// META: title=validation tests for WebNN API lstmCell operation // META: global=window // META: variant=?cpu // META: variant=?gpu // META: variant=?npu // META: script=../resources/utils_validation.js 'use strict'; const batchSize = 3, inputSize = 4, hiddenSize = 5; // Dimensions required of required inputs. const kValidInputShape = [batchSize, inputSize]; const kValidWeightShape = [4 * hiddenSize, inputSize]; const kValidRecurrentWeightShape = [4 * hiddenSize, hiddenSize]; const kValidHiddenStateShape = [batchSize, hiddenSize]; const kValidCellStateShape = [batchSize, hiddenSize]; // Dimensions required of optional inputs. const kValidBiasShape = [4 * hiddenSize]; const kValidPeepholeWeightShape = [3 * hiddenSize]; // Example descriptors which are valid according to the above dimensions. const kExampleInputDescriptor = { dataType: 'float32', shape: kValidInputShape }; const kExampleWeightDescriptor = { dataType: 'float32', shape: kValidWeightShape }; const kExampleRecurrentWeightDescriptor = { dataType: 'float32', shape: kValidRecurrentWeightShape }; const kExampleHiddenStateDescriptor = { dataType: 'float32', shape: kValidHiddenStateShape }; const kExampleCellStateDescriptor = { dataType: 'float32', shape: kValidCellStateShape }; const kExampleBiasDescriptor = { dataType: 'float32', shape: kValidBiasShape }; const kExamplePeepholeWeightDescriptor = { dataType: 'float32', shape: kValidPeepholeWeightShape }; multi_builder_test(async (t, builder, otherBuilder) => { const inputFromOtherBuilder = otherBuilder.input('input', kExampleInputDescriptor); const weight = builder.input('weight', kExampleWeightDescriptor); const recurrentWeight = builder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); const hiddenState = builder.input('hiddenState', kExampleHiddenStateDescriptor); const cellState = builder.input('cellState', kExampleCellStateDescriptor); assert_throws_js( TypeError, () => builder.lstmCell( inputFromOtherBuilder, weight, recurrentWeight, hiddenState, cellState, hiddenSize)); }, '[lstmCell] throw if input is from another builder'); multi_builder_test(async (t, builder, otherBuilder) => { const weightFromOtherBuilder = otherBuilder.input('weight', kExampleWeightDescriptor); const input = builder.input('input', kExampleInputDescriptor); const recurrentWeight = builder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); const hiddenState = builder.input('hiddenState', kExampleHiddenStateDescriptor); const cellState = builder.input('cellState', kExampleCellStateDescriptor); assert_throws_js( TypeError, () => builder.lstmCell( input, weightFromOtherBuilder, recurrentWeight, hiddenState, cellState, hiddenSize)); }, '[lstmCell] throw if weight is from another builder'); multi_builder_test(async (t, builder, otherBuilder) => { const recurrentWeightFromOtherBuilder = otherBuilder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); const input = builder.input('input', kExampleInputDescriptor); const weight = builder.input('weight', kExampleWeightDescriptor); const hiddenState = builder.input('hiddenState', kExampleHiddenStateDescriptor); const cellState = builder.input('cellState', kExampleCellStateDescriptor); assert_throws_js( TypeError, () => builder.lstmCell( input, weight, recurrentWeightFromOtherBuilder, hiddenState, cellState, hiddenSize)); }, '[lstmCell] throw if recurrentWeight is from another builder'); multi_builder_test(async (t, builder, otherBuilder) => { const hiddenStateFromOtherBuilder = otherBuilder.input('hiddenState', kExampleHiddenStateDescriptor); const input = builder.input('input', kExampleInputDescriptor); const weight = builder.input('weight', kExampleWeightDescriptor); const recurrentWeight = builder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); const cellState = builder.input('cellState', kExampleCellStateDescriptor); assert_throws_js( TypeError, () => builder.lstmCell( input, weight, recurrentWeight, hiddenStateFromOtherBuilder, cellState, hiddenSize)); }, '[lstmCell] throw if hiddenState is from another builder'); multi_builder_test(async (t, builder, otherBuilder) => { const cellStateFromOtherBuilder = otherBuilder.input('cellState', kExampleCellStateDescriptor); const input = builder.input('input', kExampleInputDescriptor); const weight = builder.input('weight', kExampleWeightDescriptor); const recurrentWeight = builder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); const hiddenState = builder.input('hiddenState', kExampleHiddenStateDescriptor); assert_throws_js( TypeError, () => builder.lstmCell( input, weight, recurrentWeight, hiddenState, cellStateFromOtherBuilder, hiddenSize)); }, '[lstmCell] throw if cellState is from another builder'); multi_builder_test(async (t, builder, otherBuilder) => { const biasFromOtherBuilder = otherBuilder.input('bias', kExampleBiasDescriptor); const options = {bias: biasFromOtherBuilder}; const input = builder.input('input', kExampleInputDescriptor); const weight = builder.input('weight', kExampleWeightDescriptor); const recurrentWeight = builder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); const hiddenState = builder.input('hiddenState', kExampleHiddenStateDescriptor); const cellState = builder.input('cellState', kExampleCellStateDescriptor); assert_throws_js( TypeError, () => builder.lstmCell( input, weight, recurrentWeight, hiddenState, cellState, hiddenSize, options)); }, '[lstmCell] throw if bias option is from another builder'); multi_builder_test(async (t, builder, otherBuilder) => { const recurrentBiasFromOtherBuilder = otherBuilder.input('bias', kExampleBiasDescriptor); const options = {recurrentBias: recurrentBiasFromOtherBuilder}; const input = builder.input('input', kExampleInputDescriptor); const weight = builder.input('weight', kExampleWeightDescriptor); const recurrentWeight = builder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); const hiddenState = builder.input('hiddenState', kExampleHiddenStateDescriptor); const cellState = builder.input('cellState', kExampleCellStateDescriptor); assert_throws_js( TypeError, () => builder.lstmCell( input, weight, recurrentWeight, hiddenState, cellState, hiddenSize, options)); }, '[lstmCell] throw if recurrentBias option is from another builder'); multi_builder_test(async (t, builder, otherBuilder) => { const peepholeWeightFromOtherBuilder = otherBuilder.input('peepholeWeight', kExamplePeepholeWeightDescriptor); const options = {peepholeWeight: peepholeWeightFromOtherBuilder}; const input = builder.input('input', kExampleInputDescriptor); const weight = builder.input('weight', kExampleWeightDescriptor); const recurrentWeight = builder.input('recurrentWeight', kExampleRecurrentWeightDescriptor); const hiddenState = builder.input('hiddenState', kExampleHiddenStateDescriptor); const cellState = builder.input('cellState', kExampleCellStateDescriptor); assert_throws_js( TypeError, () => builder.lstmCell( input, weight, recurrentWeight, hiddenState, cellState, hiddenSize, options)); }, '[lstmCell] throw if peepholeWeight option is from another builder'); const tests = [ { name: '[lstmCell] Test with default options', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize, outputs: [ {dataType: 'float16', shape: [batchSize, hiddenSize]}, {dataType: 'float16', shape: [batchSize, hiddenSize]} ] }, { name: '[lstmCell] Test with given options', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize, options: { bias: {dataType: 'float32', shape: [4 * hiddenSize]}, recurrentBias: {dataType: 'float32', shape: [4 * hiddenSize]}, peepholeWeight: {dataType: 'float32', shape: [3 * hiddenSize]}, layout: 'ifgo', activations: ['sigmoid', 'relu', 'tanh'] }, outputs: [ {dataType: 'float32', shape: [batchSize, hiddenSize]}, {dataType: 'float32', shape: [batchSize, hiddenSize]} ] }, { name: '[lstmCell] Throw if hiddenSize is equal to zero', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: 0 }, { name: '[lstmCell] Throw if hiddenSize is too large', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: 4294967295 }, { name: '[lstmCell] Throw if the input data type is not one of the floating point types', input: {dataType: 'uint32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the rank of input is not 2', input: {dataType: 'float32', shape: [batchSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the shape of input is incorrect', input: {dataType: 'float32', shape: [batchSize, 1000]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the data type of weight is incorrect', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the rank of weight is not 2', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize, 1000]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the shape of weight is incorrect', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [1000, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the data type of recurrentWeight is incorrect', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the rank of recurrentWeight is not 2', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [1000, 4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the shape of recurrentWeight is incorrect', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [1000, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the data type of hiddenState is incorrect', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'int64', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the rank of hiddenState is not 2', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the shape of hiddenState is incorrect', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, 1000]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the data type of cellState is incorrect', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the rank of cellState is not 2', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the shape of cellState is incorrect', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float16', shape: [batchSize, 1000]}, hiddenSize: hiddenSize }, { name: '[lstmCell] Throw if the data type of options.bias is incorrect', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize, options: {bias: {dataType: 'int8', shape: [4 * hiddenSize]}} }, { name: '[lstmCell] Throw if the rank of options.bias is not 1', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize, options: {bias: {dataType: 'float16', shape: [4 * hiddenSize, 1000]}} }, { name: '[lstmCell] Throw if the shape of options.bias is incorrect', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize, options: {bias: {dataType: 'float16', shape: [1000]}} }, { name: '[lstmCell] Throw if the data type of options.recurrentBias is incorrect', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize, options: {recurrentBias: {dataType: 'uint8', shape: [4 * hiddenSize]}} }, { name: '[lstmCell] Throw if the rank of options.recurrentBias is not 1', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize, options: {recurrentBias: {dataType: 'float16', shape: [4 * hiddenSize, 1000]}} }, { name: '[lstmCell] Throw if the shape of options.recurrentBias is incorrect', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize, options: {recurrentBias: {dataType: 'float16', shape: [1000]}} }, { name: '[lstmCell] Throw if the data type of options.peepholeWeight is incorrect', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize, options: {peepholeWeight: {dataType: 'float32', shape: [3 * hiddenSize]}} }, { name: '[lstmCell] Throw if the rank of options.peepholeWeight is not 1', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize, options: {peepholeWeight: {dataType: 'float16', shape: []}} }, { name: '[lstmCell] Throw if the shape of options.peepholeWeight is incorrect', input: {dataType: 'float16', shape: [batchSize, inputSize]}, weight: {dataType: 'float16', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float16', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float16', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize, options: {peepholeWeight: {dataType: 'float16', shape: [1000]}} }, { name: '[lstmCell] Throw if the size of options.activations is not 3', input: {dataType: 'float32', shape: [batchSize, inputSize]}, weight: {dataType: 'float32', shape: [4 * hiddenSize, inputSize]}, recurrentWeight: {dataType: 'float32', shape: [4 * hiddenSize, hiddenSize]}, hiddenState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, cellState: {dataType: 'float32', shape: [batchSize, hiddenSize]}, hiddenSize: hiddenSize, options: {activations: ['sigmoid', 'tanh', 'sigmoid', 'tanh']} } ]; tests.forEach( test => promise_test(async t => { const builder = new MLGraphBuilder(context); const input = builder.input('input', test.input); const weight = builder.input('weight', test.weight); const recurrentWeight = builder.input('recurrentWeight', test.recurrentWeight); const hiddenState = builder.input('hiddenState', test.hiddenState); const cellState = builder.input('cellState', test.cellState); const options = {}; if (test.options) { if (test.options.bias) { options.bias = builder.input('bias', test.options.bias); } if (test.options.recurrentBias) { options.recurrentBias = builder.input('recurrentBias', test.options.recurrentBias); } if (test.options.peepholeWeight) { options.peepholeWeight = builder.input('peepholeWeight', test.options.peepholeWeight); } if (test.options.layout) { options.layout = test.options.layout; } if (test.options.activations) { options.activations = test.options.activations; } } if (test.outputs && context.opSupportLimits().lstmCell.input.dataTypes.includes( test.input.dataType)) { const outputs = builder.lstmCell( input, weight, recurrentWeight, hiddenState, cellState, test.hiddenSize, options); assert_equals(outputs.length, test.outputs.length); for (let i = 0; i < outputs.length; ++i) { assert_equals(outputs[i].dataType, test.outputs[i].dataType); assert_array_equals(outputs[i].shape, test.outputs[i].shape); } } else { const label = 'lstm_cell_xxx'; options.label = label; const regrexp = new RegExp('\\[' + label + '\\]'); assert_throws_with_label( () => builder.lstmCell( input, weight, recurrentWeight, hiddenState, cellState, test.hiddenSize, options), regrexp); } }, test.name));