// META: title=validation tests for WebNN API gru operation // META: global=window // META: variant=?cpu // META: variant=?gpu // META: variant=?npu // META: script=../resources/utils_validation.js 'use strict'; const steps = 2, batchSize = 3, inputSize = 4, hiddenSize = 5, oneDirection = 1, bothDirections = 2; // Dimensions required of required inputs. const kValidInputShape = [steps, batchSize, inputSize]; const kValidWeightShape = [oneDirection, 3 * hiddenSize, inputSize]; const kValidRecurrentWeightShape = [oneDirection, 3 * hiddenSize, hiddenSize]; // Dimensions required of optional inputs. const kValidBiasShape = [oneDirection, 3 * hiddenSize]; const kValidRecurrentBiasShape = [oneDirection, 3 * hiddenSize]; const kValidInitialHiddenStateShape = [oneDirection, batchSize, hiddenSize]; // Example descriptors which are valid according to the above dimensions. const kExampleInputDescriptor = { dataType: 'float32', shape: kValidInputShape }; const kExampleWeightDescriptor = { dataType: 'float32', shape: kValidWeightShape }; const kExampleRecurrentWeightDescriptor = { dataType: 'float32', shape: kValidRecurrentWeightShape }; const kExampleBiasDescriptor = { dataType: 'float32', shape: kValidBiasShape }; const kExampleRecurrentBiasDescriptor = { dataType: 'float32', shape: kValidRecurrentBiasShape }; const kExampleInitialHiddenStateDescriptor = { dataType: 'float32', shape: kValidInitialHiddenStateShape }; const tests = [ { name: '[gru] Test with default options', input: kExampleInputDescriptor, weight: kExampleWeightDescriptor, recurrentWeight: kExampleRecurrentWeightDescriptor, steps: steps, hiddenSize: hiddenSize, outputs: [{dataType: 'float32', shape: [oneDirection, batchSize, hiddenSize]}] }, { name: '[gru] Test with given options', input: kExampleInputDescriptor, weight: { dataType: 'float32', shape: [bothDirections, 3 * hiddenSize, inputSize] }, recurrentWeight: { dataType: 'float32', shape: [bothDirections, 3 * hiddenSize, hiddenSize] }, steps: steps, hiddenSize: hiddenSize, options: { bias: {dataType: 'float32', shape: [bothDirections, 3 * hiddenSize]}, recurrentBias: {dataType: 'float32', shape: [bothDirections, 3 * hiddenSize]}, initialHiddenState: {dataType: 'float32', shape: [bothDirections, batchSize, hiddenSize]}, restAfter: true, returnSequence: true, direction: 'both', layout: 'rzn', activations: ['sigmoid', 'relu'] }, outputs: [ {dataType: 'float32', shape: [bothDirections, batchSize, hiddenSize]}, { dataType: 'float32', shape: [steps, bothDirections, batchSize, hiddenSize] } ] }, { name: '[gru] TypeError is expected if steps equals to zero', input: kExampleInputDescriptor, weight: {dataType: 'float32', shape: [oneDirection, 4 * hiddenSize, inputSize]}, recurrentWeight: { dataType: 'float32', shape: [oneDirection, 4 * hiddenSize, hiddenSize] }, steps: 0, hiddenSize: hiddenSize, }, { name: '[gru] TypeError is expected if hiddenSize equals to zero', input: kExampleInputDescriptor, weight: kExampleWeightDescriptor, recurrentWeight: kExampleRecurrentWeightDescriptor, steps: steps, hiddenSize: 0 }, { name: '[gru] TypeError is expected if hiddenSize is too large', input: kExampleInputDescriptor, weight: kExampleWeightDescriptor, recurrentWeight: kExampleRecurrentWeightDescriptor, steps: steps, hiddenSize: 4294967295, }, { name: '[gru] TypeError is expected if the data type of the inputs is not one of the floating point types', input: {dataType: 'uint32', shape: kValidInputShape}, weight: {dataType: 'uint32', shape: kValidWeightShape}, recurrentWeight: {dataType: 'uint32', shape: kValidRecurrentWeightShape}, steps: steps, hiddenSize: hiddenSize }, { name: '[gru] TypeError is expected if the rank of input is not 3', input: {dataType: 'float32', shape: [steps, batchSize]}, weight: kExampleWeightDescriptor, recurrentWeight: kExampleRecurrentWeightDescriptor, steps: steps, hiddenSize: hiddenSize }, { name: '[gru] TypeError is expected if input.shape[0] is not equal to steps', input: {dataType: 'float32', shape: [1000, batchSize, inputSize]}, weight: kExampleWeightDescriptor, recurrentWeight: kExampleRecurrentWeightDescriptor, steps: steps, hiddenSize: hiddenSize }, { name: '[gru] TypeError is expected if weight.shape[1] is not 3 * hiddenSize', input: kExampleInputDescriptor, weight: {dataType: 'float32', shape: [oneDirection, 4 * hiddenSize, inputSize]}, recurrentWeight: kExampleRecurrentWeightDescriptor, steps: steps, hiddenSize: hiddenSize }, { name: '[gru] TypeError is expected if the rank of recurrentWeight is not 3', input: kExampleInputDescriptor, weight: kExampleWeightDescriptor, recurrentWeight: {dataType: 'float32', shape: [oneDirection, 3 * hiddenSize]}, steps: steps, hiddenSize: hiddenSize }, { name: '[gru] TypeError is expected if the recurrentWeight.shape is invalid', input: kExampleInputDescriptor, weight: kExampleWeightDescriptor, recurrentWeight: {dataType: 'float32', shape: [oneDirection, 4 * hiddenSize, inputSize]}, steps: steps, hiddenSize: hiddenSize }, { name: '[gru] TypeError is expected if the size of options.activations is not 2', input: kExampleInputDescriptor, weight: kExampleWeightDescriptor, recurrentWeight: kExampleRecurrentWeightDescriptor, steps: steps, hiddenSize: hiddenSize, options: {activations: ['sigmoid', 'tanh', 'relu']} }, { name: '[gru] TypeError is expected if the rank of options.bias is not 2', input: kExampleInputDescriptor, weight: kExampleWeightDescriptor, recurrentWeight: kExampleRecurrentWeightDescriptor, steps: steps, hiddenSize: hiddenSize, options: {bias: {dataType: 'float32', shape: [oneDirection]}} }, { name: '[gru] TypeError is expected if options.bias.shape[1] is not 3 * hiddenSize', input: kExampleInputDescriptor, weight: kExampleWeightDescriptor, recurrentWeight: kExampleRecurrentWeightDescriptor, steps: steps, hiddenSize: hiddenSize, options: {bias: {dataType: 'float32', shape: [oneDirection, hiddenSize]}} }, { name: '[gru] TypeError is expected if options.recurrentBias.shape[1] is not 3 * hiddenSize', input: {dataType: 'float16', shape: kValidInputShape}, weight: {dataType: 'float16', shape: kValidWeightShape}, recurrentWeight: {dataType: 'float16', shape: kValidRecurrentWeightShape}, steps: steps, hiddenSize: hiddenSize, options: { recurrentBias: {dataType: 'float16', shape: [oneDirection, 4 * hiddenSize]} } }, { name: '[gru] TypeError is expected if the rank of options.initialHiddenState is not 3', input: {dataType: 'float16', shape: kValidInputShape}, weight: {dataType: 'float16', shape: kValidWeightShape}, recurrentWeight: {dataType: 'float16', shape: kValidRecurrentWeightShape}, steps: steps, hiddenSize: hiddenSize, options: { initialHiddenState: {dataType: 'float16', shape: [oneDirection, batchSize]} } }, { name: '[gru] TypeError is expected if options.initialHiddenState.shape[2] is not inputSize', input: {dataType: 'float16', shape: kValidInputShape}, weight: {dataType: 'float16', shape: kValidWeightShape}, recurrentWeight: {dataType: 'float16', shape: kValidRecurrentWeightShape}, steps: steps, hiddenSize: hiddenSize, options: { initialHiddenState: { dataType: 'float16', shape: [oneDirection, batchSize, 3 * hiddenSize] } } }, { name: '[gru] TypeError is expected if the dataType of options.initialHiddenState is incorrect', input: {dataType: 'float16', shape: kValidInputShape}, weight: {dataType: 'float16', shape: kValidWeightShape}, recurrentWeight: {dataType: 'float16', shape: kValidRecurrentWeightShape}, steps: steps, hiddenSize: hiddenSize, options: { initialHiddenState: {dataType: 'uint64', shape: [oneDirection, batchSize, hiddenSize]} } } ]; tests.forEach( test => promise_test(async t => { const builder = new MLGraphBuilder(context); const input = builder.input('input', test.input); const weight = builder.input('weight', test.weight); const recurrentWeight = builder.input('recurrentWeight', test.recurrentWeight); const options = {}; if (test.options) { if (test.options.bias) { options.bias = builder.input('bias', test.options.bias); } if (test.options.recurrentBias) { options.recurrentBias = builder.input('recurrentBias', test.options.recurrentBias); } if (test.options.initialHiddenState) { options.initialHiddenState = builder.input( 'initialHiddenState', test.options.initialHiddenState); } if (test.options.resetAfter) { options.resetAfter = test.options.resetAfter; } if (test.options.returnSequence) { options.returnSequence = test.options.returnSequence; } if (test.options.direction) { options.direction = test.options.direction; } if (test.options.layout) { options.layout = test.options.layout; } if (test.options.activations) { options.activations = test.options.activations; } } if (test.outputs && context.opSupportLimits().gru.input.dataTypes.includes( test.input.dataType)) { const outputs = builder.gru( input, weight, recurrentWeight, test.steps, test.hiddenSize, options); assert_equals(outputs.length, test.outputs.length); for (let i = 0; i < outputs.length; ++i) { assert_equals(outputs[i].dataType, test.outputs[i].dataType); assert_array_equals(outputs[i].shape, test.outputs[i].shape); } } else { const label = 'gru_xxx'; options.label = label; const regrexp = new RegExp('\\[' + label + '\\]'); assert_throws_with_label( () => builder.gru( input, weight, recurrentWeight, test.steps, test.hiddenSize, options), regrexp); } }, test.name)); multi_builder_test(async (t, builder, otherBuilder) => { const inputFromOtherBuilder = otherBuilder.input('input', kExampleInputDescriptor); const weight = builder.input('weight', kExampleWeightDescriptor); const recurrentWeight = builder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); assert_throws_js( TypeError, () => builder.gru( inputFromOtherBuilder, weight, recurrentWeight, steps, hiddenSize)); }, '[gru] throw if input is from another builder'); multi_builder_test(async (t, builder, otherBuilder) => { const weightFromOtherBuilder = otherBuilder.input('weight', kExampleWeightDescriptor); const input = builder.input('input', kExampleInputDescriptor); const recurrentWeight = builder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); assert_throws_js( TypeError, () => builder.gru( input, weightFromOtherBuilder, recurrentWeight, steps, hiddenSize)); }, '[gru] throw if weight is from another builder'); multi_builder_test(async (t, builder, otherBuilder) => { const recurrentWeightFromOtherBuilder = otherBuilder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); const input = builder.input('input', kExampleInputDescriptor); const weight = builder.input('weight', kExampleWeightDescriptor); assert_throws_js( TypeError, () => builder.gru( input, weight, recurrentWeightFromOtherBuilder, steps, hiddenSize)); }, '[gru] throw if recurrentWeight is from another builder'); multi_builder_test(async (t, builder, otherBuilder) => { const biasFromOtherBuilder = otherBuilder.input('bias', kExampleBiasDescriptor); const options = {bias: biasFromOtherBuilder}; const input = builder.input('input', kExampleInputDescriptor); const weight = builder.input('weight', kExampleWeightDescriptor); const recurrentWeight = builder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); assert_throws_js( TypeError, () => builder.gru( input, weight, recurrentWeight, steps, hiddenSize, options)); }, '[gru] throw if bias option is from another builder'); multi_builder_test(async (t, builder, otherBuilder) => { const recurrentBiasFromOtherBuilder = otherBuilder.input('recurrentBias', kExampleRecurrentBiasDescriptor); const options = {recurrentBias: recurrentBiasFromOtherBuilder}; const input = builder.input('input', kExampleInputDescriptor); const weight = builder.input('weight', kExampleWeightDescriptor); const recurrentWeight = builder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); assert_throws_js( TypeError, () => builder.gru( input, weight, recurrentWeight, steps, hiddenSize, options)); }, '[gru] throw if recurrentBias option is from another builder'); multi_builder_test(async (t, builder, otherBuilder) => { const initialHiddenStateFromOtherBuilder = otherBuilder.input( 'initialHiddenState', kExampleInitialHiddenStateDescriptor); const options = {initialHiddenState: initialHiddenStateFromOtherBuilder}; const input = builder.input('input', kExampleInputDescriptor); const weight = builder.input('weight', kExampleWeightDescriptor); const recurrentWeight = builder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); assert_throws_js( TypeError, () => builder.gru( input, weight, recurrentWeight, steps, hiddenSize, options)); }, '[gru] throw if initialHiddenState option is from another builder');