1
0
Fork 0
firefox/ipc/gtest/TestSharedMemory.cpp
Daniel Baumann 5e9a113729
Adding upstream version 140.0.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-25 09:37:52 +02:00

592 lines
16 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gtest/gtest.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/ipc/SharedMemoryCursor.h"
#include "mozilla/ipc/SharedMemoryHandle.h"
#include "mozilla/ipc/SharedMemoryMapping.h"
#ifdef XP_LINUX
# include <errno.h>
# include <linux/magic.h>
# include <stdio.h>
# include <string.h>
# include <sys/statfs.h>
# include <sys/utsname.h>
#endif
#ifdef XP_WIN
# include <windows.h>
#endif
namespace mozilla::ipc {
#define ASSERT_SHMEM(handle, size) \
do { \
ASSERT_EQ((handle).Size(), size_t(size)); \
if (size_t(size) == 0) { \
ASSERT_FALSE((handle).IsValid()); \
ASSERT_FALSE(handle); \
} else { \
ASSERT_TRUE((handle).IsValid()); \
ASSERT_TRUE(handle); \
} \
} while (0)
template <typename T>
struct IPCSharedMemoryFixture : public testing::Test {};
using HandleAndMappingTypes =
testing::Types<MutableSharedMemoryHandle, ReadOnlySharedMemoryHandle,
FreezableSharedMemoryHandle, SharedMemoryMapping,
ReadOnlySharedMemoryMapping, FreezableSharedMemoryMapping,
MutableOrReadOnlySharedMemoryMapping>;
TYPED_TEST_SUITE(IPCSharedMemoryFixture, HandleAndMappingTypes);
TYPED_TEST(IPCSharedMemoryFixture, Null) {
TypeParam t;
ASSERT_SHMEM(t, 0);
if constexpr (std::is_same_v<TypeParam, MutableSharedMemoryHandle> ||
std::is_same_v<TypeParam, ReadOnlySharedMemoryHandle>) {
auto cloned = t.Clone();
ASSERT_SHMEM(cloned, 0);
ASSERT_SHMEM(t, 0);
}
}
TEST(IPCSharedMemoryHandle, Create)
{
auto handle = shared_memory::Create(1);
ASSERT_SHMEM(handle, 1);
}
TEST(IPCSharedMemoryHandle, Move)
{
auto handle = shared_memory::Create(1);
MutableSharedMemoryHandle newHandle(std::move(handle));
ASSERT_SHMEM(handle, 0);
ASSERT_SHMEM(newHandle, 1);
MutableSharedMemoryHandle assignedHandle;
assignedHandle = std::move(newHandle);
ASSERT_SHMEM(newHandle, 0);
ASSERT_SHMEM(assignedHandle, 1);
}
TEST(IPCSharedMemoryHandle, ToReadOnly)
{
auto handle = shared_memory::Create(1);
auto roHandle = std::move(handle).ToReadOnly();
ASSERT_SHMEM(handle, 0);
ASSERT_SHMEM(roHandle, 1);
}
TEST(IPCSharedMemoryHandle, Clone)
{
auto handle = shared_memory::Create(1);
auto clonedHandle = handle.Clone();
ASSERT_SHMEM(handle, 1);
ASSERT_SHMEM(clonedHandle, 1);
}
TEST(IPCSharedMemoryHandle, ROClone)
{
auto handle = shared_memory::Create(1).ToReadOnly();
auto clonedHandle = handle.Clone();
ASSERT_SHMEM(handle, 1);
ASSERT_SHMEM(clonedHandle, 1);
}
TEST(IPCSharedMemoryHandle, CreateFreezable)
{
auto handle = shared_memory::CreateFreezable(1);
ASSERT_SHMEM(handle, 1);
}
TEST(IPCSharedMemoryHandle, WontFreeze)
{
auto handle = shared_memory::CreateFreezable(1);
ASSERT_SHMEM(handle, 1);
auto mHandle = std::move(handle).WontFreeze();
ASSERT_SHMEM(handle, 0);
ASSERT_SHMEM(mHandle, 1);
}
TEST(IPCSharedMemoryHandle, Freeze)
{
auto handle = shared_memory::CreateFreezable(1);
ASSERT_SHMEM(handle, 1);
auto roHandle = std::move(handle).Freeze();
ASSERT_SHMEM(handle, 0);
ASSERT_SHMEM(roHandle, 1);
}
TEST(IPCSharedMemory, Map)
{
auto handle = shared_memory::Create(1);
auto mapping = handle.Map();
ASSERT_SHMEM(handle, 1);
ASSERT_SHMEM(mapping, 1);
}
TEST(IPCSharedMemory, ROMap)
{
auto handle = shared_memory::Create(1).ToReadOnly();
auto mapping = handle.Map();
ASSERT_SHMEM(handle, 1);
ASSERT_SHMEM(mapping, 1);
}
TEST(IPCSharedMemory, FreezeMap)
{
auto handle = shared_memory::CreateFreezable(1);
auto mapping = std::move(handle).Map();
ASSERT_SHMEM(handle, 0);
ASSERT_SHMEM(mapping, 1);
}
TEST(IPCSharedMemoryMapping, Move)
{
auto handle = shared_memory::Create(1);
auto mapping = handle.Map();
SharedMemoryMapping moved(std::move(mapping));
ASSERT_SHMEM(mapping, 0);
ASSERT_SHMEM(moved, 1);
SharedMemoryMapping moveAssigned;
moveAssigned = std::move(moved);
ASSERT_SHMEM(moved, 0);
ASSERT_SHMEM(moveAssigned, 1);
}
TEST(IPCSharedMemoryMapping, ROMove)
{
auto handle = shared_memory::Create(1).ToReadOnly();
auto mapping = handle.Map();
ReadOnlySharedMemoryMapping moved(std::move(mapping));
ASSERT_SHMEM(mapping, 0);
ASSERT_SHMEM(moved, 1);
ReadOnlySharedMemoryMapping moveAssigned;
moveAssigned = std::move(moved);
ASSERT_SHMEM(moved, 0);
ASSERT_SHMEM(moveAssigned, 1);
}
TEST(IPCSharedMemoryMapping, FreezeMove)
{
auto handle = shared_memory::CreateFreezable(1);
auto mapping = std::move(handle).Map();
FreezableSharedMemoryMapping moved(std::move(mapping));
ASSERT_SHMEM(mapping, 0);
ASSERT_SHMEM(moved, 1);
FreezableSharedMemoryMapping moveAssigned;
moveAssigned = std::move(moved);
ASSERT_SHMEM(moved, 0);
ASSERT_SHMEM(moveAssigned, 1);
}
TEST(IPCSharedMemoryMapping, MutableOrReadOnly)
{
auto handle = shared_memory::Create(1);
auto roHandle = handle.Clone().ToReadOnly();
MutableOrReadOnlySharedMemoryMapping mapping;
mapping = handle.Map();
ASSERT_SHMEM(mapping, 1);
ASSERT_FALSE(mapping.IsReadOnly());
mapping = roHandle.Map();
ASSERT_SHMEM(mapping, 1);
ASSERT_TRUE(mapping.IsReadOnly());
}
TEST(IPCSharedMemoryMapping, FreezableFreeze)
{
auto handle = shared_memory::CreateFreezable(1);
auto mapping = std::move(handle).Map();
auto roHandle = std::move(mapping).Freeze();
ASSERT_SHMEM(mapping, 0);
ASSERT_SHMEM(roHandle, 1);
}
TEST(IPCSharedMemoryMapping, FreezableFreezeWithMutableMapping)
{
auto handle = shared_memory::CreateFreezable(1);
auto mapping = std::move(handle).Map();
auto [roHandle, m] = std::move(mapping).FreezeWithMutableMapping();
ASSERT_SHMEM(mapping, 0);
ASSERT_SHMEM(roHandle, 1);
ASSERT_SHMEM(m, 1);
}
TEST(IPCSharedMemoryMapping, FreezableUnmap)
{
auto handle = shared_memory::CreateFreezable(1);
auto mapping = std::move(handle).Map();
handle = std::move(mapping).Unmap();
ASSERT_SHMEM(handle, 1);
ASSERT_SHMEM(mapping, 0);
}
// Try to map a frozen shm for writing. Threat model: the process is
// compromised and then receives a frozen handle.
TEST(IPCSharedMemory, FreezeAndMapRW)
{
// Create
auto handle = ipc::shared_memory::CreateFreezable(1);
ASSERT_TRUE(handle);
// Initialize
auto mapping = std::move(handle).Map();
ASSERT_TRUE(mapping);
auto* mem = mapping.DataAs<char>();
ASSERT_TRUE(mem);
*mem = 'A';
// Freeze
auto [roHandle, rwMapping] = std::move(mapping).FreezeWithMutableMapping();
ASSERT_TRUE(rwMapping);
ASSERT_TRUE(roHandle);
auto roMapping = roHandle.Map();
ASSERT_TRUE(roMapping);
const auto* roMem = roMapping.DataAs<char>();
ASSERT_TRUE(roMem);
ASSERT_EQ(*roMem, 'A');
}
// Try to restore write permissions to a frozen mapping. Threat
// model: the process has mapped frozen shm normally and then is
// compromised, or as for FreezeAndMapRW (see also the
// proof-of-concept at https://crbug.com/project-zero/1671 ).
TEST(IPCSharedMemory, FreezeAndReprotect)
{
// Create
auto handle = ipc::shared_memory::CreateFreezable(1);
ASSERT_TRUE(handle);
// Initialize
auto mapping = std::move(handle).Map();
ASSERT_TRUE(mapping);
auto* mem = mapping.DataAs<char>();
ASSERT_TRUE(mem);
*mem = 'A';
// Freeze
auto roHandle = std::move(mapping).Freeze();
ASSERT_TRUE(roHandle);
auto roMapping = roHandle.Map();
ASSERT_TRUE(roMapping);
const auto* roMem = roMapping.DataAs<char>();
ASSERT_EQ(*roMem, 'A');
// Try to alter protection; should fail
EXPECT_FALSE(ipc::shared_memory::LocalProtect(
(char*)roMem, 1, ipc::shared_memory::AccessReadWrite));
}
#if !defined(XP_WIN) && !defined(XP_DARWIN)
// This essentially tests whether FreezeAndReprotect would have failed
// without the freeze.
//
// It doesn't work on Windows: VirtualProtect can't exceed the permissions set
// in MapViewOfFile regardless of the security status of the original handle.
//
// It doesn't work on MacOS: we can set a higher max_protection for the memory
// when creating the handle, but we wouldn't want to do this for freezable
// handles (to prevent creating additional RW mappings that break the memory
// freezing invariants).
TEST(IPCSharedMemory, Reprotect)
{
// Create
auto handle = ipc::shared_memory::CreateFreezable(1);
ASSERT_TRUE(handle);
// Initialize
auto mapping = std::move(handle).Map();
ASSERT_TRUE(mapping);
auto* mem = mapping.DataAs<char>();
ASSERT_TRUE(mem);
*mem = 'A';
// Unmap without freezing.
auto rwHandle = std::move(mapping).Unmap().WontFreeze();
ASSERT_TRUE(rwHandle);
auto roHandle = std::move(rwHandle).ToReadOnly();
ASSERT_TRUE(roHandle);
// Re-map
auto roMapping = roHandle.Map();
ASSERT_TRUE(roMapping);
const auto* cmem = roMapping.DataAs<char>();
ASSERT_EQ(*cmem, 'A');
// Try to alter protection; should succeed, because not frozen
EXPECT_TRUE(ipc::shared_memory::LocalProtect(
(char*)cmem, 1, ipc::shared_memory::AccessReadWrite));
}
#endif
#ifdef XP_WIN
// Try to regain write permissions on a read-only handle using
// DuplicateHandle; this will succeed if the object has no DACL.
// See also https://crbug.com/338538
TEST(IPCSharedMemory, WinUnfreeze)
{
// Create
auto handle = ipc::shared_memory::CreateFreezable(1);
ASSERT_TRUE(handle);
// Initialize
auto mapping = std::move(handle).Map();
ASSERT_TRUE(mapping);
auto* mem = mapping.DataAs<char>();
ASSERT_TRUE(mem);
*mem = 'A';
// Freeze
auto roHandle = std::move(mapping).Freeze();
ASSERT_TRUE(roHandle);
// Extract handle.
auto platformHandle = std::move(roHandle).TakePlatformHandle();
// Unfreeze.
HANDLE newHandle = INVALID_HANDLE_VALUE;
bool unfroze = ::DuplicateHandle(
GetCurrentProcess(), platformHandle.release(), GetCurrentProcess(),
&newHandle, FILE_MAP_ALL_ACCESS, false, DUPLICATE_CLOSE_SOURCE);
ASSERT_FALSE(unfroze);
}
#endif
// Test that a read-only copy sees changes made to the writeable
// mapping in the case that the page wasn't accessed before the copy.
TEST(IPCSharedMemory, ROCopyAndWrite)
{
auto handle = ipc::shared_memory::CreateFreezable(1);
ASSERT_TRUE(handle);
auto [roHandle, rwMapping] =
std::move(handle).Map().FreezeWithMutableMapping();
ASSERT_TRUE(rwMapping);
ASSERT_TRUE(roHandle);
auto roMapping = roHandle.Map();
auto* memRW = rwMapping.DataAs<char>();
ASSERT_TRUE(memRW);
const auto* memRO = roMapping.DataAs<char>();
ASSERT_TRUE(memRO);
ASSERT_NE(memRW, memRO);
*memRW = 'A';
EXPECT_EQ(*memRO, 'A');
}
// Test that a read-only copy sees changes made to the writeable
// mapping in the case that the page was accessed before the copy
// (and, before that, sees the state as of when the copy was made).
TEST(IPCSharedMemory, ROCopyAndRewrite)
{
auto handle = ipc::shared_memory::CreateFreezable(1);
ASSERT_TRUE(handle);
auto [roHandle, rwMapping] =
std::move(handle).Map().FreezeWithMutableMapping();
ASSERT_TRUE(rwMapping);
ASSERT_TRUE(roHandle);
auto roMapping = roHandle.Map();
auto* memRW = rwMapping.DataAs<char>();
ASSERT_TRUE(memRW);
*memRW = 'A';
const auto* memRO = roMapping.DataAs<char>();
ASSERT_TRUE(memRO);
ASSERT_NE(memRW, memRO);
ASSERT_EQ(*memRW, 'A');
EXPECT_EQ(*memRO, 'A');
*memRW = 'X';
EXPECT_EQ(*memRO, 'X');
}
#ifndef FUZZING
TEST(IPCSharedMemory, BasicIsZero)
{
static constexpr size_t kSize = 65536;
auto shm = ipc::shared_memory::Create(kSize).Map();
auto* mem = shm.DataAs<char>();
for (size_t i = 0; i < kSize; ++i) {
ASSERT_EQ(mem[i], 0) << "offset " << i;
}
}
#endif
#if defined(XP_LINUX) && !defined(ANDROID)
class IPCSharedMemoryLinuxTest : public ::testing::Test {
int mMajor = 0;
int mMinor = 0;
protected:
void SetUp() override {
if (mMajor != 0) {
return;
}
struct utsname uts{};
ASSERT_EQ(uname(&uts), 0) << strerror(errno);
ASSERT_STREQ(uts.sysname, "Linux");
ASSERT_EQ(sscanf(uts.release, "%d.%d", &mMajor, &mMinor), 2);
}
bool HaveKernelVersion(int aMajor, int aMinor) {
return mMajor > aMajor || (mMajor == aMajor && mMinor >= aMinor);
}
bool ShouldHaveMemfd() { return HaveKernelVersion(3, 17); }
bool ShouldHaveMemfdNoExec() { return HaveKernelVersion(6, 3); }
};
// Test that memfd_create is used where expected.
//
// More precisely: if memfd_create support is expected, verify that
// shared memory isn't subject to a filesystem size limit.
TEST_F(IPCSharedMemoryLinuxTest, IsMemfd) {
auto handle = ipc::shared_memory::Create(1);
UniqueFileHandle fd = std::move(handle).TakePlatformHandle();
ASSERT_TRUE(fd);
struct statfs fs{};
ASSERT_EQ(fstatfs(fd.get(), &fs), 0) << strerror(errno);
EXPECT_EQ(fs.f_type, TMPFS_MAGIC);
static constexpr decltype(fs.f_blocks) kNoLimit = 0;
if (ShouldHaveMemfd()) {
EXPECT_EQ(fs.f_blocks, kNoLimit);
} else {
// On older kernels, we expect the memfd / no-limit test to fail.
// (In theory it could succeed if backported memfd support exists;
// if that ever happens, this check can be removed.)
EXPECT_NE(fs.f_blocks, kNoLimit);
}
}
TEST_F(IPCSharedMemoryLinuxTest, MemfdNoExec) {
const bool expectExec = ShouldHaveMemfd() && !ShouldHaveMemfdNoExec();
auto handle = ipc::shared_memory::Create(1);
UniqueFileHandle fd = std::move(handle).TakePlatformHandle();
ASSERT_TRUE(fd);
struct stat sb{};
ASSERT_EQ(fstat(fd.get(), &sb), 0) << strerror(errno);
// Check that mode is reasonable.
EXPECT_EQ(sb.st_mode & (S_IRUSR | S_IWUSR), mode_t(S_IRUSR | S_IWUSR));
// Chech the exec bit
EXPECT_EQ(sb.st_mode & S_IXUSR, mode_t(expectExec ? S_IXUSR : 0));
}
#endif
TEST(IPCSharedMemory, CursorWriteRead)
{
// Select a chunk size which is at least as big as the allocation granularity,
// as smaller sizes will not be able to map.
const size_t chunkSize = ipc::shared_memory::SystemAllocationGranularity();
ASSERT_TRUE(IsPowerOfTwo(chunkSize));
const uint64_t fullSize = chunkSize * 20;
auto handle = ipc::shared_memory::Create(fullSize);
ASSERT_TRUE(handle.IsValid());
ASSERT_EQ(handle.Size(), fullSize);
// Map the entire region.
auto mapping = handle.Map();
ASSERT_TRUE(mapping.IsValid());
ASSERT_EQ(mapping.Size(), fullSize);
// Use a cursor to write some data.
ipc::shared_memory::Cursor cursor(std::move(handle));
ASSERT_EQ(cursor.Offset(), 0u);
ASSERT_EQ(cursor.Size(), fullSize);
// Set the chunk size to ensure we use multiple mappings for this data region.
cursor.SetChunkSize(chunkSize);
// Two basic blocks of data which are used for writeReadTest.
const char data[] = "Hello, World!";
const char data2[] = "AnotherString";
auto writeReadTest = [&]() {
uint64_t initialOffset = cursor.Offset();
// Clear out the buffer to a known state so that any checks will fail if
// they're depending on previous writes.
memset(mapping.Address(), 0xe5, mapping.Size());
// Write "Hello, World" at the offset, and ensure it is reflected in the
// full mapping.
ASSERT_TRUE(cursor.Write(data, std::size(data)));
ASSERT_EQ(cursor.Offset(), initialOffset + std::size(data));
ASSERT_STREQ(mapping.DataAs<char>() + initialOffset, data);
// Write some data in the full mapping at the same offset, and enure it can
// be read.
memcpy(mapping.DataAs<char>() + initialOffset, data2, std::size(data2));
cursor.Seek(initialOffset);
ASSERT_EQ(cursor.Offset(), initialOffset);
char buffer[std::size(data2)];
ASSERT_TRUE(cursor.Read(buffer, std::size(buffer)));
ASSERT_EQ(cursor.Offset(), initialOffset + std::size(buffer));
ASSERT_STREQ(buffer, data2);
};
writeReadTest();
// Run the writeReadTest at various offsets within the buffer, including at
// every chunk boundary, and in the middle of each chunk.
for (size_t offset = chunkSize - 3; offset < fullSize - 3;
offset += chunkSize / 2) {
cursor.Seek(offset);
writeReadTest();
}
// Do a writeReadTest at the very end of the allocated region to ensure that
// edge case is handled.
cursor.Seek(mapping.Size() - std::max(std::size(data), std::size(data2)));
writeReadTest();
// Ensure that writes past the end fail safely.
cursor.Seek(mapping.Size() - 3);
ASSERT_FALSE(cursor.Write(data, std::size(data)));
}
} // namespace mozilla::ipc