// META: title=validation tests for WebNN API expand operation // META: global=window // META: variant=?cpu // META: variant=?gpu // META: variant=?npu // META: script=../resources/utils_validation.js 'use strict'; multi_builder_test(async (t, builder, otherBuilder) => { const inputFromOtherBuilder = otherBuilder.input('input', {dataType: 'float32', shape: [2, 1, 2]}); const newShape = [2, 2, 2]; assert_throws_js( TypeError, () => builder.expand(inputFromOtherBuilder, newShape)); }, '[expand] throw if input is from another builder'); const label = 'xxx_expand'; const regrexp = new RegExp('\\[' + label + '\\]'); const tests = [ { name: '[expand] Test with 0-D scalar to 3-D tensor.', input: {dataType: 'float32', shape: []}, newShape: [3, 4, 5], output: {dataType: 'float32', shape: [3, 4, 5]} }, { name: '[expand] Test with the new shapes that are the same as input.', input: {dataType: 'float32', shape: [4]}, newShape: [4], output: {dataType: 'float32', shape: [4]} }, { name: '[expand] Test with the new shapes that are broadcastable.', input: {dataType: 'float32', shape: [3, 1, 5]}, newShape: [3, 4, 5], output: {dataType: 'float32', shape: [3, 4, 5]} }, { name: '[expand] Test with the new shapes that are broadcastable and the rank of new shapes is larger than input.', input: {dataType: 'float32', shape: [2, 5]}, newShape: [3, 2, 5], output: {dataType: 'float32', shape: [3, 2, 5]} }, { name: '[expand] Throw if the input shapes are the same rank but not broadcastable.', input: {dataType: 'float32', shape: [3, 6, 2]}, newShape: [4, 3, 5], options: {label} }, { name: '[expand] Throw if the input shapes are not broadcastable.', input: {dataType: 'float32', shape: [5, 4]}, newShape: [5], options: {label} }, { name: '[expand] Throw if the number of new shapes is too large.', input: {dataType: 'float32', shape: [1, 2, 1, 1]}, newShape: [1, 2, kMaxUnsignedLong, kMaxUnsignedLong], }, ]; tests.forEach( test => promise_test(async t => { const builder = new MLGraphBuilder(context); const input = builder.input('input', test.input); if (test.output) { const output = builder.expand(input, test.newShape); assert_equals(output.dataType, test.output.dataType); assert_array_equals(output.shape, test.output.shape); } else { const options = {...test.options}; if (options.label) { assert_throws_with_label( () => builder.expand(input, test.newShape, options), regrexp); } else { assert_throws_js( TypeError, () => builder.expand(input, test.newShape, options)); } } }, test.name)); promise_test(async t => { for (let dataType of allWebNNOperandDataTypes) { if (!context.opSupportLimits().input.dataTypes.includes(dataType)) { continue; } const builder = new MLGraphBuilder(context); const shape = [1]; const newShape = [1, 2, 3]; const input = builder.input(`input`, {dataType, shape}); if (context.opSupportLimits().expand.input.dataTypes.includes(dataType)) { const output = builder.expand(input, newShape); assert_equals(output.dataType, dataType); assert_array_equals(output.shape, newShape); } else { assert_throws_js(TypeError, () => builder.expand(input, newShape)); } } }, `[expand] Test expand with all of the data types.`); promise_test(async t => { const builder = new MLGraphBuilder(context); const input = builder.input('input', { dataType: 'float32', shape: [1, 2, 1, 1]}); const newShape = [1, 2, context.opSupportLimits().maxTensorByteLength, 1]; const options = {label}; assert_throws_with_label( () => builder.expand(input, newShape, options), regrexp); }, '[expand] throw if the output tensor byte length exceeds limit');