// META: title=validation tests for WebNN API resample2d operation // META: global=window // META: variant=?cpu // META: variant=?gpu // META: variant=?npu // META: script=../resources/utils_validation.js 'use strict'; const label = 'resample-2d'; const regrexp = new RegExp('\\[' + label + '\\]'); // Tests for resample2d(input, options) const tests = [ { name: '[resample2d] Test building resample2d with default options', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, output: {dataType: 'float32', shape: [1, 1, 2, 4]}, }, { name: '[resample2d] Test building resample2d with scales=[2.0, 2.0]', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: {scales: [2.0, 2.0]}, output: {dataType: 'float32', shape: [1, 1, 4, 8]}, }, { name: '[resample2d] Test building resample2d with scales=[0.5, 0.5]', input: {dataType: 'float32', shape: [1, 1, 5, 5]}, options: {scales: [0.5, 0.5]}, output: {dataType: 'float32', shape: [1, 1, 2, 2]}, }, { name: '[resample2d] Test building resample2d with scales=[0.5, 0.5] and explicit axes=[2, 3]', input: {dataType: 'float32', shape: [1, 1, 5, 5]}, options: {scales: [0.5, 0.5], axes: [2, 3]}, output: {dataType: 'float32', shape: [1, 1, 2, 2]}, }, { name: '[resample2d] Test building resample2d with scales=[1.0, 2.0] and axes=[0, 1]', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: {scales: [1.0, 2.0], axes: [0, 1]}, output: {dataType: 'float32', shape: [1, 2, 2, 4]}, }, { name: '[resample2d] Test building resample2d with scales=[2.0, 2.0] and axes=[1, 2]', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: {scales: [2.0, 2.0], axes: [1, 2]}, output: {dataType: 'float32', shape: [1, 2, 4, 4]}, }, { name: '[resample2d] Test building resample2d with sizes=[3, 6] ignored scales', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: {scales: [2.0, 2.0], sizes: [3, 6]}, output: {dataType: 'float32', shape: [1, 1, 3, 6]}, }, { name: '[resample2d] Test building resample2d with non consecutive axes=[0,2]', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: { axes: [0, 2], label: label, }, output: {dataType: 'float32', shape: [1, 1, 2, 4]}, }, { name: '[resample2d] Throw if the dataType of input is not float32 or float16', input: {dataType: 'int32', shape: [2, 4]}, options: {label}, }, { name: '[resample2d] Throw if the rank of input is not 4', input: {dataType: 'float32', shape: [2, 4]}, options: {label}, }, { name: '[resample2d] Throw if the length of scales is not 2', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: { scales: [1.0, 1.0, 2.0, 2.0], label: label, }, }, { name: '[resample2d] Throw if any scale value is negative', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: { scales: [1.0, -2.0], label: label, }, }, { name: '[resample2d] Throw if any scale value is 0', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: { scales: [0, 2.0], label: label, }, }, { name: '[resample2d] Throw if the length of sizes is not 2', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: { sizes: [1, 1, 4, 6], label: label, }, }, { name: '[resample2d] Throw if sizes[0] is not a valid dimension', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: { sizes: [0, 1], label: label, }, }, { name: '[resample2d] Throw if sizes[1] is not a valid dimension', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: { sizes: [1, 0], label: label, }, }, { name: '[resample2d] Throw if any size value is out of \'unsigned long\' value range', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: {sizes: [kMaxUnsignedLong + 1, kMaxUnsignedLong + 1]}, }, { name: '[resample2d] Throw if outputHeight being floor(scaleHeight*inputHeight) is too large', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, // The maximum dimension size is kMaxUnsignedLong (2 ** 32 - 1). // Here scaleHeight=kMaxUnsignedLong and inputHeight=2, // so outputHeight being kMaxUnsignedLong*2 > kMaxUnsignedLong . options: {scales: /*[scaleHeight, scaleWidth]*/[kMaxUnsignedLong, 1]}, }, { name: '[resample2d] Throw if scaleHeight is too small', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, // Here scaleHeight=0.02 and inputHeight=2, // so outputHeight would be 0. // Link to https://github.com/webmachinelearning/webnn/issues/391. options: { scales: /*[scaleHeight, scaleWidth]*/[0.02, 0.8], label: label, }, }, { name: '[resample2d] Throw if outputWidth being floor(scaleWidth*inputWidth) is too large', input: {dataType: 'float32', shape: [1, 1, 4, 2]}, // The maximum dimension size is kMaxUnsignedLong (2 ** 32 - 1). // Here scaleWidth=kMaxUnsignedLong and inputWidth=2, // so outputWidth being kMaxUnsignedLong*2 > kMaxUnsignedLong . options: {scales: /*[scaleHeight, scaleWidth]*/[1, kMaxUnsignedLong]}, }, { name: '[resample2d] Throw if scaleWidth is too small', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, // Here scaleWidth=0.1 and inputWidth=4, // so outputWidth would be 0. // Link to https://github.com/webmachinelearning/webnn/issues/391. options: { scales: /*[scaleHeight, scaleWidth]*/[0.7, 0.1], label: label, }, }, { name: '[resample2d] Throw if the length of axes is not 2', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: { axes: [0, 1, 2], label: label, }, }, { name: '[resample2d] Throw if any axis value is greater than or equal to the input rank', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: { axes: [3, 4], label: label, }, }, { name: '[resample2d] Throw if the values of axes are same', input: {dataType: 'float32', shape: [1, 1, 2, 4]}, options: { axes: [0, 0], label: label, }, }, ]; tests.forEach( test => promise_test(async t => { const builder = new MLGraphBuilder(context); const input = builder.input('input', test.input); const options = test.options ?? {}; if (test.output) { const output = builder.resample2d(input, options); assert_equals(output.dataType, test.output.dataType); assert_array_equals(output.shape, test.output.shape); } else { const options = {...test.options}; if (options.label) { assert_throws_with_label( () => builder.resample2d(input, options), regrexp); } else { assert_throws_js(TypeError, () => builder.resample2d(input, options)); } } }, test.name)); validateInputFromAnotherBuilder( 'resample2d', {dataType: 'float32', shape: [2, 2, 2, 2]}); promise_test(async t => { for (let dataType of allWebNNOperandDataTypes) { if (!context.opSupportLimits().input.dataTypes.includes(dataType)) { continue; } const builder = new MLGraphBuilder(context); const shape = [1, 1, 2, 4]; const input = builder.input(`input`, {dataType, shape}); if (context.opSupportLimits().resample2d.input.dataTypes.includes( dataType)) { const output = builder.resample2d(input); assert_equals(output.dataType, dataType); assert_array_equals(output.shape, shape); } else { assert_throws_js(TypeError, () => builder.resample2d(input)); } } }, `[resample2d] Test resample2d with all of the data types.`); promise_test(async t => { const builder = new MLGraphBuilder(context); const input = builder.input('input', { dataType: 'float32', shape: [1, 1, context.opSupportLimits().maxTensorByteLength / 4, 1]}); const options = {}; options.scales = [2.0, 2.0]; options.label = label; assert_throws_with_label( () => builder.resample2d(input, options), regrexp); }, '[resample2d] throw if the output tensor byte length exceeds limit');