1
0
Fork 0
cryptsetup/lib/verity/verity_fec.c
Daniel Baumann 309c0fd158
Adding upstream version 2:2.7.5.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 10:45:47 +02:00

323 lines
8.4 KiB
C

// SPDX-License-Identifier: LGPL-2.1-or-later
/*
* dm-verity Forward Error Correction (FEC) support
*
* Copyright (C) 2015 Google, Inc. All rights reserved.
* Copyright (C) 2017-2024 Red Hat, Inc. All rights reserved.
*/
#include <stdlib.h>
#include <errno.h>
#include "verity.h"
#include "internal.h"
#include "rs.h"
/* ecc parameters */
#define FEC_RSM 255
#define FEC_MIN_RSN 231
#define FEC_MAX_RSN 253
#define FEC_INPUT_DEVICES 2
/* parameters to init_rs_char */
#define FEC_PARAMS(roots) \
8, /* symbol size in bits */ \
0x11d, /* field generator polynomial coefficients */ \
0, /* first root of the generator */ \
1, /* primitive element to generate polynomial roots */ \
(roots), /* polynomial degree (number of roots) */ \
0 /* padding bytes at the front of shortened block */
struct fec_input_device {
struct device *device;
int fd;
uint64_t start;
uint64_t count;
};
struct fec_context {
uint32_t rsn;
uint32_t roots;
uint64_t size;
uint64_t blocks;
uint64_t rounds;
uint32_t block_size;
struct fec_input_device *inputs;
size_t ninputs;
};
/* computes ceil(x / y) */
static inline uint64_t FEC_div_round_up(uint64_t x, uint64_t y)
{
return (x / y) + (x % y > 0 ? 1 : 0);
}
/* returns a physical offset for the given RS offset */
static inline uint64_t FEC_interleave(struct fec_context *ctx, uint64_t offset)
{
return (offset / ctx->rsn) +
(offset % ctx->rsn) * ctx->rounds * ctx->block_size;
}
/* returns data for a byte at the specified RS offset */
static int FEC_read_interleaved(struct fec_context *ctx, uint64_t i,
void *output, size_t count)
{
size_t n;
uint64_t offset = FEC_interleave(ctx, i);
/* offsets outside input area are assumed to contain zeros */
if (offset >= ctx->size) {
memset(output, 0, count);
return 0;
}
/* find the correct input device and read from it */
for (n = 0; n < ctx->ninputs; ++n) {
if (offset >= ctx->inputs[n].count) {
offset -= ctx->inputs[n].count;
continue;
}
/* FIXME: read_lseek_blockwise candidate */
if (lseek(ctx->inputs[n].fd, ctx->inputs[n].start + offset, SEEK_SET) < 0)
return -1;
return (read_buffer(ctx->inputs[n].fd, output, count) == (ssize_t)count) ? 0 : -1;
}
/* should never be reached */
return -1;
}
/* encodes/decode inputs to/from fd */
static int FEC_process_inputs(struct crypt_device *cd,
struct crypt_params_verity *params,
struct fec_input_device *inputs,
size_t ninputs, int fd,
int decode, unsigned int *errors)
{
int r = 0;
unsigned int i;
struct fec_context ctx;
uint32_t b;
uint64_t n;
uint8_t rs_block[FEC_RSM];
uint8_t *buf = NULL;
void *rs;
/* initialize parameters */
ctx.roots = params->fec_roots;
ctx.rsn = FEC_RSM - ctx.roots;
ctx.block_size = params->data_block_size;
ctx.inputs = inputs;
ctx.ninputs = ninputs;
rs = init_rs_char(FEC_PARAMS(ctx.roots));
if (!rs) {
log_err(cd, _("Failed to allocate RS context."));
return -ENOMEM;
}
/* calculate the total area covered by error correction codes */
ctx.size = 0;
for (n = 0; n < ctx.ninputs; ++n) {
log_dbg(cd, "FEC input %s, offset %" PRIu64 " [bytes], length %" PRIu64 " [bytes]",
device_path(ctx.inputs[n].device), ctx.inputs[n].start, ctx.inputs[n].count);
ctx.size += ctx.inputs[n].count;
}
/* each byte in a data block is covered by a different code */
ctx.blocks = FEC_div_round_up(ctx.size, ctx.block_size);
ctx.rounds = FEC_div_round_up(ctx.blocks, ctx.rsn);
buf = malloc((size_t)ctx.block_size * ctx.rsn);
if (!buf) {
log_err(cd, _("Failed to allocate buffer."));
r = -ENOMEM;
goto out;
}
/* encode/decode input */
for (n = 0; n < ctx.rounds; ++n) {
for (i = 0; i < ctx.rsn; ++i) {
if (FEC_read_interleaved(&ctx, n * ctx.rsn * ctx.block_size + i,
&buf[i * ctx.block_size], ctx.block_size)) {
log_err(cd, _("Failed to read RS block %" PRIu64 " byte %d."), n, i);
r = -EIO;
goto out;
}
}
for (b = 0; b < ctx.block_size; ++b) {
for (i = 0; i < ctx.rsn; ++i)
rs_block[i] = buf[i * ctx.block_size + b];
/* decoding from parity device */
if (decode) {
if (read_buffer(fd, &rs_block[ctx.rsn], ctx.roots) < 0) {
log_err(cd, _("Failed to read parity for RS block %" PRIu64 "."), n);
r = -EIO;
goto out;
}
/* coverity[tainted_data] */
r = decode_rs_char(rs, rs_block);
if (r < 0) {
log_err(cd, _("Failed to repair parity for block %" PRIu64 "."), n);
r = -EPERM;
goto out;
}
/* return number of detected errors */
if (errors)
*errors += r;
r = 0;
} else {
/* encoding and writing parity data to fec device */
encode_rs_char(rs, rs_block, &rs_block[ctx.rsn]);
if (write_buffer(fd, &rs_block[ctx.rsn], ctx.roots) < 0) {
log_err(cd, _("Failed to write parity for RS block %" PRIu64 "."), n);
r = -EIO;
goto out;
}
}
}
}
out:
free_rs_char(rs);
free(buf);
return r;
}
static int VERITY_FEC_validate(struct crypt_device *cd, struct crypt_params_verity *params)
{
if (params->data_block_size != params->hash_block_size) {
log_err(cd, _("Block sizes must match for FEC."));
return -EINVAL;
}
if (params->fec_roots > FEC_RSM - FEC_MIN_RSN ||
params->fec_roots < FEC_RSM - FEC_MAX_RSN) {
log_err(cd, _("Invalid number of parity bytes."));
return -EINVAL;
}
return 0;
}
int VERITY_FEC_process(struct crypt_device *cd,
struct crypt_params_verity *params,
struct device *fec_device, int check_fec,
unsigned int *errors)
{
int r = -EIO, fd = -1;
size_t ninputs = FEC_INPUT_DEVICES;
struct fec_input_device inputs[FEC_INPUT_DEVICES] = {
{
.device = crypt_data_device(cd),
.fd = -1,
.start = 0,
.count = params->data_size * params->data_block_size
},{
.device = crypt_metadata_device(cd),
.fd = -1,
.start = VERITY_hash_offset_block(params) * params->data_block_size,
.count = (VERITY_FEC_blocks(cd, fec_device, params) - params->data_size) * params->data_block_size
}
};
/* validate parameters */
r = VERITY_FEC_validate(cd, params);
if (r < 0)
return r;
if (!inputs[0].count) {
log_err(cd, _("Invalid FEC segment length."));
return -EINVAL;
}
if (!inputs[1].count)
ninputs--;
if (check_fec)
fd = open(device_path(fec_device), O_RDONLY);
else
fd = open(device_path(fec_device), O_RDWR);
if (fd == -1) {
log_err(cd, _("Cannot open device %s."), device_path(fec_device));
goto out;
}
if (lseek(fd, params->fec_area_offset, SEEK_SET) < 0) {
log_dbg(cd, "Cannot seek to requested position in FEC device.");
goto out;
}
/* input devices */
inputs[0].fd = open(device_path(inputs[0].device), O_RDONLY);
if (inputs[0].fd == -1) {
log_err(cd, _("Cannot open device %s."), device_path(inputs[0].device));
goto out;
}
inputs[1].fd = open(device_path(inputs[1].device), O_RDONLY);
if (inputs[1].fd == -1) {
log_err(cd, _("Cannot open device %s."), device_path(inputs[1].device));
goto out;
}
r = FEC_process_inputs(cd, params, inputs, ninputs, fd, check_fec, errors);
out:
if (inputs[0].fd != -1)
close(inputs[0].fd);
if (inputs[1].fd != -1)
close(inputs[1].fd);
if (fd != -1)
close(fd);
return r;
}
/* All blocks that are covered by FEC */
uint64_t VERITY_FEC_blocks(struct crypt_device *cd,
struct device *fec_device,
struct crypt_params_verity *params)
{
uint64_t blocks = 0;
if (!fec_device || VERITY_FEC_validate(cd, params) < 0)
return 0;
/*
* FEC covers this data:
* | protected data | hash area | padding (optional foreign metadata) |
*
* If hash device is in a separate image, metadata covers the whole rest of the image after hash area.
* If hash and FEC device is in the image, metadata ends on the FEC area offset.
*/
if (device_is_identical(crypt_metadata_device(cd), fec_device) > 0) {
log_dbg(cd, "FEC and hash device is the same.");
blocks = params->fec_area_offset;
} else {
/* cover the entire hash device starting from hash_offset */
if (device_size(crypt_metadata_device(cd), &blocks)) {
log_err(cd, _("Failed to determine size for device %s."),
device_path(crypt_metadata_device(cd)));
return 0;
}
}
blocks /= params->data_block_size;
if (blocks)
blocks -= VERITY_hash_offset_block(params);
/* Protected data */
blocks += params->data_size;
return blocks;
}
/* Blocks needed to store FEC data, blocks must be validated/calculated by VERITY_FEC_blocks() */
uint64_t VERITY_FEC_RS_blocks(uint64_t blocks, uint32_t roots)
{
return FEC_div_round_up(blocks, FEC_RSM - roots) * roots;
}