/* * Copyright (C) 2012, 2013 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ export function max(values) { return Math.max.apply(Math, values); } export function min(values) { return Math.min.apply(Math, values); } export function sum(values) { return values.reduce((a, b) => a + b, 0); } export function product(values) { return values.reduce((a, b) => a * b, 1); } export function squareSum(values) { return values.reduce((sum, value) => sum + value * value, 0); } // With sum and sum of squares, we can compute the sample standard deviation in O(1). // See https://rniwa.com/2012-11-10/sample-standard-deviation-in-terms-of-sum-and-square-sum-of-samples/ export function sampleStandardDeviation(numberOfSamples, sum, squareSum) { if (numberOfSamples < 2) return 0; return Math.sqrt(squareSum / (numberOfSamples - 1) - (sum * sum) / (numberOfSamples - 1) / numberOfSamples); } export function supportedConfidenceLevels() { const supportedLevels = []; for (let quantile in tDistributionInverseCDF) supportedLevels.push((1 - (1 - quantile) * 2).toFixed(2)); return supportedLevels; } // Computes the delta d s.t. (mean - d, mean + d) is the confidence interval with the specified confidence level in O(1). export function confidenceIntervalDelta(confidenceLevel, numberOfSamples, sum, squareSum) { const probability = 1 - (1 - confidenceLevel) / 2; if (!(probability in tDistributionInverseCDF)) { const supportedIntervals = supportedConfidenceLevels().map((level) => `${level * 100}%`); throw `We only support ${supportedIntervals.join(", ")} confidence intervals.`; } if (numberOfSamples - 2 < 0) return NaN; const cdfForProbability = tDistributionInverseCDF[probability]; let degreesOfFreedom = numberOfSamples - 1; if (degreesOfFreedom > cdfForProbability.length) degreesOfFreedom = cdfForProbability.length - 1; // tDistributionQuantile(degreesOfFreedom, confidenceLevel) * sampleStandardDeviation / sqrt(numberOfSamples) * S/sqrt(numberOfSamples) const quantile = cdfForProbability[degreesOfFreedom - 1]; // The first entry is for the one degree of freedom. return (quantile * sampleStandardDeviation(numberOfSamples, sum, squareSum)) / Math.sqrt(numberOfSamples); } export function confidenceInterval(values, probability) { const sumValue = sum(values); const mean = sumValue / values.length; const delta = confidenceIntervalDelta(probability || 0.95, values.length, sumValue, squareSum(values)); return [mean - delta, mean + delta]; } // See http://en.wikipedia.org/wiki/Student's_t-distribution#Table_of_selected_values // This table contains one sided (a.k.a. tail) values. var tDistributionInverseCDF = { 0.9: [ 3.077684, 1.885618, 1.637744, 1.533206, 1.475884, 1.439756, 1.414924, 1.396815, 1.383029, 1.372184, 1.36343, 1.356217, 1.350171, 1.34503, 1.340606, 1.336757, 1.333379, 1.330391, 1.327728, 1.325341, 1.323188, 1.321237, 1.31946, 1.317836, 1.316345, 1.314972, 1.313703, 1.312527, 1.311434, 1.310415, 1.309464, 1.308573, 1.307737, 1.306952, 1.306212, 1.305514, 1.304854, 1.30423, 1.303639, 1.303077, 1.302543, 1.302035, 1.301552, 1.30109, 1.300649, 1.300228, 1.299825, 1.299439, 1.299069, 1.298714, 1.298373, 1.298045, 1.29773, 1.297426, 1.297134, 1.296853, 1.296581, 1.296319, 1.296066, 1.295821, 1.295585, 1.295356, 1.295134, 1.29492, 1.294712, 1.294511, 1.294315, 1.294126, 1.293942, 1.293763, 1.293589, 1.293421, 1.293256, 1.293097, 1.292941, 1.29279, 1.292643, 1.2925, 1.29236, 1.292224, 1.292091, 1.291961, 1.291835, 1.291711, 1.291591, 1.291473, 1.291358, 1.291246, 1.291136, 1.291029, 1.290924, 1.290821, 1.290721, 1.290623, 1.290527, 1.290432, 1.29034, 1.29025, 1.290161, 1.290075, ], 0.95: [ 6.313752, 2.919986, 2.353363, 2.131847, 2.015048, 1.94318, 1.894579, 1.859548, 1.833113, 1.812461, 1.795885, 1.782288, 1.770933, 1.76131, 1.75305, 1.745884, 1.739607, 1.734064, 1.729133, 1.724718, 1.720743, 1.717144, 1.713872, 1.710882, 1.708141, 1.705618, 1.703288, 1.701131, 1.699127, 1.697261, 1.695519, 1.693889, 1.69236, 1.690924, 1.689572, 1.688298, 1.687094, 1.685954, 1.684875, 1.683851, 1.682878, 1.681952, 1.681071, 1.68023, 1.679427, 1.67866, 1.677927, 1.677224, 1.676551, 1.675905, 1.675285, 1.674689, 1.674116, 1.673565, 1.673034, 1.672522, 1.672029, 1.671553, 1.671093, 1.670649, 1.670219, 1.669804, 1.669402, 1.669013, 1.668636, 1.668271, 1.667916, 1.667572, 1.667239, 1.666914, 1.6666, 1.666294, 1.665996, 1.665707, 1.665425, 1.665151, 1.664885, 1.664625, 1.664371, 1.664125, 1.663884, 1.663649, 1.66342, 1.663197, 1.662978, 1.662765, 1.662557, 1.662354, 1.662155, 1.661961, 1.661771, 1.661585, 1.661404, 1.661226, 1.661052, 1.660881, 1.660715, 1.660551, 1.660391, 1.660234, ], 0.975: [ 12.706205, 4.302653, 3.182446, 2.776445, 2.570582, 2.446912, 2.364624, 2.306004, 2.262157, 2.228139, 2.200985, 2.178813, 2.160369, 2.144787, 2.13145, 2.119905, 2.109816, 2.100922, 2.093024, 2.085963, 2.079614, 2.073873, 2.068658, 2.063899, 2.059539, 2.055529, 2.051831, 2.048407, 2.04523, 2.042272, 2.039513, 2.036933, 2.034515, 2.032245, 2.030108, 2.028094, 2.026192, 2.024394, 2.022691, 2.021075, 2.019541, 2.018082, 2.016692, 2.015368, 2.014103, 2.012896, 2.011741, 2.010635, 2.009575, 2.008559, 2.007584, 2.006647, 2.005746, 2.004879, 2.004045, 2.003241, 2.002465, 2.001717, 2.000995, 2.000298, 1.999624, 1.998972, 1.998341, 1.99773, 1.997138, 1.996564, 1.996008, 1.995469, 1.994945, 1.994437, 1.993943, 1.993464, 1.992997, 1.992543, 1.992102, 1.991673, 1.991254, 1.990847, 1.99045, 1.990063, 1.989686, 1.989319, 1.98896, 1.98861, 1.988268, 1.987934, 1.987608, 1.98729, 1.986979, 1.986675, 1.986377, 1.986086, 1.985802, 1.985523, 1.985251, 1.984984, 1.984723, 1.984467, 1.984217, 1.983972, ], 0.99: [ 31.820516, 6.964557, 4.540703, 3.746947, 3.36493, 3.142668, 2.997952, 2.896459, 2.821438, 2.763769, 2.718079, 2.680998, 2.650309, 2.624494, 2.60248, 2.583487, 2.566934, 2.55238, 2.539483, 2.527977, 2.517648, 2.508325, 2.499867, 2.492159, 2.485107, 2.47863, 2.47266, 2.46714, 2.462021, 2.457262, 2.452824, 2.448678, 2.444794, 2.44115, 2.437723, 2.434494, 2.431447, 2.428568, 2.425841, 2.423257, 2.420803, 2.41847, 2.41625, 2.414134, 2.412116, 2.410188, 2.408345, 2.406581, 2.404892, 2.403272, 2.401718, 2.400225, 2.39879, 2.39741, 2.396081, 2.394801, 2.393568, 2.392377, 2.391229, 2.390119, 2.389047, 2.388011, 2.387008, 2.386037, 2.385097, 2.384186, 2.383302, 2.382446, 2.381615, 2.380807, 2.380024, 2.379262, 2.378522, 2.377802, 2.377102, 2.37642, 2.375757, 2.375111, 2.374482, 2.373868, 2.37327, 2.372687, 2.372119, 2.371564, 2.371022, 2.370493, 2.369977, 2.369472, 2.368979, 2.368497, 2.368026, 2.367566, 2.367115, 2.366674, 2.366243, 2.365821, 2.365407, 2.365002, 2.364606, 2.364217, ], };