1
0
Fork 0
cryptsetup/lib/crypto_backend/pbkdf2_generic.c
Daniel Baumann 309c0fd158
Adding upstream version 2:2.7.5.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 10:45:47 +02:00

218 lines
6 KiB
C

// SPDX-License-Identifier: LGPL-2.1-or-later
/*
* Implementation of Password-Based Cryptography as per PKCS#5
* Copyright (C) 2002,2003 Simon Josefsson
* Copyright (C) 2004 Free Software Foundation
*
* cryptsetup related changes
* Copyright (C) 2012-2024 Red Hat, Inc. All rights reserved.
* Copyright (C) 2012-2024 Milan Broz
*/
#include <errno.h>
#include <alloca.h>
#include "crypto_backend_internal.h"
static int hash_buf(const char *src, size_t src_len,
char *dst, size_t dst_len,
const char *hash_name)
{
struct crypt_hash *hd = NULL;
int r;
if (crypt_hash_init(&hd, hash_name))
return -EINVAL;
r = crypt_hash_write(hd, src, src_len);
if (!r)
r = crypt_hash_final(hd, dst, dst_len);
crypt_hash_destroy(hd);
return r;
}
/*
* 5.2 PBKDF2
*
* PBKDF2 applies a pseudorandom function (see Appendix B.1 for an
* example) to derive keys. The length of the derived key is essentially
* unbounded. (However, the maximum effective search space for the
* derived key may be limited by the structure of the underlying
* pseudorandom function. See Appendix B.1 for further discussion.)
* PBKDF2 is recommended for new applications.
*
* PBKDF2 (P, S, c, dkLen)
*
* Options: PRF underlying pseudorandom function (hLen
* denotes the length in octets of the
* pseudorandom function output)
*
* Input: P password, an octet string (ASCII or UTF-8)
* S salt, an octet string
* c iteration count, a positive integer
* dkLen intended length in octets of the derived
* key, a positive integer, at most
* (2^32 - 1) * hLen
*
* Output: DK derived key, a dkLen-octet string
*/
/*
* if hash_block_size is not zero, the HMAC key is pre-hashed
* inside this function.
* This prevents situation when crypto backend doesn't support
* long HMAC keys or it tries hash long key in every iteration
* (because of crypt_final() cannot do simple key reset.
*/
#define MAX_PRF_BLOCK_LEN 80
int pkcs5_pbkdf2(const char *hash,
const char *P, size_t Plen,
const char *S, size_t Slen,
unsigned int c, unsigned int dkLen,
char *DK, unsigned int hash_block_size)
{
struct crypt_hmac *hmac;
char U[MAX_PRF_BLOCK_LEN];
char T[MAX_PRF_BLOCK_LEN];
char P_hash[MAX_PRF_BLOCK_LEN];
int i, k, rc = -EINVAL;
unsigned int u, hLen, l, r;
size_t tmplen = Slen + 4;
char *tmp;
tmp = alloca(tmplen);
if (tmp == NULL)
return -ENOMEM;
hLen = crypt_hmac_size(hash);
if (hLen == 0 || hLen > MAX_PRF_BLOCK_LEN)
return -EINVAL;
if (c == 0)
return -EINVAL;
if (dkLen == 0)
return -EINVAL;
/*
*
* Steps:
*
* 1. If dkLen > (2^32 - 1) * hLen, output "derived key too long" and
* stop.
*/
if (dkLen > 4294967295U)
return -EINVAL;
/*
* 2. Let l be the number of hLen-octet blocks in the derived key,
* rounding up, and let r be the number of octets in the last
* block:
*
* l = CEIL (dkLen / hLen) ,
* r = dkLen - (l - 1) * hLen .
*
* Here, CEIL (x) is the "ceiling" function, i.e. the smallest
* integer greater than, or equal to, x.
*/
l = dkLen / hLen;
if (dkLen % hLen)
l++;
r = dkLen - (l - 1) * hLen;
/*
* 3. For each block of the derived key apply the function F defined
* below to the password P, the salt S, the iteration count c, and
* the block index to compute the block:
*
* T_1 = F (P, S, c, 1) ,
* T_2 = F (P, S, c, 2) ,
* ...
* T_l = F (P, S, c, l) ,
*
* where the function F is defined as the exclusive-or sum of the
* first c iterates of the underlying pseudorandom function PRF
* applied to the password P and the concatenation of the salt S
* and the block index i:
*
* F (P, S, c, i) = U_1 \xor U_2 \xor ... \xor U_c
*
* where
*
* U_1 = PRF (P, S || INT (i)) ,
* U_2 = PRF (P, U_1) ,
* ...
* U_c = PRF (P, U_{c-1}) .
*
* Here, INT (i) is a four-octet encoding of the integer i, most
* significant octet first.
*
* 4. Concatenate the blocks and extract the first dkLen octets to
* produce a derived key DK:
*
* DK = T_1 || T_2 || ... || T_l<0..r-1>
*
* 5. Output the derived key DK.
*
* Note. The construction of the function F follows a "belt-and-
* suspenders" approach. The iterates U_i are computed recursively to
* remove a degree of parallelism from an opponent; they are exclusive-
* ored together to reduce concerns about the recursion degenerating
* into a small set of values.
*
*/
/* If hash_block_size is provided, hash password in advance. */
if (hash_block_size > 0 && Plen > hash_block_size) {
if (hash_buf(P, Plen, P_hash, hLen, hash))
return -EINVAL;
if (crypt_hmac_init(&hmac, hash, P_hash, hLen))
return -EINVAL;
crypt_backend_memzero(P_hash, sizeof(P_hash));
} else {
if (crypt_hmac_init(&hmac, hash, P, Plen))
return -EINVAL;
}
for (i = 1; (unsigned int) i <= l; i++) {
memset(T, 0, hLen);
for (u = 1; u <= c ; u++) {
if (u == 1) {
memcpy(tmp, S, Slen);
tmp[Slen + 0] = (i & 0xff000000) >> 24;
tmp[Slen + 1] = (i & 0x00ff0000) >> 16;
tmp[Slen + 2] = (i & 0x0000ff00) >> 8;
tmp[Slen + 3] = (i & 0x000000ff) >> 0;
if (crypt_hmac_write(hmac, tmp, tmplen))
goto out;
} else {
if (crypt_hmac_write(hmac, U, hLen))
goto out;
}
if (crypt_hmac_final(hmac, U, hLen))
goto out;
for (k = 0; (unsigned int) k < hLen; k++)
T[k] ^= U[k];
}
memcpy(DK + (i - 1) * hLen, T, (unsigned int) i == l ? r : hLen);
}
rc = 0;
out:
crypt_hmac_destroy(hmac);
crypt_backend_memzero(U, sizeof(U));
crypt_backend_memzero(T, sizeof(T));
crypt_backend_memzero(tmp, tmplen);
return rc;
}