/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "SVGPathData.h" #include "gfx2DGlue.h" #include "gfxPlatform.h" #include "mozilla/dom/SVGPathSegment.h" #include "mozilla/gfx/2D.h" #include "mozilla/gfx/Types.h" #include "mozilla/gfx/Point.h" #include "mozilla/RefPtr.h" #include "nsError.h" #include "nsString.h" #include "SVGArcConverter.h" #include "nsStyleConsts.h" #include "SVGContentUtils.h" #include "SVGGeometryElement.h" #include "SVGPathSegUtils.h" #include using namespace mozilla::gfx; namespace mozilla { nsresult SVGPathData::SetValueFromString(const nsACString& aValue) { // We don't use a temp variable since the spec says to parse everything up to // the first error. We still return any error though so that callers know if // there's a problem. bool ok = Servo_SVGPathData_Parse(&aValue, &mData); return ok ? NS_OK : NS_ERROR_DOM_SYNTAX_ERR; } void SVGPathData::GetValueAsString(nsACString& aValue) const { Servo_SVGPathData_ToString(&mData, &aValue); } bool SVGPathData::GetDistancesFromOriginToEndsOfVisibleSegments( FallibleTArray* aOutput) const { return GetDistancesFromOriginToEndsOfVisibleSegments(AsSpan(), aOutput); } /* static */ bool SVGPathData::GetDistancesFromOriginToEndsOfVisibleSegments( Span aPath, FallibleTArray* aOutput) { SVGPathTraversalState state; aOutput->Clear(); bool firstMoveToIsChecked = false; for (const auto& cmd : aPath) { SVGPathSegUtils::TraversePathSegment(cmd, state); if (!std::isfinite(state.length)) { return false; } // We skip all moveto commands except for the initial moveto. if (!cmd.IsMove() || !firstMoveToIsChecked) { if (!aOutput->AppendElement(state.length, fallible)) { return false; } } if (cmd.IsMove() && !firstMoveToIsChecked) { firstMoveToIsChecked = true; } } return true; } /* static */ already_AddRefed SVGPathData::GetPathSegmentAtLength( dom::SVGPathElement* aPathElement, Span aPath, float aDistance) { SVGPathTraversalState state; for (const auto& cmd : aPath) { SVGPathSegUtils::TraversePathSegment(cmd, state); if (state.length >= aDistance) { return do_AddRef(new dom::SVGPathSegment(aPathElement, cmd)); } } return nullptr; } /** * The SVG spec says we have to paint stroke caps for zero length subpaths: * * http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes * * Cairo only does this for |stroke-linecap: round| and not for * |stroke-linecap: square| (since that's what Adobe Acrobat has always done). * Most likely the other backends that DrawTarget uses have the same behavior. * * To help us conform to the SVG spec we have this helper function to draw an * approximation of square caps for zero length subpaths. It does this by * inserting a subpath containing a single user space axis aligned straight * line that is as small as it can be while minimizing the risk of it being * thrown away by the DrawTarget's backend for being too small to affect * rendering. The idea is that we'll then get stroke caps drawn for this axis * aligned line, creating an axis aligned rectangle that approximates the * square that would ideally be drawn. * * Since we don't have any information about transforms from user space to * device space, we choose the length of the small line that we insert by * making it a small percentage of the stroke width of the path. This should * hopefully allow us to make the line as long as possible (to avoid rounding * issues in the backend resulting in the backend seeing it as having zero * length) while still avoiding the small rectangle being noticeably different * from a square. * * Note that this function inserts a subpath into the current gfx path that * will be present during both fill and stroke operations. */ static void ApproximateZeroLengthSubpathSquareCaps(PathBuilder* aPB, const Point& aPoint, Float aStrokeWidth) { // Note that caps are proportional to stroke width, so if stroke width is // zero it's actually fine for |tinyLength| below to end up being zero. // However, it would be a waste to inserting a LineTo in that case, so better // not to. MOZ_ASSERT(aStrokeWidth > 0.0f, "Make the caller check for this, or check it here"); // The fraction of the stroke width that we choose for the length of the // line is rather arbitrary, other than being chosen to meet the requirements // described in the comment above. Float tinyLength = aStrokeWidth / SVG_ZERO_LENGTH_PATH_FIX_FACTOR; aPB->LineTo(aPoint + Point(tinyLength, 0)); aPB->MoveTo(aPoint); } #define MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT \ do { \ if (!subpathHasLength && hasLineCaps && aStrokeWidth > 0 && \ subpathContainsNonMoveTo && IsValidType(prevSegType) && \ (!IsMoveto(prevSegType) || IsClosePath(segType))) { \ ApproximateZeroLengthSubpathSquareCaps(aBuilder, segStart, \ aStrokeWidth); \ } \ } while (0) already_AddRefed SVGPathData::BuildPath(PathBuilder* aBuilder, StyleStrokeLinecap aStrokeLineCap, Float aStrokeWidth, float aZoom) const { return BuildPath(AsSpan(), aBuilder, aStrokeLineCap, aStrokeWidth, {}, {}, aZoom); } #undef MAYBE_APPROXIMATE_ZERO_LENGTH_SUBPATH_SQUARE_CAPS_TO_DT already_AddRefed SVGPathData::BuildPathForMeasuring(float aZoom) const { // Since the path that we return will not be used for painting it doesn't // matter what we pass to CreatePathBuilder as aFillRule. Hawever, we do want // to pass something other than NS_STYLE_STROKE_LINECAP_SQUARE as // aStrokeLineCap to avoid the insertion of extra little lines (by // ApproximateZeroLengthSubpathSquareCaps), in which case the value that we // pass as aStrokeWidth doesn't matter (since it's only used to determine the // length of those extra little lines). RefPtr drawTarget = gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget(); RefPtr builder = drawTarget->CreatePathBuilder(FillRule::FILL_WINDING); return BuildPath(builder, StyleStrokeLinecap::Butt, 0, aZoom); } /* static */ already_AddRefed SVGPathData::BuildPathForMeasuring( Span aPath, float aZoom) { RefPtr drawTarget = gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget(); RefPtr builder = drawTarget->CreatePathBuilder(FillRule::FILL_WINDING); return BuildPath(aPath, builder, StyleStrokeLinecap::Butt, 0, {}, {}, aZoom); } static inline StyleCSSFloat GetRotate(const StyleCSSFloat& aAngle) { return aAngle; } static inline StyleCSSFloat GetRotate(const StyleAngle& aAngle) { return aAngle.ToDegrees(); } static inline StyleCSSFloat Resolve(const StyleCSSFloat& aValue, CSSCoord aBasis) { return aValue; } static inline StyleCSSFloat Resolve(const LengthPercentage& aValue, CSSCoord aBasis) { return aValue.ResolveToCSSPixels(aBasis); } template static already_AddRefed BuildPathInternal( Span> aPath, PathBuilder* aBuilder, StyleStrokeLinecap aStrokeLineCap, Float aStrokeWidth, const CSSSize& aPercentageBasis, const Point& aOffset, float aZoomFactor) { using Command = StyleGenericShapeCommand; if (aPath.IsEmpty() || !aPath[0].IsMove()) { return nullptr; // paths without an initial moveto are invalid } bool hasLineCaps = aStrokeLineCap != StyleStrokeLinecap::Butt; bool subpathHasLength = false; // visual length bool subpathContainsNonMoveTo = false; const Command* seg = nullptr; const Command* prevSeg = nullptr; Point pathStart(0.0, 0.0); // start point of [sub]path Point segStart(0.0, 0.0); Point segEnd; Point cp1, cp2; // previous bezier's control points Point tcp1, tcp2; // temporaries auto maybeApproximateZeroLengthSubpathSquareCaps = [&](const Command* aPrevSeg, const Command* aSeg) { if (!subpathHasLength && hasLineCaps && aStrokeWidth > 0 && subpathContainsNonMoveTo && aPrevSeg && aSeg && (!aPrevSeg->IsMove() || aSeg->IsClose())) { ApproximateZeroLengthSubpathSquareCaps(aBuilder, segStart, aStrokeWidth); } }; auto scale = [aOffset, aZoomFactor](const Point& p) { return Point(p.x * aZoomFactor, p.y * aZoomFactor) + aOffset; }; // Regarding cp1 and cp2: If the previous segment was a cubic bezier curve, // then cp2 is its second control point. If the previous segment was a // quadratic curve, then cp1 is its (only) control point. for (const auto& cmd : aPath) { seg = &cmd; switch (cmd.tag) { case Command::Tag::Close: // set this early to allow drawing of square caps for "M{x},{y} Z": subpathContainsNonMoveTo = true; maybeApproximateZeroLengthSubpathSquareCaps(prevSeg, seg); segEnd = pathStart; aBuilder->Close(); break; case Command::Tag::Move: { maybeApproximateZeroLengthSubpathSquareCaps(prevSeg, seg); const Point& p = cmd.move.point.ToGfxPoint(aPercentageBasis); pathStart = segEnd = cmd.move.by_to == StyleByTo::To ? p : segStart + p; aBuilder->MoveTo(scale(segEnd)); subpathHasLength = false; break; } case Command::Tag::Line: { const Point& p = cmd.line.point.ToGfxPoint(aPercentageBasis); segEnd = cmd.line.by_to == StyleByTo::To ? p : segStart + p; if (segEnd != segStart) { subpathHasLength = true; aBuilder->LineTo(scale(segEnd)); } break; } case Command::Tag::CubicCurve: cp1 = cmd.cubic_curve.control1.ToGfxPoint(aPercentageBasis); cp2 = cmd.cubic_curve.control2.ToGfxPoint(aPercentageBasis); segEnd = cmd.cubic_curve.point.ToGfxPoint(aPercentageBasis); if (cmd.cubic_curve.by_to == StyleByTo::By) { cp1 += segStart; cp2 += segStart; segEnd += segStart; } if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) { subpathHasLength = true; aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd)); } break; case Command::Tag::QuadCurve: cp1 = cmd.quad_curve.control1.ToGfxPoint(aPercentageBasis); segEnd = cmd.quad_curve.point.ToGfxPoint(aPercentageBasis); if (cmd.quad_curve.by_to == StyleByTo::By) { cp1 += segStart; segEnd += segStart; // set before setting tcp2! } // Convert quadratic curve to cubic curve: tcp1 = segStart + (cp1 - segStart) * 2 / 3; tcp2 = cp1 + (segEnd - cp1) / 3; if (segEnd != segStart || segEnd != cp1) { subpathHasLength = true; aBuilder->BezierTo(scale(tcp1), scale(tcp2), scale(segEnd)); } break; case Command::Tag::Arc: { const auto& arc = cmd.arc; const Point& radii = arc.radii.ToGfxPoint(aPercentageBasis); segEnd = arc.point.ToGfxPoint(aPercentageBasis); if (arc.by_to == StyleByTo::By) { segEnd += segStart; } if (segEnd != segStart) { subpathHasLength = true; if (radii.x == 0.0f || radii.y == 0.0f) { aBuilder->LineTo(scale(segEnd)); } else { const bool arc_is_large = arc.arc_size == StyleArcSize::Large; const bool arc_is_cw = arc.arc_sweep == StyleArcSweep::Cw; SVGArcConverter converter(segStart, segEnd, radii, GetRotate(arc.rotate), arc_is_large, arc_is_cw); while (converter.GetNextSegment(&cp1, &cp2, &segEnd)) { aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd)); } } } break; } case Command::Tag::HLine: { const float x = Resolve(cmd.h_line.x, aPercentageBasis.width); if (cmd.h_line.by_to == StyleByTo::To) { segEnd = Point(x, segStart.y); } else { segEnd = segStart + Point(x, 0.0f); } if (segEnd != segStart) { subpathHasLength = true; aBuilder->LineTo(scale(segEnd)); } break; } case Command::Tag::VLine: { const float y = Resolve(cmd.v_line.y, aPercentageBasis.height); if (cmd.v_line.by_to == StyleByTo::To) { segEnd = Point(segStart.x, y); } else { segEnd = segStart + Point(0.0f, y); } if (segEnd != segStart) { subpathHasLength = true; aBuilder->LineTo(scale(segEnd)); } break; } case Command::Tag::SmoothCubic: cp1 = prevSeg && prevSeg->IsCubicType() ? segStart * 2 - cp2 : segStart; cp2 = cmd.smooth_cubic.control2.ToGfxPoint(aPercentageBasis); segEnd = cmd.smooth_cubic.point.ToGfxPoint(aPercentageBasis); if (cmd.smooth_cubic.by_to == StyleByTo::By) { cp2 += segStart; segEnd += segStart; } if (segEnd != segStart || segEnd != cp1 || segEnd != cp2) { subpathHasLength = true; aBuilder->BezierTo(scale(cp1), scale(cp2), scale(segEnd)); } break; case Command::Tag::SmoothQuad: { cp1 = prevSeg && prevSeg->IsQuadraticType() ? segStart * 2 - cp1 : segStart; // Convert quadratic curve to cubic curve: tcp1 = segStart + (cp1 - segStart) * 2 / 3; const Point& p = cmd.smooth_quad.point.ToGfxPoint(aPercentageBasis); // set before setting tcp2! segEnd = cmd.smooth_quad.by_to == StyleByTo::To ? p : segStart + p; tcp2 = cp1 + (segEnd - cp1) / 3; if (segEnd != segStart || segEnd != cp1) { subpathHasLength = true; aBuilder->BezierTo(scale(tcp1), scale(tcp2), scale(segEnd)); } break; } } subpathContainsNonMoveTo = !cmd.IsMove(); prevSeg = seg; segStart = segEnd; } MOZ_ASSERT(prevSeg == seg, "prevSegType should be left at the final segType"); maybeApproximateZeroLengthSubpathSquareCaps(prevSeg, seg); return aBuilder->Finish(); } /* static */ already_AddRefed SVGPathData::BuildPath( Span aPath, PathBuilder* aBuilder, StyleStrokeLinecap aStrokeLineCap, Float aStrokeWidth, const CSSSize& aBasis, const gfx::Point& aOffset, float aZoomFactor) { return BuildPathInternal(aPath, aBuilder, aStrokeLineCap, aStrokeWidth, aBasis, aOffset, aZoomFactor); } /* static */ already_AddRefed SVGPathData::BuildPath( Span aShape, PathBuilder* aBuilder, StyleStrokeLinecap aStrokeLineCap, Float aStrokeWidth, const CSSSize& aBasis, const gfx::Point& aOffset, float aZoomFactor) { return BuildPathInternal(aShape, aBuilder, aStrokeLineCap, aStrokeWidth, aBasis, aOffset, aZoomFactor); } static double AngleOfVector(const Point& aVector) { // C99 says about atan2 "A domain error may occur if both arguments are // zero" and "On a domain error, the function returns an implementation- // defined value". In the case of atan2 the implementation-defined value // seems to commonly be zero, but it could just as easily be a NaN value. // We specifically want zero in this case, hence the check: return (aVector != Point(0.0, 0.0)) ? atan2(aVector.y, aVector.x) : 0.0; } static float AngleOfVector(const Point& cp1, const Point& cp2) { return static_cast(AngleOfVector(cp1 - cp2)); } // This implements F.6.5 and F.6.6 of // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes static std::tuple /* rx, ry, segStartAngle, segEndAngle */ ComputeSegAnglesAndCorrectRadii(const Point& aSegStart, const Point& aSegEnd, const float aAngle, const bool aLargeArcFlag, const bool aSweepFlag, const float aRx, const float aRy) { float rx = fabs(aRx); // F.6.6.1 float ry = fabs(aRy); // F.6.5.1: const float angle = static_cast(aAngle * M_PI / 180.0); double x1p = cos(angle) * (aSegStart.x - aSegEnd.x) / 2.0 + sin(angle) * (aSegStart.y - aSegEnd.y) / 2.0; double y1p = -sin(angle) * (aSegStart.x - aSegEnd.x) / 2.0 + cos(angle) * (aSegStart.y - aSegEnd.y) / 2.0; // This is the root in F.6.5.2 and the numerator under that root: double root; double numerator = rx * rx * ry * ry - rx * rx * y1p * y1p - ry * ry * x1p * x1p; if (numerator >= 0.0) { root = sqrt(numerator / (rx * rx * y1p * y1p + ry * ry * x1p * x1p)); if (aLargeArcFlag == aSweepFlag) root = -root; } else { // F.6.6 step 3 - |numerator < 0.0|. This is equivalent to the result // of F.6.6.2 (lamedh) being greater than one. What we have here is // ellipse radii that are too small for the ellipse to reach between // segStart and segEnd. We scale the radii up uniformly so that the // ellipse is just big enough to fit (i.e. to the point where there is // exactly one solution). double lamedh = 1.0 - numerator / (rx * rx * ry * ry); // equiv to eqn F.6.6.2 double s = sqrt(lamedh); rx = static_cast((double)rx * s); // F.6.6.3 ry = static_cast((double)ry * s); root = 0.0; } double cxp = root * rx * y1p / ry; // F.6.5.2 double cyp = -root * ry * x1p / rx; double theta = AngleOfVector(Point(static_cast((x1p - cxp) / rx), static_cast((y1p - cyp) / ry))); // F.6.5.5 double delta = AngleOfVector(Point(static_cast((-x1p - cxp) / rx), static_cast((-y1p - cyp) / ry))) - // F.6.5.6 theta; if (!aSweepFlag && delta > 0) { delta -= 2.0 * M_PI; } else if (aSweepFlag && delta < 0) { delta += 2.0 * M_PI; } double tx1, ty1, tx2, ty2; tx1 = -cos(angle) * rx * sin(theta) - sin(angle) * ry * cos(theta); ty1 = -sin(angle) * rx * sin(theta) + cos(angle) * ry * cos(theta); tx2 = -cos(angle) * rx * sin(theta + delta) - sin(angle) * ry * cos(theta + delta); ty2 = -sin(angle) * rx * sin(theta + delta) + cos(angle) * ry * cos(theta + delta); if (delta < 0.0f) { tx1 = -tx1; ty1 = -ty1; tx2 = -tx2; ty2 = -ty2; } return {rx, ry, static_cast(atan2(ty1, tx1)), static_cast(atan2(ty2, tx2))}; } void SVGPathData::GetMarkerPositioningData(float aZoom, nsTArray* aMarks) const { return GetMarkerPositioningData(AsSpan(), aZoom, aMarks); } // Basically, this is identical to the above function, but replace |mData| with // |aPath|. We probably can factor out some identical calculation, but I believe // the above one will be removed because we will use any kind of array of // StylePathCommand for SVG d attribute in the future. /* static */ void SVGPathData::GetMarkerPositioningData(Span aPath, float aZoom, nsTArray* aMarks) { if (aPath.IsEmpty()) { return; } // info on current [sub]path (reset every M command): Point pathStart(0.0, 0.0); float pathStartAngle = 0.0f; uint32_t pathStartIndex = 0; // info on previous segment: const StylePathCommand* prevSeg = nullptr; Point prevSegEnd(0.0, 0.0); float prevSegEndAngle = 0.0f; Point prevCP; // if prev seg was a bezier, this was its last control point for (const StylePathCommand& cmd : aPath) { Point& segStart = prevSegEnd; Point segEnd; float segStartAngle, segEndAngle; switch (cmd.tag) // to find segStartAngle, segEnd and segEndAngle { case StylePathCommand::Tag::Close: segEnd = pathStart; segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); break; case StylePathCommand::Tag::Move: { const Point& p = cmd.move.point.ToGfxPoint() * aZoom; pathStart = segEnd = cmd.move.by_to == StyleByTo::To ? p : segStart + p; pathStartIndex = aMarks->Length(); // If authors are going to specify multiple consecutive moveto commands // with markers, me might as well make the angle do something useful: segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); break; } case StylePathCommand::Tag::Line: { const Point& p = cmd.line.point.ToGfxPoint() * aZoom; segEnd = cmd.line.by_to == StyleByTo::To ? p : segStart + p; segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); break; } case StylePathCommand::Tag::CubicCurve: { Point cp1 = cmd.cubic_curve.control1.ToGfxPoint() * aZoom; Point cp2 = cmd.cubic_curve.control2.ToGfxPoint() * aZoom; segEnd = cmd.cubic_curve.point.ToGfxPoint() * aZoom; if (cmd.cubic_curve.by_to == StyleByTo::By) { cp1 += segStart; cp2 += segStart; segEnd += segStart; } prevCP = cp2; segStartAngle = AngleOfVector( cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart); segEndAngle = AngleOfVector( segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2); break; } case StylePathCommand::Tag::QuadCurve: { Point cp1 = cmd.quad_curve.control1.ToGfxPoint() * aZoom; segEnd = cmd.quad_curve.point.ToGfxPoint() * aZoom; if (cmd.quad_curve.by_to == StyleByTo::By) { cp1 += segStart; segEnd += segStart; // set before setting tcp2! } prevCP = cp1; segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart); segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1); break; } case StylePathCommand::Tag::Arc: { const auto& arc = cmd.arc; float rx = arc.radii.x * aZoom; float ry = arc.radii.y * aZoom; float angle = arc.rotate; bool largeArcFlag = arc.arc_size == StyleArcSize::Large; bool sweepFlag = arc.arc_sweep == StyleArcSweep::Cw; segEnd = arc.point.ToGfxPoint() * aZoom; if (arc.by_to == StyleByTo::By) { segEnd += segStart; } // See section F.6 of SVG 1.1 for details on what we're doing here: // http://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes if (segStart == segEnd) { // F.6.2 says "If the endpoints (x1, y1) and (x2, y2) are identical, // then this is equivalent to omitting the elliptical arc segment // entirely." We take that very literally here, not adding a mark, and // not even setting any of the 'prev' variables so that it's as if // this arc had never existed; note the difference this will make e.g. // if the arc is proceeded by a bezier curve and followed by a // "smooth" bezier curve of the same degree! continue; } // Below we have funny interleaving of F.6.6 (Correction of out-of-range // radii) and F.6.5 (Conversion from endpoint to center // parameterization) which is designed to avoid some unnecessary // calculations. if (rx == 0.0 || ry == 0.0) { // F.6.6 step 1 - straight line or coincidental points segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); break; } std::tie(rx, ry, segStartAngle, segEndAngle) = ComputeSegAnglesAndCorrectRadii(segStart, segEnd, angle, largeArcFlag, sweepFlag, rx, ry); break; } case StylePathCommand::Tag::HLine: { if (cmd.h_line.by_to == StyleByTo::To) { segEnd = Point(cmd.h_line.x, segStart.y) * aZoom; } else { segEnd = segStart + Point(cmd.h_line.x, 0.0f) * aZoom; } segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); break; } case StylePathCommand::Tag::VLine: { if (cmd.v_line.by_to == StyleByTo::To) { segEnd = Point(segStart.x, cmd.v_line.y) * aZoom; } else { segEnd = segStart + Point(0.0f, cmd.v_line.y) * aZoom; } segStartAngle = segEndAngle = AngleOfVector(segEnd, segStart); break; } case StylePathCommand::Tag::SmoothCubic: { const Point& cp1 = prevSeg && prevSeg->IsCubicType() ? segStart * 2 - prevCP : segStart; Point cp2 = cmd.smooth_cubic.control2.ToGfxPoint() * aZoom; segEnd = cmd.smooth_cubic.point.ToGfxPoint() * aZoom; if (cmd.smooth_cubic.by_to == StyleByTo::By) { cp2 += segStart; segEnd += segStart; } prevCP = cp2; segStartAngle = AngleOfVector( cp1 == segStart ? (cp1 == cp2 ? segEnd : cp2) : cp1, segStart); segEndAngle = AngleOfVector( segEnd, cp2 == segEnd ? (cp1 == cp2 ? segStart : cp1) : cp2); break; } case StylePathCommand::Tag::SmoothQuad: { const Point& cp1 = prevSeg && prevSeg->IsQuadraticType() ? segStart * 2 - prevCP : segStart; segEnd = cmd.smooth_quad.by_to == StyleByTo::To ? cmd.smooth_quad.point.ToGfxPoint() * aZoom : segStart + cmd.smooth_quad.point.ToGfxPoint() * aZoom; prevCP = cp1; segStartAngle = AngleOfVector(cp1 == segStart ? segEnd : cp1, segStart); segEndAngle = AngleOfVector(segEnd, cp1 == segEnd ? segStart : cp1); break; } } // Set the angle of the mark at the start of this segment: if (aMarks->Length()) { SVGMark& mark = aMarks->LastElement(); if (!cmd.IsMove() && prevSeg && prevSeg->IsMove()) { // start of new subpath pathStartAngle = mark.angle = segStartAngle; } else if (cmd.IsMove() && !(prevSeg && prevSeg->IsMove())) { // end of a subpath if (!(prevSeg && prevSeg->IsClose())) { mark.angle = prevSegEndAngle; } } else if (!(cmd.IsClose() && prevSeg && prevSeg->IsClose())) { mark.angle = SVGContentUtils::AngleBisect(prevSegEndAngle, segStartAngle); } } // Add the mark at the end of this segment, and set its position: // XXX(Bug 1631371) Check if this should use a fallible operation as it // pretended earlier. aMarks->AppendElement(SVGMark(static_cast(segEnd.x), static_cast(segEnd.y), 0.0f, SVGMark::eMid)); if (cmd.IsClose() && !(prevSeg && prevSeg->IsClose())) { aMarks->LastElement().angle = aMarks->ElementAt(pathStartIndex).angle = SVGContentUtils::AngleBisect(segEndAngle, pathStartAngle); } prevSeg = &cmd; prevSegEnd = segEnd; prevSegEndAngle = segEndAngle; } if (!aMarks->IsEmpty()) { if (!(prevSeg && prevSeg->IsClose())) { aMarks->LastElement().angle = prevSegEndAngle; } aMarks->LastElement().type = SVGMark::eEnd; aMarks->ElementAt(0).type = SVGMark::eStart; } } size_t SVGPathData::SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { // TODO: measure mData if unshared? return 0; } size_t SVGPathData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); } } // namespace mozilla