize = symbol size, bits
|
|
* gfpoly = Field generator polynomial coefficients
|
|
* fcr = first root of RS code generator polynomial, index form
|
|
* prim = primitive element to generate polynomial roots
|
|
* nroots = RS code generator polynomial degree (number of roots)
|
|
* pad = padding bytes at front of shortened block
|
|
*/
|
|
struct rs *init_rs_char(int symsize, int gfpoly, int fcr, int prim, int nroots, int pad)
|
|
{
|
|
struct rs *rs;
|
|
int i, j, sr, root, iprim;
|
|
|
|
/* Check parameter ranges */
|
|
if (symsize < 0 || symsize > 8 * (int)sizeof(data_t))
|
|
return NULL;
|
|
if (fcr < 0 || fcr >= (1<<symsize))
|
|
return NULL;
|
|
if (prim <= 0 || prim >= (1<<symsize))
|
|
return NULL;
|
|
if (nroots < 0 || nroots >= (1<<symsize))
|
|
return NULL; /* Can't have more roots than symbol values! */
|
|
|
|
if (pad < 0 || pad >= ((1<<symsize) - 1 - nroots))
|
|
return NULL; /* Too much padding */
|
|
|
|
rs = calloc(1, sizeof(struct rs));
|
|
if (rs == NULL)
|
|
return NULL;
|
|
|
|
rs->mm = symsize;
|
|
rs->nn = (1<<symsize) - 1;
|
|
rs->pad = pad;
|
|
|
|
rs->alpha_to = malloc(sizeof(data_t) * (rs->nn + 1));
|
|
if (rs->alpha_to == NULL) {
|
|
free(rs);
|
|
return NULL;
|
|
}
|
|
rs->index_of = malloc(sizeof(data_t) * (rs->nn + 1));
|
|
if (rs->index_of == NULL) {
|
|
free(rs->alpha_to);
|
|
free(rs);
|
|
return NULL;
|
|
}
|
|
memset(rs->index_of, 0, sizeof(data_t) * (rs->nn + 1));
|
|
|
|
/* Generate Galois field lookup tables */
|
|
rs->index_of[0] = A0; /* log(zero) = -inf */
|
|
rs->alpha_to[A0] = 0; /* alpha**-inf = 0 */
|
|
sr = 1;
|
|
for (i = 0; i < rs->nn; i++) {
|
|
rs->index_of[sr] = i;
|
|
rs->alpha_to[i] = sr;
|
|
sr <<= 1;
|
|
if(sr & (1<<symsize))
|
|
sr ^= gfpoly;
|
|
sr &= rs->nn;
|
|
}
|
|
if (sr != 1) {
|
|
/* field generator polynomial is not primitive! */
|
|
free(rs->alpha_to);
|
|
free(rs->index_of);
|
|
free(rs);
|
|
return NULL;
|
|
}
|
|
|
|
/* Form RS code generator polynomial from its roots */
|
|
rs->genpoly = malloc(sizeof(data_t) * (nroots + 1));
|
|
if (rs->genpoly == NULL) {
|
|
free(rs->alpha_to);
|
|
free(rs->index_of);
|
|
free(rs);
|
|
return NULL;
|
|
}
|
|
|
|
rs->fcr = fcr;
|
|
rs->prim = prim;
|
|
rs->nroots = nroots;
|
|
|
|
/* Find prim-th root of 1, used in decoding */
|
|
for (iprim = 1; (iprim % prim) != 0; iprim += rs->nn)
|
|
;
|
|
rs->iprim = iprim / prim;
|
|
|
|
rs->genpoly[0] = 1;
|
|
for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
|
|
rs->genpoly[i + 1] = 1;
|
|
|
|
/* Multiply rs->genpoly[] by @**(root + x) */
|
|
for (j = i; j > 0; j--){
|
|
if (rs->genpoly[j] != 0)
|
|
rs->genpoly[j] = rs->genpoly[j - 1] ^ rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[j]] + root)];
|
|
else
|
|
rs->genpoly[j] = rs->genpoly[j - 1];
|
|
}
|
|
/* rs->genpoly[0] can never be zero */
|
|
rs->genpoly[0] = rs->alpha_to[modnn(rs, rs->index_of[rs->genpoly[0]] + root)];
|
|
}
|
|
/* convert rs->genpoly[] to index form for quicker encoding */
|
|
for (i = 0; i <= nroots; i++)
|
|
rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
|
|
|
|
return rs;
|
|
}
|
|
|
|
void free_rs_char(struct rs *rs)
|
|
{
|
|
if (!rs)
|
|
return;
|
|
|
|
free(rs->alpha_to);
|
|
free(rs->index_of);
|
|
free(rs->genpoly);
|
|
free(rs);
|
|
}
|
|
|
|
void encode_rs_char(struct rs *rs, data_t *data, data_t *parity)
|
|
{
|
|
int i, j;
|
|
data_t feedback;
|
|
|
|
memset(parity, 0, rs->nroots * sizeof(data_t));
|
|
|
|
for (i = 0; i < rs->nn - rs->nroots - rs->pad; i++) {
|
|
feedback = rs->index_of[data[i] ^ parity[0]];
|
|
if (feedback != A0) {
|
|
/* feedback term is non-zero */
|
|
#ifdef UNNORMALIZED
|
|
/* This line is unnecessary when GENPOLY[NROOTS] is unity, as it must
|
|
* always be for the polynomials constructed by init_rs() */
|
|
feedback = modnn(rs, rs->nn - rs->genpoly[rs->nroots] + feedback);
|
|
#endif
|
|
for (j = 1; j < rs->nroots; j++)
|
|
parity[j] ^= rs->alpha_to[modnn(rs, feedback + rs->genpoly[rs->nroots - j])];
|
|
}
|
|
|
|
/* Shift */
|
|
memmove(&parity[0], &parity[1], sizeof(data_t) * (rs->nroots - 1));
|
|
|
|
if (feedback != A0)
|
|
parity[rs->nroots - 1] = rs->alpha_to[modnn(rs, feedback + rs->genpoly[0])];
|
|
else
|
|
parity[rs->nroots - 1] = 0;
|
|
}
|
|
}
|