1
0
Fork 0
firefox/dom/media/webaudio/AudioEventTimeline.cpp
Daniel Baumann 5e9a113729
Adding upstream version 140.0.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-25 09:37:52 +02:00

513 lines
19 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "AudioEventTimeline.h"
#include "AudioNodeTrack.h"
#include "mozilla/ErrorResult.h"
using mozilla::Span;
// v1 and v0 are passed from float variables but converted to double for
// double precision interpolation.
static void FillLinearRamp(double aBufferStartTime, Span<float> aBuffer,
double t0, double v0, double t1, double v1) {
double bufferStartDelta = aBufferStartTime - t0;
double gradient = (v1 - v0) / (t1 - t0);
for (size_t i = 0; i < aBuffer.Length(); ++i) {
double v = v0 + (bufferStartDelta + static_cast<double>(i)) * gradient;
aBuffer[i] = static_cast<float>(v);
}
}
static void FillExponentialRamp(double aBufferStartTime, Span<float> aBuffer,
double t0, float v0, double t1, float v1) {
MOZ_ASSERT(aBuffer.Length() >= 1);
double fullRatio = static_cast<double>(v1) / v0;
if (v0 == 0.f || fullRatio < 0.0) {
std::fill_n(aBuffer.Elements(), aBuffer.Length(), v0);
return;
}
double tDelta = t1 - t0;
// Calculate the value for the first tick from the curve initial value.
// v(t) = v0 * (v1/v0)^((t-t0)/(t1-t0))
double exponent = (aBufferStartTime - t0) / tDelta;
// The power function can amplify rounding error in the exponent by
// ((tt0)/(t1t0)) ln (v1/v0). The single precision exponent argument for
// powf() would be sufficient when max(v1/v0,v0/v1) <= e, where e is Euler's
// number, but fdlibm's single precision powf() is not expected to provide
// speed advantages over double precision pow().
double v = v0 * fdlibm_pow(fullRatio, exponent);
aBuffer[0] = static_cast<float>(v);
if (aBuffer.Length() == 1) {
return;
}
// Use the inter-tick ratio to calculate values at other ticks.
// v(t+1) = (v1/v0)^(1/(t1-t0)) * v(t)
// Double precision is used so that accumulation of rounding error is not
// significant.
double tickRatio = fdlibm_pow(fullRatio, 1.0 / tDelta);
for (size_t i = 1; i < aBuffer.Length(); ++i) {
v *= tickRatio;
aBuffer[i] = static_cast<float>(v);
}
}
template <typename TimeType, typename DurationType>
static size_t LimitedCountForDuration(size_t aMax, DurationType aDuration);
template <>
size_t LimitedCountForDuration<double>(size_t aMax, double aDuration) {
// aDuration is in seconds, so tick arithmetic is inappropriate,
// and unnecessary.
// GetValuesAtTime() is not available, so at most one value is fetched.
MOZ_ASSERT(aMax <= 1);
return aMax;
}
template <>
size_t LimitedCountForDuration<int64_t>(size_t aMax, int64_t aDuration) {
MOZ_ASSERT(aDuration >= 0);
// int64_t aDuration is in ticks.
// On 32-bit systems, aDuration may be larger than SIZE_MAX.
// Determine the larger with int64_t to avoid truncating before the
// comparison.
return static_cast<int64_t>(aMax) <= aDuration
? aMax
: static_cast<size_t>(aDuration);
}
template <>
size_t LimitedCountForDuration<int64_t>(size_t aMax, double aDuration) {
MOZ_ASSERT(aDuration >= 0);
// double aDuration is in ticks.
// AudioTimelineEvent::mDuration may be larger than INT64_MAX.
// On 32-bit systems, mDuration may be larger than SIZE_MAX.
// Determine the larger with double to avoid truncating before the
// comparison.
return static_cast<double>(aMax) <= aDuration
? aMax
: static_cast<size_t>(aDuration);
}
static float* NewCurveCopy(Span<const float> aCurve) {
if (aCurve.Length() == 0) {
return nullptr;
}
float* curve = new float[aCurve.Length()];
mozilla::PodCopy(curve, aCurve.Elements(), aCurve.Length());
return curve;
}
namespace mozilla::dom {
AudioTimelineEvent::AudioTimelineEvent(Type aType, double aTime, float aValue,
double aTimeConstant)
: mType(aType),
mValue(aValue),
mTimeConstant(aTimeConstant),
mPerTickRatio(std::numeric_limits<double>::quiet_NaN()),
mTime(aTime) {}
AudioTimelineEvent::AudioTimelineEvent(Type aType,
const nsTArray<float>& aValues,
double aStartTime, double aDuration)
: mType(aType),
mCurveLength(aValues.Length()),
mCurve(NewCurveCopy(aValues)),
mDuration(aDuration),
mTime(aStartTime) {
MOZ_ASSERT(aType == AudioTimelineEvent::SetValueCurve);
}
AudioTimelineEvent::AudioTimelineEvent(const AudioTimelineEvent& rhs)
: mType(rhs.mType), mTime(rhs.mTime) {
if (mType == AudioTimelineEvent::SetValueCurve) {
mCurveLength = rhs.mCurveLength;
mCurve = NewCurveCopy(Span(rhs.mCurve, rhs.mCurveLength));
mDuration = rhs.mDuration;
} else {
mValue = rhs.mValue;
mTimeConstant = rhs.mTimeConstant;
mPerTickRatio = rhs.mPerTickRatio;
}
}
AudioTimelineEvent::~AudioTimelineEvent() {
if (mType == AudioTimelineEvent::SetValueCurve) {
delete[] mCurve;
}
}
template <class TimeType>
double AudioTimelineEvent::EndTime() const {
MOZ_ASSERT(mType != AudioTimelineEvent::SetTarget);
if (mType == AudioTimelineEvent::SetValueCurve) {
return Time<TimeType>() + mDuration;
}
return Time<TimeType>();
};
float AudioTimelineEvent::EndValue() const {
if (mType == AudioTimelineEvent::SetValueCurve) {
return mCurve[mCurveLength - 1];
}
return mValue;
};
void AudioTimelineEvent::ConvertToTicks(AudioNodeTrack* aDestination) {
mTime = aDestination->SecondsToNearestTrackTime(mTime.Get<double>());
switch (mType) {
case SetTarget:
mTimeConstant *= aDestination->mSampleRate;
// exp(-1/timeConstant) is usually very close to 1, but its effect
// depends on the difference from 1 and rounding errors would
// accumulate, so use double precision to retain precision in the
// difference. Single precision expm1f() would be sufficient, but the
// arithmetic in AudioTimelineEvent::FillTargetApproach() is simpler
// with exp().
mPerTickRatio =
mTimeConstant == 0.0 ? 0.0 : fdlibm_exp(-1.0 / mTimeConstant);
break;
case SetValueCurve:
mDuration *= aDestination->mSampleRate;
break;
default:
break;
}
}
template <class TimeType>
void AudioTimelineEvent::FillTargetApproach(TimeType aBufferStartTime,
Span<float> aBuffer,
double v0) const {
MOZ_ASSERT(mType == SetTarget);
MOZ_ASSERT(aBuffer.Length() >= 1);
double v1 = mValue;
double vDelta = v0 - v1;
if (vDelta == 0.0 || mTimeConstant == 0.0) {
std::fill_n(aBuffer.Elements(), aBuffer.Length(), mValue);
return;
}
// v(t) = v1 + vDelta(t) where vDelta(t) = (v0-v1) * e^(-(t-t0)/timeConstant).
// Calculate the value for the first element in the buffer using this
// formulation.
vDelta *= fdlibm_expf(-(aBufferStartTime - Time<TimeType>()) / mTimeConstant);
for (size_t i = 0; true;) {
aBuffer[i] = static_cast<float>(v1 + vDelta);
++i;
if (i == aBuffer.Length()) {
return;
}
// For other buffer elements, use the pre-computed exp(-1/timeConstant)
// for the inter-tick ratio of the difference from the target.
// vDelta(t+1) = vDelta(t) * e^(-1/timeConstant)
vDelta *= mPerTickRatio;
}
}
static_assert(TRACK_TIME_MAX >> FloatingPoint<double>::kSignificandWidth == 0,
"double precision must be exact for integer tick counts");
template <class TimeType>
void AudioTimelineEvent::FillFromValueCurve(TimeType aBufferStartTime,
Span<float> aBuffer) const {
MOZ_ASSERT(mType == SetValueCurve);
double curveStartTime = Time<TimeType>();
MOZ_ASSERT(aBufferStartTime >= curveStartTime);
MOZ_ASSERT(aBufferStartTime - curveStartTime <= mDuration);
MOZ_ASSERT((std::is_same<TimeType, int64_t>::value) || aBuffer.Length() == 1);
MOZ_ASSERT((!std::is_same<TimeType, int64_t>::value) ||
aBufferStartTime - curveStartTime + aBuffer.Length() - 1 <=
mDuration);
uint32_t stepCount = mCurveLength - 1;
double timeStep = mDuration / stepCount;
for (size_t fillStart = 0; fillStart < aBuffer.Length();) {
// Find the curve sample index, spec'd as `k`, corresponding to a time less
// than or equal to the first buffer element to be filled.
double stepPos =
(aBufferStartTime + fillStart - curveStartTime) / mDuration * stepCount;
// GetValuesAtTimeHelperInternal() calls this only when
// aBufferStartTime + fillStart - curveStartTime <= mDuration.
MOZ_ASSERT(stepPos >= 0 && stepPos <= UINT32_MAX - 1);
uint32_t currentNode = floor(stepPos);
if (currentNode >= stepCount) {
auto remaining = aBuffer.From(fillStart);
std::fill_n(remaining.Elements(), remaining.Length(), mCurve[stepCount]);
return;
}
// Linearly interpolate to fill the buffer elements for any ticks between
// curve samples k and k + 1 inclusive.
double tCurrent = curveStartTime + currentNode * timeStep;
uint32_t nextNode = currentNode + 1;
double tNext = curveStartTime + nextNode * timeStep;
// The first buffer index that cannot be filled with these curve samples
size_t fillEnd = LimitedCountForDuration<TimeType>(
aBuffer.Length(),
// This parameter is used only when time is in ticks:
// If tNext aligns exactly with a tick then fill to tNext, thus
// ensuring that fillStart is advanced even when timeStep is so small
// that tNext == tCurrent.
floor(tNext - aBufferStartTime) + 1.0);
TimeType fillStartTime =
aBufferStartTime + static_cast<TimeType>(fillStart);
FillLinearRamp(fillStartTime, aBuffer.FromTo(fillStart, fillEnd), tCurrent,
mCurve[currentNode], tNext, mCurve[nextNode]);
fillStart = fillEnd;
}
}
template <class TimeType>
float AudioEventTimeline::ComputeSetTargetStartValue(
const AudioTimelineEvent* aPreviousEvent, TimeType aTime) {
mSetTargetStartTime = aTime;
GetValuesAtTimeHelperInternal(aTime, Span(&mSetTargetStartValue, 1),
aPreviousEvent, nullptr);
return mSetTargetStartValue;
}
template void AudioEventTimeline::CleanupEventsOlderThan(double);
template void AudioEventTimeline::CleanupEventsOlderThan(int64_t);
template <class TimeType>
void AudioEventTimeline::CleanupEventsOlderThan(TimeType aTime) {
auto TimeOf =
[](const decltype(mEvents)::const_iterator& aEvent) -> TimeType {
return aEvent->Time<TimeType>();
};
if (mSimpleValue.isSome()) {
return; // already only a single event
}
// Find first event to keep. Keep one event prior to aTime.
auto begin = mEvents.cbegin();
auto end = mEvents.cend();
auto event = begin + 1;
for (; event < end && aTime > TimeOf(event); ++event) {
}
auto firstToKeep = event - 1;
if (firstToKeep->mType != AudioTimelineEvent::SetTarget) {
// The value is constant if there is a single remaining non-SetTarget event
// that has already passed.
if (end - firstToKeep == 1 && aTime >= firstToKeep->EndTime<TimeType>()) {
mSimpleValue.emplace(firstToKeep->EndValue());
}
} else {
// The firstToKeep event is a SetTarget. Set its initial value if
// not already set. First find the most recent event where the value at
// the end time of the event is known, either from the event or for
// SetTarget events because it has already been calculated. This may not
// have been calculated if GetValuesAtTime() was not called for the start
// time of the SetTarget event.
for (event = firstToKeep;
event > begin && event->mType == AudioTimelineEvent::SetTarget &&
TimeOf(event) > mSetTargetStartTime.Get<TimeType>();
--event) {
}
// Compute SetTarget start times.
for (; event < firstToKeep; ++event) {
MOZ_ASSERT((event + 1)->mType == AudioTimelineEvent::SetTarget);
ComputeSetTargetStartValue(&*event, TimeOf(event + 1));
}
}
if (firstToKeep == begin) {
return;
}
mEvents.RemoveElementsRange(begin, firstToKeep);
}
// This method computes the AudioParam value at a given time based on the event
// timeline
template <class TimeType>
void AudioEventTimeline::GetValuesAtTimeHelper(TimeType aTime, float* aBuffer,
const size_t aSize) {
MOZ_ASSERT(aBuffer);
MOZ_ASSERT(aSize);
auto TimeOf = [](const AudioTimelineEvent& aEvent) -> TimeType {
return aEvent.Time<TimeType>();
};
size_t eventIndex = 0;
const AudioTimelineEvent* previous = nullptr;
// Let's remove old events except the last one: we need it to calculate some
// curves.
CleanupEventsOlderThan(aTime);
for (size_t bufferIndex = 0; bufferIndex < aSize;) {
bool timeMatchesEventIndex = false;
const AudioTimelineEvent* next;
for (;; ++eventIndex) {
if (eventIndex >= mEvents.Length()) {
next = nullptr;
break;
}
next = &mEvents[eventIndex];
if (aTime < TimeOf(*next)) {
break;
}
#ifdef DEBUG
MOZ_ASSERT(next->mType == AudioTimelineEvent::SetValueAtTime ||
next->mType == AudioTimelineEvent::SetTarget ||
next->mType == AudioTimelineEvent::LinearRamp ||
next->mType == AudioTimelineEvent::ExponentialRamp ||
next->mType == AudioTimelineEvent::SetValueCurve);
#endif
if (TimesEqual(aTime, TimeOf(*next))) {
timeMatchesEventIndex = true;
aBuffer[bufferIndex] = GetValueAtTimeOfEvent<TimeType>(next, previous);
// Advance to next event, which may or may not have the same time.
}
previous = next;
}
if (timeMatchesEventIndex) {
// The time matches one of the events exactly.
MOZ_ASSERT(TimesEqual(aTime, TimeOf(mEvents[eventIndex - 1])));
++bufferIndex;
++aTime;
} else {
size_t count = aSize - bufferIndex;
if (next) {
count = LimitedCountForDuration<TimeType>(count, TimeOf(*next) - aTime);
}
GetValuesAtTimeHelperInternal(aTime, Span(aBuffer + bufferIndex, count),
previous, next);
bufferIndex += count;
aTime += static_cast<TimeType>(count);
}
}
}
template void AudioEventTimeline::GetValuesAtTimeHelper(double aTime,
float* aBuffer,
const size_t aSize);
template void AudioEventTimeline::GetValuesAtTimeHelper(int64_t aTime,
float* aBuffer,
const size_t aSize);
template <class TimeType>
float AudioEventTimeline::GetValueAtTimeOfEvent(
const AudioTimelineEvent* aEvent, const AudioTimelineEvent* aPrevious) {
TimeType time = aEvent->Time<TimeType>();
switch (aEvent->mType) {
case AudioTimelineEvent::SetTarget:
// Start the curve, from the last value of the previous event.
return ComputeSetTargetStartValue(aPrevious, time);
case AudioTimelineEvent::SetValueCurve:
return aEvent->StartValue();
default:
// For other event types
return aEvent->NominalValue();
}
}
template <class TimeType>
void AudioEventTimeline::GetValuesAtTimeHelperInternal(
TimeType aStartTime, Span<float> aBuffer,
const AudioTimelineEvent* aPrevious, const AudioTimelineEvent* aNext) {
MOZ_ASSERT(aBuffer.Length() >= 1);
MOZ_ASSERT((std::is_same<TimeType, int64_t>::value) || aBuffer.Length() == 1);
// If the requested time is before all of the existing events
if (!aPrevious) {
std::fill_n(aBuffer.Elements(), aBuffer.Length(), mDefaultValue);
return;
}
auto TimeOf = [](const AudioTimelineEvent* aEvent) -> TimeType {
return aEvent->Time<TimeType>();
};
auto EndTimeOf = [](const AudioTimelineEvent* aEvent) -> double {
return aEvent->EndTime<TimeType>();
};
// SetTarget nodes can be handled no matter what their next node is (if
// they have one)
if (aPrevious->mType == AudioTimelineEvent::SetTarget) {
aPrevious->FillTargetApproach(aStartTime, aBuffer, mSetTargetStartValue);
return;
}
// SetValueCurve events can be handled no matter what their next node is
// (if they have one), when aStartTime is in the curve region.
if (aPrevious->mType == AudioTimelineEvent::SetValueCurve) {
double remainingDuration =
TimeOf(aPrevious) - aStartTime + aPrevious->Duration();
if (remainingDuration >= 0.0) {
// aBuffer.Length() is 1 if remainingDuration is not in ticks.
size_t count = LimitedCountForDuration<TimeType>(
aBuffer.Length(),
// This parameter is used only when time is in ticks:
// Fill the last tick in the curve before possible ramps below.
floor(remainingDuration) + 1.0);
// GetValueAtTimeOfEvent() will set the value at the end of the curve if
// another event immediately follows.
MOZ_ASSERT(!aNext ||
aStartTime + static_cast<TimeType>(count - 1) < TimeOf(aNext));
aPrevious->FillFromValueCurve(aStartTime,
Span(aBuffer.Elements(), count));
aBuffer = aBuffer.From(count);
if (aBuffer.Length() == 0) {
return;
}
aStartTime += static_cast<TimeType>(count);
}
}
// Handle the cases where our range ends up in a ramp event
if (aNext) {
switch (aNext->mType) {
case AudioTimelineEvent::LinearRamp:
FillLinearRamp(aStartTime, aBuffer, EndTimeOf(aPrevious),
aPrevious->EndValue(), TimeOf(aNext),
aNext->NominalValue());
return;
case AudioTimelineEvent::ExponentialRamp:
FillExponentialRamp(aStartTime, aBuffer, EndTimeOf(aPrevious),
aPrevious->EndValue(), TimeOf(aNext),
aNext->NominalValue());
return;
case AudioTimelineEvent::SetValueAtTime:
case AudioTimelineEvent::SetTarget:
case AudioTimelineEvent::SetValueCurve:
break;
case AudioTimelineEvent::Cancel:
case AudioTimelineEvent::Track:
MOZ_ASSERT(false, "Should have been handled earlier.");
}
}
// Now handle all other cases
switch (aPrevious->mType) {
case AudioTimelineEvent::SetValueAtTime:
case AudioTimelineEvent::LinearRamp:
case AudioTimelineEvent::ExponentialRamp:
break;
case AudioTimelineEvent::SetValueCurve:
MOZ_ASSERT(aStartTime - TimeOf(aPrevious) >= aPrevious->Duration());
break;
case AudioTimelineEvent::SetTarget:
MOZ_FALLTHROUGH_ASSERT("AudioTimelineEvent::SetTarget");
case AudioTimelineEvent::Cancel:
case AudioTimelineEvent::Track:
MOZ_ASSERT(false, "Should have been handled earlier.");
}
// If the next event type is neither linear or exponential ramp, the
// value is constant.
std::fill_n(aBuffer.Elements(), aBuffer.Length(), aPrevious->EndValue());
}
} // namespace mozilla::dom