3100 lines
130 KiB
C++
3100 lines
130 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/* struct containing the input to nsIFrame::Reflow */
|
|
|
|
#include "mozilla/ReflowInput.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "CounterStyleManager.h"
|
|
#include "LayoutLogging.h"
|
|
#include "mozilla/dom/HTMLInputElement.h"
|
|
#include "mozilla/ScrollContainerFrame.h"
|
|
#include "mozilla/WritingModes.h"
|
|
#include "nsBlockFrame.h"
|
|
#include "nsFlexContainerFrame.h"
|
|
#include "nsFontInflationData.h"
|
|
#include "nsFontMetrics.h"
|
|
#include "nsGkAtoms.h"
|
|
#include "nsGridContainerFrame.h"
|
|
#include "nsIContent.h"
|
|
#include "nsIFrame.h"
|
|
#include "nsIFrameInlines.h"
|
|
#include "nsImageFrame.h"
|
|
#include "nsIPercentBSizeObserver.h"
|
|
#include "nsLayoutUtils.h"
|
|
#include "nsLineBox.h"
|
|
#include "nsPresContext.h"
|
|
#include "nsStyleConsts.h"
|
|
#include "nsTableFrame.h"
|
|
#include "StickyScrollContainer.h"
|
|
|
|
using namespace mozilla;
|
|
using namespace mozilla::css;
|
|
using namespace mozilla::dom;
|
|
using namespace mozilla::layout;
|
|
|
|
static bool CheckNextInFlowParenthood(nsIFrame* aFrame, nsIFrame* aParent) {
|
|
nsIFrame* frameNext = aFrame->GetNextInFlow();
|
|
nsIFrame* parentNext = aParent->GetNextInFlow();
|
|
return frameNext && parentNext && frameNext->GetParent() == parentNext;
|
|
}
|
|
|
|
/**
|
|
* Adjusts the margin for a list (ol, ul), if necessary, depending on
|
|
* font inflation settings. Unfortunately, because bullets from a list are
|
|
* placed in the margin area, we only have ~40px in which to place the
|
|
* bullets. When they are inflated, however, this causes problems, since
|
|
* the text takes up more space than is available in the margin.
|
|
*
|
|
* This method will return a small amount (in app units) by which the
|
|
* margin can be adjusted, so that the space is available for list
|
|
* bullets to be rendered with font inflation enabled.
|
|
*/
|
|
static nscoord FontSizeInflationListMarginAdjustment(const nsIFrame* aFrame) {
|
|
// As an optimization we check this block frame specific bit up front before
|
|
// we even check if the frame is a block frame. That's only valid so long as
|
|
// we also have the `IsBlockFrameOrSubclass()` call below. Calling that is
|
|
// expensive though, and we want to avoid it if we know `HasMarker()` would
|
|
// return false.
|
|
if (!aFrame->HasAnyStateBits(NS_BLOCK_HAS_MARKER)) {
|
|
return 0;
|
|
}
|
|
|
|
// On desktop font inflation is disabled, so this will always early exit
|
|
// quickly, but checking the frame state bit is still quicker then this call
|
|
// and very likely to early exit on its own so we check this second.
|
|
float inflation = nsLayoutUtils::FontSizeInflationFor(aFrame);
|
|
if (inflation <= 1.0f) {
|
|
return 0;
|
|
}
|
|
|
|
if (!aFrame->IsBlockFrameOrSubclass()) {
|
|
return 0;
|
|
}
|
|
|
|
// We only want to adjust the margins if we're dealing with an ordered list.
|
|
// We already checked this above.
|
|
MOZ_ASSERT(static_cast<const nsBlockFrame*>(aFrame)->HasMarker());
|
|
|
|
const auto* list = aFrame->StyleList();
|
|
if (list->mListStyleType.IsNone()) {
|
|
return 0;
|
|
}
|
|
|
|
// The HTML spec states that the default padding for ordered lists
|
|
// begins at 40px, indicating that we have 40px of space to place a
|
|
// bullet. When performing font inflation calculations, we add space
|
|
// equivalent to this, but simply inflated at the same amount as the
|
|
// text, in app units.
|
|
auto margin = nsPresContext::CSSPixelsToAppUnits(40) * (inflation - 1);
|
|
if (!list->mListStyleType.IsName()) {
|
|
return margin;
|
|
}
|
|
|
|
nsAtom* type = list->mListStyleType.AsName().AsAtom();
|
|
if (type != nsGkAtoms::disc && type != nsGkAtoms::circle &&
|
|
type != nsGkAtoms::square && type != nsGkAtoms::disclosure_closed &&
|
|
type != nsGkAtoms::disclosure_open) {
|
|
return margin;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
SizeComputationInput::SizeComputationInput(nsIFrame* aFrame,
|
|
gfxContext* aRenderingContext)
|
|
: mFrame(aFrame),
|
|
mRenderingContext(aRenderingContext),
|
|
mWritingMode(aFrame->GetWritingMode()),
|
|
mIsThemed(aFrame->IsThemed()),
|
|
mComputedMargin(mWritingMode),
|
|
mComputedBorderPadding(mWritingMode),
|
|
mComputedPadding(mWritingMode) {
|
|
MOZ_ASSERT(mFrame);
|
|
}
|
|
|
|
SizeComputationInput::SizeComputationInput(
|
|
nsIFrame* aFrame, gfxContext* aRenderingContext,
|
|
WritingMode aContainingBlockWritingMode, nscoord aContainingBlockISize,
|
|
const Maybe<LogicalMargin>& aBorder, const Maybe<LogicalMargin>& aPadding)
|
|
: SizeComputationInput(aFrame, aRenderingContext) {
|
|
MOZ_ASSERT(!mFrame->IsTableColFrame());
|
|
InitOffsets(aContainingBlockWritingMode, aContainingBlockISize,
|
|
mFrame->Type(), {}, aBorder, aPadding);
|
|
}
|
|
|
|
// Initialize a <b>root</b> reflow input with a rendering context to
|
|
// use for measuring things.
|
|
ReflowInput::ReflowInput(nsPresContext* aPresContext, nsIFrame* aFrame,
|
|
gfxContext* aRenderingContext,
|
|
const LogicalSize& aAvailableSpace, InitFlags aFlags)
|
|
: SizeComputationInput(aFrame, aRenderingContext),
|
|
mAvailableSize(aAvailableSpace) {
|
|
MOZ_ASSERT(aRenderingContext, "no rendering context");
|
|
MOZ_ASSERT(aPresContext, "no pres context");
|
|
MOZ_ASSERT(aFrame, "no frame");
|
|
MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
|
|
|
|
if (aFlags.contains(InitFlag::DummyParentReflowInput)) {
|
|
mFlags.mDummyParentReflowInput = true;
|
|
}
|
|
if (aFlags.contains(InitFlag::StaticPosIsCBOrigin)) {
|
|
mFlags.mStaticPosIsCBOrigin = true;
|
|
}
|
|
|
|
if (!aFlags.contains(InitFlag::CallerWillInit)) {
|
|
Init(aPresContext);
|
|
}
|
|
// When we encounter a PageContent frame this will be set to true.
|
|
mFlags.mCanHaveClassABreakpoints = false;
|
|
}
|
|
|
|
static nsSize GetICBSize(const nsPresContext* aPresContext,
|
|
const nsIFrame* aFrame) {
|
|
if (!aPresContext->IsPaginated()) {
|
|
return aPresContext->GetVisibleArea().Size();
|
|
}
|
|
for (const nsIFrame* f = aFrame->GetParent(); f; f = f->GetParent()) {
|
|
if (f->IsPageContentFrame()) {
|
|
return f->GetSize();
|
|
}
|
|
}
|
|
return aPresContext->GetPageSize();
|
|
}
|
|
|
|
// Initialize a reflow input for a child frame's reflow. Some state
|
|
// is copied from the parent reflow input; the remaining state is
|
|
// computed.
|
|
ReflowInput::ReflowInput(nsPresContext* aPresContext,
|
|
const ReflowInput& aParentReflowInput,
|
|
nsIFrame* aFrame, const LogicalSize& aAvailableSpace,
|
|
const Maybe<LogicalSize>& aContainingBlockSize,
|
|
InitFlags aFlags,
|
|
const StyleSizeOverrides& aSizeOverrides,
|
|
ComputeSizeFlags aComputeSizeFlags)
|
|
: SizeComputationInput(aFrame, aParentReflowInput.mRenderingContext),
|
|
mParentReflowInput(&aParentReflowInput),
|
|
mFloatManager(aParentReflowInput.mFloatManager),
|
|
mLineLayout(mFrame->IsLineParticipant() ? aParentReflowInput.mLineLayout
|
|
: nullptr),
|
|
mBreakType(aParentReflowInput.mBreakType),
|
|
mPercentBSizeObserver(
|
|
(aParentReflowInput.mPercentBSizeObserver &&
|
|
aParentReflowInput.mPercentBSizeObserver->NeedsToObserve(*this))
|
|
? aParentReflowInput.mPercentBSizeObserver
|
|
: nullptr),
|
|
mFlags(aParentReflowInput.mFlags),
|
|
mStyleSizeOverrides(aSizeOverrides),
|
|
mComputeSizeFlags(aComputeSizeFlags),
|
|
mReflowDepth(aParentReflowInput.mReflowDepth + 1),
|
|
mAvailableSize(aAvailableSpace) {
|
|
MOZ_ASSERT(aPresContext, "no pres context");
|
|
MOZ_ASSERT(aFrame, "no frame");
|
|
MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
|
|
MOZ_ASSERT(!mFlags.mSpecialBSizeReflow || !aFrame->IsSubtreeDirty(),
|
|
"frame should be clean when getting special bsize reflow");
|
|
|
|
if (mWritingMode.IsOrthogonalTo(mParentReflowInput->GetWritingMode())) {
|
|
// If the block establishes an orthogonal flow, set up its AvailableISize
|
|
// per https://drafts.csswg.org/css-writing-modes/#orthogonal-auto
|
|
|
|
auto GetISizeConstraint = [this](const nsIFrame* aFrame,
|
|
bool* aFixed = nullptr) -> nscoord {
|
|
nscoord limit = NS_UNCONSTRAINEDSIZE;
|
|
const auto* pos = aFrame->StylePosition();
|
|
const auto positionProperty = aFrame->StyleDisplay()->mPosition;
|
|
if (auto size = nsLayoutUtils::GetAbsoluteSize(
|
|
*pos->ISize(mWritingMode, positionProperty))) {
|
|
limit = size.value();
|
|
if (aFixed) {
|
|
*aFixed = true;
|
|
}
|
|
} else if (auto maxSize = nsLayoutUtils::GetAbsoluteSize(
|
|
*pos->MaxISize(mWritingMode, positionProperty))) {
|
|
limit = maxSize.value();
|
|
}
|
|
if (limit != NS_UNCONSTRAINEDSIZE) {
|
|
if (auto minSize = nsLayoutUtils::GetAbsoluteSize(
|
|
*pos->MinISize(mWritingMode, positionProperty))) {
|
|
limit = std::max(limit, minSize.value());
|
|
}
|
|
}
|
|
return limit;
|
|
};
|
|
|
|
// See if the containing block has a fixed size we should respect:
|
|
const nsIFrame* cb = mFrame->GetContainingBlock();
|
|
bool isFixed = false;
|
|
nscoord cbLimit = GetISizeConstraint(cb, &isFixed);
|
|
if (isFixed) {
|
|
SetAvailableISize(cbLimit);
|
|
} else {
|
|
// If the CB size wasn't fixed, we consider the nearest scroll container
|
|
// and the ICB.
|
|
|
|
nscoord scLimit = NS_UNCONSTRAINEDSIZE;
|
|
// If the containing block was not a scroll container itself, look up the
|
|
// parent chain for a scroller size that we should respect.
|
|
// XXX Could maybe use nsLayoutUtils::GetNearestScrollContainerFrame here,
|
|
// but unsure if we need the additional complexity it supports?
|
|
if (!cb->IsScrollContainerFrame()) {
|
|
for (const nsIFrame* p = mFrame->GetParent(); p; p = p->GetParent()) {
|
|
if (p->IsScrollContainerFrame()) {
|
|
scLimit = GetISizeConstraint(p);
|
|
// Only the closest ancestor scroller is relevant, so quit as soon
|
|
// as we've found one (whether or not it had fixed sizing).
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
LogicalSize icbSize(mWritingMode, GetICBSize(aPresContext, mFrame));
|
|
nscoord icbLimit = icbSize.ISize(mWritingMode);
|
|
|
|
SetAvailableISize(std::min(icbLimit, std::min(scLimit, cbLimit)));
|
|
}
|
|
}
|
|
|
|
// Note: mFlags was initialized as a copy of aParentReflowInput.mFlags up in
|
|
// this constructor's init list, so the only flags that we need to explicitly
|
|
// initialize here are those that may need a value other than our parent's.
|
|
mFlags.mNextInFlowUntouched =
|
|
aParentReflowInput.mFlags.mNextInFlowUntouched &&
|
|
CheckNextInFlowParenthood(aFrame, aParentReflowInput.mFrame);
|
|
mFlags.mAssumingHScrollbar = mFlags.mAssumingVScrollbar = false;
|
|
mFlags.mIsColumnBalancing = false;
|
|
mFlags.mColumnSetWrapperHasNoBSizeLeft = false;
|
|
mFlags.mTreatBSizeAsIndefinite = false;
|
|
mFlags.mDummyParentReflowInput = false;
|
|
mFlags.mStaticPosIsCBOrigin = aFlags.contains(InitFlag::StaticPosIsCBOrigin);
|
|
mFlags.mIOffsetsNeedCSSAlign = mFlags.mBOffsetsNeedCSSAlign = false;
|
|
|
|
// We don't want the mOrthogonalCellFinalReflow flag to be inherited; it's up
|
|
// to the table row frame to set it for its direct children as needed.
|
|
mFlags.mOrthogonalCellFinalReflow = false;
|
|
|
|
// aPresContext->IsPaginated() and the named pages pref should have been
|
|
// checked when constructing the root ReflowInput.
|
|
if (aParentReflowInput.mFlags.mCanHaveClassABreakpoints) {
|
|
MOZ_ASSERT(aPresContext->IsPaginated(),
|
|
"mCanHaveClassABreakpoints set during non-paginated reflow.");
|
|
}
|
|
|
|
{
|
|
switch (mFrame->Type()) {
|
|
case LayoutFrameType::PageContent:
|
|
// PageContent requires paginated reflow.
|
|
MOZ_ASSERT(aPresContext->IsPaginated(),
|
|
"nsPageContentFrame should not be in non-paginated reflow");
|
|
MOZ_ASSERT(!mFlags.mCanHaveClassABreakpoints,
|
|
"mFlags.mCanHaveClassABreakpoints should have been "
|
|
"initalized to false before we found nsPageContentFrame");
|
|
mFlags.mCanHaveClassABreakpoints = true;
|
|
break;
|
|
case LayoutFrameType::Block: // FALLTHROUGH
|
|
case LayoutFrameType::Canvas: // FALLTHROUGH
|
|
case LayoutFrameType::FlexContainer: // FALLTHROUGH
|
|
case LayoutFrameType::GridContainer:
|
|
if (mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW)) {
|
|
// Never allow breakpoints inside of out-of-flow frames.
|
|
mFlags.mCanHaveClassABreakpoints = false;
|
|
break;
|
|
}
|
|
// This frame type can have class A breakpoints, inherit this flag
|
|
// from the parent (this is done for all flags during construction).
|
|
// This also includes Canvas frames, as each PageContent frame always
|
|
// has exactly one child which is a Canvas frame.
|
|
// Do NOT include the subclasses of BlockFrame here, as the ones for
|
|
// which this could be applicable (ColumnSetWrapper and the MathML
|
|
// frames) cannot have class A breakpoints.
|
|
MOZ_ASSERT(mFlags.mCanHaveClassABreakpoints ==
|
|
aParentReflowInput.mFlags.mCanHaveClassABreakpoints);
|
|
break;
|
|
default:
|
|
mFlags.mCanHaveClassABreakpoints = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (aFlags.contains(InitFlag::DummyParentReflowInput) ||
|
|
(mParentReflowInput->mFlags.mDummyParentReflowInput &&
|
|
mFrame->IsTableFrame())) {
|
|
mFlags.mDummyParentReflowInput = true;
|
|
}
|
|
|
|
if (!aFlags.contains(InitFlag::CallerWillInit)) {
|
|
Init(aPresContext, aContainingBlockSize);
|
|
}
|
|
}
|
|
|
|
template <typename SizeOrMaxSize>
|
|
nscoord SizeComputationInput::ComputeISizeValue(
|
|
const LogicalSize& aContainingBlockSize, StyleBoxSizing aBoxSizing,
|
|
const SizeOrMaxSize& aSize) const {
|
|
WritingMode wm = GetWritingMode();
|
|
const auto borderPadding = ComputedLogicalBorderPadding(wm);
|
|
const LogicalSize contentEdgeToBoxSizing =
|
|
aBoxSizing == StyleBoxSizing::Border ? borderPadding.Size(wm)
|
|
: LogicalSize(wm);
|
|
const nscoord boxSizingToMarginEdgeISize =
|
|
borderPadding.IStartEnd(wm) + ComputedLogicalMargin(wm).IStartEnd(wm) -
|
|
contentEdgeToBoxSizing.ISize(wm);
|
|
|
|
return mFrame
|
|
->ComputeISizeValue(mRenderingContext, wm, aContainingBlockSize,
|
|
contentEdgeToBoxSizing, boxSizingToMarginEdgeISize,
|
|
aSize,
|
|
*mFrame->StylePosition()->BSize(
|
|
wm, mFrame->StyleDisplay()->mPosition),
|
|
mFrame->GetAspectRatio())
|
|
.mISize;
|
|
}
|
|
|
|
template <typename SizeOrMaxSize>
|
|
nscoord SizeComputationInput::ComputeBSizeValueHandlingStretch(
|
|
nscoord aContainingBlockBSize, StyleBoxSizing aBoxSizing,
|
|
const SizeOrMaxSize& aSize) const {
|
|
if (aSize.BehavesLikeStretchOnBlockAxis()) {
|
|
WritingMode wm = GetWritingMode();
|
|
return nsLayoutUtils::ComputeStretchContentBoxBSize(
|
|
aContainingBlockBSize, ComputedLogicalMargin(wm).Size(wm).BSize(wm),
|
|
ComputedLogicalBorderPadding(wm).Size(wm).BSize(wm));
|
|
}
|
|
return ComputeBSizeValue(aContainingBlockBSize, aBoxSizing,
|
|
aSize.AsLengthPercentage());
|
|
}
|
|
|
|
nscoord SizeComputationInput::ComputeBSizeValue(
|
|
nscoord aContainingBlockBSize, StyleBoxSizing aBoxSizing,
|
|
const LengthPercentage& aSize) const {
|
|
WritingMode wm = GetWritingMode();
|
|
nscoord inside = 0;
|
|
if (aBoxSizing == StyleBoxSizing::Border) {
|
|
inside = ComputedLogicalBorderPadding(wm).BStartEnd(wm);
|
|
}
|
|
return nsLayoutUtils::ComputeBSizeValue(aContainingBlockBSize, inside, aSize);
|
|
}
|
|
|
|
WritingMode ReflowInput::GetCBWritingMode() const {
|
|
return mCBReflowInput ? mCBReflowInput->GetWritingMode()
|
|
: mFrame->GetContainingBlock()->GetWritingMode();
|
|
}
|
|
|
|
nsSize ReflowInput::ComputedSizeAsContainerIfConstrained() const {
|
|
LogicalSize size = ComputedSize();
|
|
if (size.ISize(mWritingMode) == NS_UNCONSTRAINEDSIZE) {
|
|
size.ISize(mWritingMode) = 0;
|
|
} else {
|
|
size.ISize(mWritingMode) += mComputedBorderPadding.IStartEnd(mWritingMode);
|
|
}
|
|
if (size.BSize(mWritingMode) == NS_UNCONSTRAINEDSIZE) {
|
|
size.BSize(mWritingMode) = 0;
|
|
} else {
|
|
size.BSize(mWritingMode) += mComputedBorderPadding.BStartEnd(mWritingMode);
|
|
}
|
|
return size.GetPhysicalSize(mWritingMode);
|
|
}
|
|
|
|
bool ReflowInput::ShouldReflowAllKids() const {
|
|
// Note that we could make a stronger optimization for IsBResize if
|
|
// we use it in a ShouldReflowChild test that replaces the current
|
|
// checks of NS_FRAME_IS_DIRTY | NS_FRAME_HAS_DIRTY_CHILDREN, if it
|
|
// were tested there along with NS_FRAME_CONTAINS_RELATIVE_BSIZE.
|
|
// This would need to be combined with a slight change in which
|
|
// frames NS_FRAME_CONTAINS_RELATIVE_BSIZE is marked on.
|
|
return mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY) || IsIResize() ||
|
|
(IsBResize() &&
|
|
mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) ||
|
|
mFlags.mIsInLastColumnBalancingReflow;
|
|
}
|
|
|
|
void ReflowInput::SetComputedISize(nscoord aComputedISize,
|
|
ResetResizeFlags aFlags) {
|
|
// It'd be nice to assert that |frame| is not in reflow, but this fails
|
|
// because viewport frames reset the computed isize on a copy of their reflow
|
|
// input when reflowing fixed-pos kids. In that case we actually don't want
|
|
// to mess with the resize flags, because comparing the frame's rect to the
|
|
// munged computed isize is pointless.
|
|
NS_WARNING_ASSERTION(aComputedISize >= 0, "Invalid computed inline-size!");
|
|
if (ComputedISize() != aComputedISize) {
|
|
mComputedSize.ISize(mWritingMode) = std::max(0, aComputedISize);
|
|
if (aFlags == ResetResizeFlags::Yes) {
|
|
InitResizeFlags(mFrame->PresContext(), mFrame->Type());
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReflowInput::SetComputedBSize(nscoord aComputedBSize,
|
|
ResetResizeFlags aFlags) {
|
|
// It'd be nice to assert that |frame| is not in reflow, but this fails
|
|
// for the same reason as above.
|
|
NS_WARNING_ASSERTION(aComputedBSize >= 0, "Invalid computed block-size!");
|
|
if (ComputedBSize() != aComputedBSize) {
|
|
mComputedSize.BSize(mWritingMode) = std::max(0, aComputedBSize);
|
|
if (aFlags == ResetResizeFlags::Yes) {
|
|
InitResizeFlags(mFrame->PresContext(), mFrame->Type());
|
|
}
|
|
}
|
|
}
|
|
|
|
void ReflowInput::Init(nsPresContext* aPresContext,
|
|
const Maybe<LogicalSize>& aContainingBlockSize,
|
|
const Maybe<LogicalMargin>& aBorder,
|
|
const Maybe<LogicalMargin>& aPadding) {
|
|
LAYOUT_WARN_IF_FALSE(AvailableISize() != NS_UNCONSTRAINEDSIZE,
|
|
"have unconstrained inline-size; this should only "
|
|
"result from very large sizes, not attempts at "
|
|
"intrinsic inline-size calculation");
|
|
|
|
mStylePosition = mFrame->StylePosition();
|
|
mStyleDisplay = mFrame->StyleDisplay();
|
|
mStyleBorder = mFrame->StyleBorder();
|
|
mStyleMargin = mFrame->StyleMargin();
|
|
|
|
InitCBReflowInput();
|
|
|
|
LayoutFrameType type = mFrame->Type();
|
|
if (type == LayoutFrameType::Placeholder) {
|
|
// Placeholders have a no-op Reflow method that doesn't need the rest of
|
|
// this initialization, so we bail out early.
|
|
mComputedSize.SizeTo(mWritingMode, 0, 0);
|
|
return;
|
|
}
|
|
|
|
mFlags.mIsReplaced = mFrame->IsReplaced();
|
|
|
|
InitConstraints(aPresContext, aContainingBlockSize, aBorder, aPadding, type);
|
|
|
|
InitResizeFlags(aPresContext, type);
|
|
InitDynamicReflowRoot();
|
|
|
|
nsIFrame* parent = mFrame->GetParent();
|
|
if (parent && parent->HasAnyStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE) &&
|
|
!(parent->IsScrollContainerFrame() &&
|
|
parent->StyleDisplay()->mOverflowY != StyleOverflow::Hidden)) {
|
|
mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
|
|
} else if (type == LayoutFrameType::SVGForeignObject) {
|
|
// An SVG foreignObject frame is inherently constrained block-size.
|
|
mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
|
|
} else {
|
|
const auto positionProperty = mStyleDisplay->mPosition;
|
|
const auto bSizeCoord =
|
|
mStylePosition->BSize(mWritingMode, positionProperty);
|
|
const auto maxBSizeCoord =
|
|
mStylePosition->MaxBSize(mWritingMode, positionProperty);
|
|
if ((!bSizeCoord->BehavesLikeInitialValueOnBlockAxis() ||
|
|
!maxBSizeCoord->BehavesLikeInitialValueOnBlockAxis()) &&
|
|
// Don't set NS_FRAME_IN_CONSTRAINED_BSIZE on body or html elements.
|
|
(mFrame->GetContent() && !(mFrame->GetContent()->IsAnyOfHTMLElements(
|
|
nsGkAtoms::body, nsGkAtoms::html)))) {
|
|
// If our block-size was specified as a percentage, then this could
|
|
// actually resolve to 'auto', based on:
|
|
// http://www.w3.org/TR/CSS21/visudet.html#the-height-property
|
|
nsIFrame* containingBlk = mFrame;
|
|
while (containingBlk) {
|
|
const nsStylePosition* stylePos = containingBlk->StylePosition();
|
|
const auto containingBlkPositionProperty =
|
|
containingBlk->StyleDisplay()->mPosition;
|
|
const auto bSizeCoord =
|
|
stylePos->BSize(mWritingMode, containingBlkPositionProperty);
|
|
const auto& maxBSizeCoord =
|
|
stylePos->MaxBSize(mWritingMode, containingBlkPositionProperty);
|
|
if ((bSizeCoord->IsLengthPercentage() && !bSizeCoord->HasPercent()) ||
|
|
(maxBSizeCoord->IsLengthPercentage() &&
|
|
!maxBSizeCoord->HasPercent())) {
|
|
mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
|
|
break;
|
|
} else if (bSizeCoord->HasPercent() || maxBSizeCoord->HasPercent()) {
|
|
if (!(containingBlk = containingBlk->GetContainingBlock())) {
|
|
// If we've reached the top of the tree, then we don't have
|
|
// a constrained block-size.
|
|
mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
|
|
break;
|
|
}
|
|
|
|
continue;
|
|
} else {
|
|
mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
|
|
}
|
|
}
|
|
|
|
if (mParentReflowInput &&
|
|
mParentReflowInput->GetWritingMode().IsOrthogonalTo(mWritingMode)) {
|
|
// Orthogonal frames are always reflowed with an unconstrained
|
|
// dimension to avoid incomplete reflow across an orthogonal
|
|
// boundary. Normally this is the block-size, but for column sets
|
|
// with auto-height it's the inline-size, so that they can add
|
|
// columns in the container's block direction
|
|
if (type == LayoutFrameType::ColumnSet &&
|
|
mStylePosition->ISize(mWritingMode, mStyleDisplay->mPosition)
|
|
->IsAuto()) {
|
|
SetComputedISize(NS_UNCONSTRAINEDSIZE, ResetResizeFlags::No);
|
|
} else {
|
|
SetAvailableBSize(NS_UNCONSTRAINEDSIZE);
|
|
}
|
|
}
|
|
|
|
if (mFrame->GetContainSizeAxes().mBContained) {
|
|
// In the case that a box is size contained in block axis, we want to ensure
|
|
// that it is also monolithic. We do this by setting AvailableBSize() to an
|
|
// unconstrained size to avoid fragmentation.
|
|
SetAvailableBSize(NS_UNCONSTRAINEDSIZE);
|
|
}
|
|
|
|
LAYOUT_WARN_IF_FALSE(
|
|
(mStyleDisplay->IsInlineOutsideStyle() && !mFrame->IsReplaced()) ||
|
|
type == LayoutFrameType::Text ||
|
|
ComputedISize() != NS_UNCONSTRAINEDSIZE,
|
|
"have unconstrained inline-size; this should only "
|
|
"result from very large sizes, not attempts at "
|
|
"intrinsic inline-size calculation");
|
|
}
|
|
|
|
static bool MightBeContainingBlockFor(nsIFrame* aMaybeContainingBlock,
|
|
nsIFrame* aFrame,
|
|
const nsStyleDisplay* aStyleDisplay) {
|
|
// Keep this in sync with nsIFrame::GetContainingBlock.
|
|
if (aFrame->IsAbsolutelyPositioned(aStyleDisplay) &&
|
|
aMaybeContainingBlock == aFrame->GetParent()) {
|
|
return true;
|
|
}
|
|
return aMaybeContainingBlock->IsBlockContainer();
|
|
}
|
|
|
|
void ReflowInput::InitCBReflowInput() {
|
|
if (!mParentReflowInput) {
|
|
mCBReflowInput = nullptr;
|
|
return;
|
|
}
|
|
if (mParentReflowInput->mFlags.mDummyParentReflowInput) {
|
|
mCBReflowInput = mParentReflowInput;
|
|
return;
|
|
}
|
|
|
|
// To avoid a long walk up the frame tree check if the parent frame can be a
|
|
// containing block for mFrame.
|
|
if (MightBeContainingBlockFor(mParentReflowInput->mFrame, mFrame,
|
|
mStyleDisplay) &&
|
|
mParentReflowInput->mFrame ==
|
|
mFrame->GetContainingBlock(0, mStyleDisplay)) {
|
|
// Inner table frames need to use the containing block of the outer
|
|
// table frame.
|
|
if (mFrame->IsTableFrame()) {
|
|
mCBReflowInput = mParentReflowInput->mCBReflowInput;
|
|
} else {
|
|
mCBReflowInput = mParentReflowInput;
|
|
}
|
|
} else {
|
|
mCBReflowInput = mParentReflowInput->mCBReflowInput;
|
|
}
|
|
}
|
|
|
|
/* Check whether CalcQuirkContainingBlockHeight would stop on the
|
|
* given reflow input, using its block as a height. (essentially
|
|
* returns false for any case in which CalcQuirkContainingBlockHeight
|
|
* has a "continue" in its main loop.)
|
|
*
|
|
* XXX Maybe refactor CalcQuirkContainingBlockHeight so it uses
|
|
* this function as well
|
|
*/
|
|
static bool IsQuirkContainingBlockHeight(const ReflowInput* rs,
|
|
LayoutFrameType aFrameType) {
|
|
if (LayoutFrameType::Block == aFrameType ||
|
|
LayoutFrameType::ScrollContainer == aFrameType) {
|
|
// Note: This next condition could change due to a style change,
|
|
// but that would cause a style reflow anyway, which means we're ok.
|
|
if (NS_UNCONSTRAINEDSIZE == rs->ComputedHeight()) {
|
|
if (!rs->mFrame->IsAbsolutelyPositioned(rs->mStyleDisplay)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void ReflowInput::InitResizeFlags(nsPresContext* aPresContext,
|
|
LayoutFrameType aFrameType) {
|
|
SetIResize(false);
|
|
SetBResize(false);
|
|
SetBResizeForPercentages(false);
|
|
|
|
const WritingMode wm = mWritingMode; // just a shorthand
|
|
// We should report that we have a resize in the inline dimension if
|
|
// *either* the border-box size or the content-box size in that
|
|
// dimension has changed. It might not actually be necessary to do
|
|
// this if the border-box size has changed and the content-box size
|
|
// has not changed, but since we've historically used the flag to mean
|
|
// border-box size change, continue to do that. It's possible for
|
|
// the content-box size to change without a border-box size change or
|
|
// a style change given (1) a fixed width (possibly fixed by max-width
|
|
// or min-width), box-sizing:border-box, and percentage padding;
|
|
// (2) box-sizing:content-box, M% width, and calc(Npx - M%) padding.
|
|
//
|
|
// However, we don't actually have the information at this point to tell
|
|
// whether the content-box size has changed, since both style data and the
|
|
// UsedPaddingProperty() have already been updated in
|
|
// SizeComputationInput::InitOffsets(). So, we check the HasPaddingChange()
|
|
// bit for the cases where it's possible for the content-box size to have
|
|
// changed without either (a) a change in the border-box size or (b) an
|
|
// nsChangeHint_NeedDirtyReflow change hint due to change in border or
|
|
// padding.
|
|
//
|
|
// We don't clear the HasPaddingChange() bit here, since sometimes we
|
|
// construct reflow input (e.g. in nsBlockFrame::ReflowBlockFrame to compute
|
|
// margin collapsing) without reflowing the frame. Instead, we clear it in
|
|
// nsIFrame::DidReflow().
|
|
bool isIResize =
|
|
// is the border-box resizing?
|
|
mFrame->ISize(wm) !=
|
|
ComputedISize() + ComputedLogicalBorderPadding(wm).IStartEnd(wm) ||
|
|
// or is the content-box resizing? (see comment above)
|
|
mFrame->HasPaddingChange();
|
|
|
|
if (mFrame->HasAnyStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT) &&
|
|
nsLayoutUtils::FontSizeInflationEnabled(aPresContext)) {
|
|
// Create our font inflation data if we don't have it already, and
|
|
// give it our current width information.
|
|
bool dirty = nsFontInflationData::UpdateFontInflationDataISizeFor(*this) &&
|
|
// Avoid running this at the box-to-block interface
|
|
// (where we shouldn't be inflating anyway, and where
|
|
// reflow input construction is probably to construct a
|
|
// dummy parent reflow input anyway).
|
|
!mFlags.mDummyParentReflowInput;
|
|
|
|
if (dirty || (!mFrame->GetParent() && isIResize)) {
|
|
// When font size inflation is enabled, a change in either:
|
|
// * the effective width of a font inflation flow root
|
|
// * the width of the frame
|
|
// needs to cause a dirty reflow since they change the font size
|
|
// inflation calculations, which in turn change the size of text,
|
|
// line-heights, etc. This is relatively similar to a classic
|
|
// case of style change reflow, except that because inflation
|
|
// doesn't affect the intrinsic sizing codepath, there's no need
|
|
// to invalidate intrinsic sizes.
|
|
//
|
|
// Note that this makes horizontal resizing a good bit more
|
|
// expensive. However, font size inflation is targeted at a set of
|
|
// devices (zoom-and-pan devices) where the main use case for
|
|
// horizontal resizing needing to be efficient (window resizing) is
|
|
// not present. It does still increase the cost of dynamic changes
|
|
// caused by script where a style or content change in one place
|
|
// causes a resize in another (e.g., rebalancing a table).
|
|
|
|
// FIXME: This isn't so great for the cases where
|
|
// ReflowInput::SetComputedWidth is called, if the first time
|
|
// we go through InitResizeFlags we set IsHResize() to true, and then
|
|
// the second time we'd set it to false even without the
|
|
// NS_FRAME_IS_DIRTY bit already set.
|
|
if (mFrame->IsSVGForeignObjectFrame()) {
|
|
// Foreign object frames use dirty bits in a special way.
|
|
mFrame->AddStateBits(NS_FRAME_HAS_DIRTY_CHILDREN);
|
|
nsIFrame* kid = mFrame->PrincipalChildList().FirstChild();
|
|
if (kid) {
|
|
kid->MarkSubtreeDirty();
|
|
}
|
|
} else {
|
|
mFrame->MarkSubtreeDirty();
|
|
}
|
|
|
|
// Mark intrinsic widths on all descendants dirty. We need to do
|
|
// this (1) since we're changing the size of text and need to
|
|
// clear text runs on text frames and (2) since we actually are
|
|
// changing some intrinsic widths, but only those that live inside
|
|
// of containers.
|
|
|
|
// It makes sense to do this for descendants but not ancestors
|
|
// (which is unusual) because we're only changing the unusual
|
|
// inflation-dependent intrinsic widths (i.e., ones computed with
|
|
// nsPresContext::mInflationDisabledForShrinkWrap set to false),
|
|
// which should never affect anything outside of their inflation
|
|
// flow root (or, for that matter, even their inflation
|
|
// container).
|
|
|
|
// This is also different from what PresShell::FrameNeedsReflow
|
|
// does because it doesn't go through placeholders. It doesn't
|
|
// need to because we're actually doing something that cares about
|
|
// frame tree geometry (the width on an ancestor) rather than
|
|
// style.
|
|
|
|
AutoTArray<nsIFrame*, 32> stack;
|
|
stack.AppendElement(mFrame);
|
|
|
|
do {
|
|
nsIFrame* f = stack.PopLastElement();
|
|
for (const auto& childList : f->ChildLists()) {
|
|
for (nsIFrame* kid : childList.mList) {
|
|
kid->MarkIntrinsicISizesDirty();
|
|
stack.AppendElement(kid);
|
|
}
|
|
}
|
|
} while (stack.Length() != 0);
|
|
}
|
|
}
|
|
|
|
SetIResize(!mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY) && isIResize);
|
|
const auto positionProperty = mStyleDisplay->mPosition;
|
|
|
|
const auto bSize = mStylePosition->BSize(wm, positionProperty);
|
|
const auto minBSize = mStylePosition->MinBSize(wm, positionProperty);
|
|
const auto maxBSize = mStylePosition->MaxBSize(wm, positionProperty);
|
|
// XXX Should we really need to null check mCBReflowInput? (We do for
|
|
// at least nsBoxFrame).
|
|
if (mFrame->HasBSizeChange()) {
|
|
// When we have an nsChangeHint_UpdateComputedBSize, we'll set a bit
|
|
// on the frame to indicate we're resizing. This might catch cases,
|
|
// such as a change between auto and a length, where the box doesn't
|
|
// actually resize but children with percentages resize (since those
|
|
// percentages become auto if their containing block is auto).
|
|
SetBResize(true);
|
|
SetBResizeForPercentages(true);
|
|
// We don't clear the HasBSizeChange state here, since sometimes we
|
|
// construct a ReflowInput (e.g. in nsBlockFrame::ReflowBlockFrame to
|
|
// compute margin collapsing) without reflowing the frame. Instead, we
|
|
// clear it in nsIFrame::DidReflow.
|
|
} else if (mCBReflowInput &&
|
|
mCBReflowInput->IsBResizeForPercentagesForWM(wm) &&
|
|
(bSize->HasPercent() || minBSize->HasPercent() ||
|
|
maxBSize->HasPercent())) {
|
|
// We have a percentage (or calc-with-percentage) block-size, and the
|
|
// value it's relative to has changed.
|
|
SetBResize(true);
|
|
SetBResizeForPercentages(true);
|
|
} else if (aFrameType == LayoutFrameType::TableCell &&
|
|
(mFlags.mSpecialBSizeReflow ||
|
|
mFrame->FirstInFlow()->HasAnyStateBits(
|
|
NS_TABLE_CELL_HAD_SPECIAL_REFLOW)) &&
|
|
mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
|
|
// Need to set the bit on the cell so that
|
|
// mCBReflowInput->IsBResize() is set correctly below when
|
|
// reflowing descendant.
|
|
SetBResize(true);
|
|
SetBResizeForPercentages(true);
|
|
} else if (mCBReflowInput && mFrame->IsBlockWrapper()) {
|
|
// XXX Is this problematic for relatively positioned inlines acting
|
|
// as containing block for absolutely positioned elements?
|
|
// Possibly; in that case we should at least be checking
|
|
// IsSubtreeDirty(), I'd think.
|
|
SetBResize(mCBReflowInput->IsBResizeForWM(wm));
|
|
SetBResizeForPercentages(mCBReflowInput->IsBResizeForPercentagesForWM(wm));
|
|
} else if (ComputedBSize() == NS_UNCONSTRAINEDSIZE) {
|
|
// We have an 'auto' block-size.
|
|
if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
|
|
mCBReflowInput) {
|
|
// FIXME: This should probably also check IsIResize().
|
|
SetBResize(mCBReflowInput->IsBResizeForWM(wm));
|
|
} else {
|
|
SetBResize(IsIResize());
|
|
}
|
|
SetBResize(IsBResize() || mFrame->IsSubtreeDirty() ||
|
|
// For an inner table frame, copy IsBResize from its wrapper.
|
|
(aFrameType == LayoutFrameType::Table &&
|
|
mParentReflowInput->IsBResize()));
|
|
} else {
|
|
// We have a non-'auto' block-size, i.e., a length. Set the BResize
|
|
// flag to whether the size is actually different.
|
|
SetBResize(mFrame->BSize(wm) !=
|
|
ComputedBSize() +
|
|
ComputedLogicalBorderPadding(wm).BStartEnd(wm));
|
|
}
|
|
|
|
bool dependsOnCBBSize =
|
|
(nsStylePosition::BSizeDependsOnContainer(bSize) &&
|
|
// FIXME: condition this on not-abspos?
|
|
!bSize->IsAuto()) ||
|
|
nsStylePosition::MinBSizeDependsOnContainer(minBSize) ||
|
|
nsStylePosition::MaxBSizeDependsOnContainer(maxBSize) ||
|
|
mStylePosition
|
|
->GetAnchorResolvedInset(LogicalSide::BStart, wm, positionProperty)
|
|
->HasPercent() ||
|
|
!mStylePosition
|
|
->GetAnchorResolvedInset(LogicalSide::BEnd, wm, positionProperty)
|
|
->IsAuto() ||
|
|
// We assume orthogonal flows depend on the containing-block's BSize,
|
|
// as that will commonly provide the available inline size. This is not
|
|
// always strictly needed, but orthogonal flows are rare enough that
|
|
// attempting to be more precise seems overly complex.
|
|
(mCBReflowInput && mCBReflowInput->GetWritingMode().IsOrthogonalTo(wm));
|
|
|
|
// If mFrame is a flex item, and mFrame's block axis is the flex container's
|
|
// main axis (e.g. in a column-oriented flex container with same
|
|
// writing-mode), then its block-size depends on its CB size, if its
|
|
// flex-basis has a percentage.
|
|
if (mFrame->IsFlexItem() &&
|
|
!nsFlexContainerFrame::IsItemInlineAxisMainAxis(mFrame)) {
|
|
const auto& flexBasis = mStylePosition->mFlexBasis;
|
|
dependsOnCBBSize |= (flexBasis.IsSize() && flexBasis.AsSize().HasPercent());
|
|
}
|
|
|
|
if (mFrame->StyleFont()->mLineHeight.IsMozBlockHeight()) {
|
|
// line-height depends on block bsize
|
|
mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
|
|
// but only on containing blocks if this frame is not a suitable block
|
|
dependsOnCBBSize |= !nsLayoutUtils::IsNonWrapperBlock(mFrame);
|
|
}
|
|
|
|
// If we're the descendant of a table cell that performs special bsize
|
|
// reflows and we could be the child that requires them, always set
|
|
// the block-axis resize in case this is the first pass before the
|
|
// special bsize reflow. However, don't do this if it actually is
|
|
// the special bsize reflow, since in that case it will already be
|
|
// set correctly above if we need it set.
|
|
if (!IsBResize() && mCBReflowInput &&
|
|
(mCBReflowInput->mFrame->IsTableCellFrame() ||
|
|
mCBReflowInput->mFlags.mHeightDependsOnAncestorCell) &&
|
|
!mCBReflowInput->mFlags.mSpecialBSizeReflow && dependsOnCBBSize) {
|
|
SetBResize(true);
|
|
mFlags.mHeightDependsOnAncestorCell = true;
|
|
}
|
|
|
|
// Set NS_FRAME_CONTAINS_RELATIVE_BSIZE if it's needed.
|
|
|
|
// It would be nice to check that |ComputedBSize != NS_UNCONSTRAINEDSIZE|
|
|
// &&ed with the percentage bsize check. However, this doesn't get
|
|
// along with table special bsize reflows, since a special bsize
|
|
// reflow (a quirk that makes such percentage height work on children
|
|
// of table cells) can cause not just a single percentage height to
|
|
// become fixed, but an entire descendant chain of percentage height
|
|
// to become fixed.
|
|
if (dependsOnCBBSize && mCBReflowInput) {
|
|
const ReflowInput* rs = this;
|
|
bool hitCBReflowInput = false;
|
|
do {
|
|
rs = rs->mParentReflowInput;
|
|
if (!rs) {
|
|
break;
|
|
}
|
|
|
|
if (rs->mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
|
|
break; // no need to go further
|
|
}
|
|
rs->mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
|
|
|
|
// Keep track of whether we've hit the containing block, because
|
|
// we need to go at least that far.
|
|
if (rs == mCBReflowInput) {
|
|
hitCBReflowInput = true;
|
|
}
|
|
|
|
// XXX What about orthogonal flows? It doesn't make sense to
|
|
// keep propagating this bit across an orthogonal boundary,
|
|
// where the meaning of BSize changes. Bug 1175517.
|
|
} while (!hitCBReflowInput ||
|
|
(eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
|
|
!IsQuirkContainingBlockHeight(rs, rs->mFrame->Type())));
|
|
// Note: We actually don't need to set the
|
|
// NS_FRAME_CONTAINS_RELATIVE_BSIZE bit for the cases
|
|
// where we hit the early break statements in
|
|
// CalcQuirkContainingBlockHeight. But it doesn't hurt
|
|
// us to set the bit in these cases.
|
|
}
|
|
if (mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY)) {
|
|
// If we're reflowing everything, then we'll find out if we need
|
|
// to re-set this.
|
|
mFrame->RemoveStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
|
|
}
|
|
}
|
|
|
|
void ReflowInput::InitDynamicReflowRoot() {
|
|
if (mFrame->CanBeDynamicReflowRoot()) {
|
|
mFrame->AddStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT);
|
|
} else {
|
|
mFrame->RemoveStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT);
|
|
}
|
|
}
|
|
|
|
bool ReflowInput::ShouldApplyAutomaticMinimumOnBlockAxis() const {
|
|
MOZ_ASSERT(!mFrame->HasReplacedSizing());
|
|
return mFlags.mIsBSizeSetByAspectRatio &&
|
|
!mStyleDisplay->IsScrollableOverflow() &&
|
|
mStylePosition->MinBSize(GetWritingMode(), mStyleDisplay->mPosition)
|
|
->IsAuto();
|
|
}
|
|
|
|
bool ReflowInput::IsInFragmentedContext() const {
|
|
// We consider mFrame with a prev-in-flow being in a fragmented context
|
|
// because nsColumnSetFrame can reflow its last column with an unconstrained
|
|
// available block-size.
|
|
return AvailableBSize() != NS_UNCONSTRAINEDSIZE || mFrame->GetPrevInFlow();
|
|
}
|
|
|
|
/* static */
|
|
LogicalMargin ReflowInput::ComputeRelativeOffsets(WritingMode aWM,
|
|
nsIFrame* aFrame,
|
|
const LogicalSize& aCBSize) {
|
|
// In relative positioning, anchor functions are always invalid;
|
|
// anchor-resolved insets should no longer contain any reference to anchor
|
|
// functions.
|
|
LogicalMargin offsets(aWM);
|
|
const nsStylePosition* position = aFrame->StylePosition();
|
|
const auto positionProperty = aFrame->StyleDisplay()->mPosition;
|
|
|
|
// Compute the 'inlineStart' and 'inlineEnd' values. 'inlineStart'
|
|
// moves the boxes to the end of the line, and 'inlineEnd' moves the
|
|
// boxes to the start of the line. The computed values are always:
|
|
// inlineStart=-inlineEnd
|
|
const auto inlineStart = position->GetAnchorResolvedInset(
|
|
LogicalSide::IStart, aWM, positionProperty);
|
|
const auto inlineEnd = position->GetAnchorResolvedInset(
|
|
LogicalSide::IEnd, aWM, positionProperty);
|
|
bool inlineStartIsAuto = inlineStart->IsAuto();
|
|
bool inlineEndIsAuto = inlineEnd->IsAuto();
|
|
|
|
// If neither 'inlineStart' nor 'inlineEnd' is auto, then we're
|
|
// over-constrained and we ignore one of them
|
|
if (!inlineStartIsAuto && !inlineEndIsAuto) {
|
|
inlineEndIsAuto = true;
|
|
}
|
|
|
|
if (inlineStartIsAuto) {
|
|
if (inlineEndIsAuto) {
|
|
// If both are 'auto' (their initial values), the computed values are 0
|
|
offsets.IStart(aWM) = offsets.IEnd(aWM) = 0;
|
|
} else {
|
|
// 'inlineEnd' isn't being treated as 'auto' so compute its value
|
|
offsets.IEnd(aWM) = inlineEnd->IsAuto()
|
|
? 0
|
|
: nsLayoutUtils::ComputeCBDependentValue(
|
|
aCBSize.ISize(aWM), inlineEnd);
|
|
|
|
// Computed value for 'inlineStart' is minus the value of 'inlineEnd'
|
|
offsets.IStart(aWM) = -offsets.IEnd(aWM);
|
|
}
|
|
|
|
} else {
|
|
NS_ASSERTION(inlineEndIsAuto, "unexpected specified constraint");
|
|
|
|
// 'InlineStart' isn't 'auto' so compute its value
|
|
offsets.IStart(aWM) =
|
|
nsLayoutUtils::ComputeCBDependentValue(aCBSize.ISize(aWM), inlineStart);
|
|
|
|
// Computed value for 'inlineEnd' is minus the value of 'inlineStart'
|
|
offsets.IEnd(aWM) = -offsets.IStart(aWM);
|
|
}
|
|
|
|
// Compute the 'blockStart' and 'blockEnd' values. The 'blockStart'
|
|
// and 'blockEnd' properties move relatively positioned elements in
|
|
// the block progression direction. They also must be each other's
|
|
// negative
|
|
const auto blockStart = position->GetAnchorResolvedInset(
|
|
LogicalSide::BStart, aWM, positionProperty);
|
|
const auto blockEnd = position->GetAnchorResolvedInset(LogicalSide::BEnd, aWM,
|
|
positionProperty);
|
|
bool blockStartIsAuto = blockStart->IsAuto();
|
|
bool blockEndIsAuto = blockEnd->IsAuto();
|
|
|
|
// Check for percentage based values and a containing block block-size
|
|
// that depends on the content block-size. Treat them like 'auto'
|
|
if (NS_UNCONSTRAINEDSIZE == aCBSize.BSize(aWM)) {
|
|
if (blockStart->HasPercent()) {
|
|
blockStartIsAuto = true;
|
|
}
|
|
if (blockEnd->HasPercent()) {
|
|
blockEndIsAuto = true;
|
|
}
|
|
}
|
|
|
|
// If neither is 'auto', 'block-end' is ignored
|
|
if (!blockStartIsAuto && !blockEndIsAuto) {
|
|
blockEndIsAuto = true;
|
|
}
|
|
|
|
if (blockStartIsAuto) {
|
|
if (blockEndIsAuto) {
|
|
// If both are 'auto' (their initial values), the computed values are 0
|
|
offsets.BStart(aWM) = offsets.BEnd(aWM) = 0;
|
|
} else {
|
|
// 'blockEnd' isn't being treated as 'auto' so compute its value
|
|
offsets.BEnd(aWM) = blockEnd->IsAuto()
|
|
? 0
|
|
: nsLayoutUtils::ComputeCBDependentValue(
|
|
aCBSize.BSize(aWM), blockEnd);
|
|
|
|
// Computed value for 'blockStart' is minus the value of 'blockEnd'
|
|
offsets.BStart(aWM) = -offsets.BEnd(aWM);
|
|
}
|
|
|
|
} else {
|
|
NS_ASSERTION(blockEndIsAuto, "unexpected specified constraint");
|
|
|
|
// 'blockStart' isn't 'auto' so compute its value
|
|
offsets.BStart(aWM) =
|
|
nsLayoutUtils::ComputeCBDependentValue(aCBSize.BSize(aWM), blockStart);
|
|
|
|
// Computed value for 'blockEnd' is minus the value of 'blockStart'
|
|
offsets.BEnd(aWM) = -offsets.BStart(aWM);
|
|
}
|
|
|
|
// Convert the offsets to physical coordinates and store them on the frame
|
|
const nsMargin physicalOffsets = offsets.GetPhysicalMargin(aWM);
|
|
if (nsMargin* prop =
|
|
aFrame->GetProperty(nsIFrame::ComputedOffsetProperty())) {
|
|
*prop = physicalOffsets;
|
|
} else {
|
|
aFrame->AddProperty(nsIFrame::ComputedOffsetProperty(),
|
|
new nsMargin(physicalOffsets));
|
|
}
|
|
|
|
NS_ASSERTION(offsets.IStart(aWM) == -offsets.IEnd(aWM) &&
|
|
offsets.BStart(aWM) == -offsets.BEnd(aWM),
|
|
"ComputeRelativeOffsets should return valid results!");
|
|
|
|
return offsets;
|
|
}
|
|
|
|
/* static */
|
|
void ReflowInput::ApplyRelativePositioning(nsIFrame* aFrame,
|
|
const nsMargin& aComputedOffsets,
|
|
nsPoint* aPosition) {
|
|
if (!aFrame->IsRelativelyOrStickyPositioned()) {
|
|
NS_ASSERTION(!aFrame->HasProperty(nsIFrame::NormalPositionProperty()),
|
|
"We assume that changing the 'position' property causes "
|
|
"frame reconstruction. If that ever changes, this code "
|
|
"should call "
|
|
"aFrame->RemoveProperty(nsIFrame::NormalPositionProperty())");
|
|
return;
|
|
}
|
|
|
|
// Store the normal position
|
|
aFrame->SetProperty(nsIFrame::NormalPositionProperty(), *aPosition);
|
|
|
|
const nsStyleDisplay* display = aFrame->StyleDisplay();
|
|
if (StylePositionProperty::Relative == display->mPosition) {
|
|
*aPosition += nsPoint(aComputedOffsets.left, aComputedOffsets.top);
|
|
}
|
|
// For sticky positioned elements, we'll leave them until the scroll container
|
|
// reflows and calls StickyScrollContainer::UpdatePositions() to update their
|
|
// positions.
|
|
}
|
|
|
|
// static
|
|
void ReflowInput::ComputeAbsPosInlineAutoMargin(nscoord aAvailMarginSpace,
|
|
WritingMode aContainingBlockWM,
|
|
bool aIsMarginIStartAuto,
|
|
bool aIsMarginIEndAuto,
|
|
LogicalMargin& aMargin,
|
|
LogicalMargin& aOffsets) {
|
|
if (aIsMarginIStartAuto) {
|
|
if (aIsMarginIEndAuto) {
|
|
if (aAvailMarginSpace < 0) {
|
|
// Note that this case is different from the neither-'auto'
|
|
// case below, where the spec says to ignore 'left'/'right'.
|
|
// Ignore the specified value for 'margin-right'.
|
|
aMargin.IEnd(aContainingBlockWM) = aAvailMarginSpace;
|
|
} else {
|
|
// Both 'margin-left' and 'margin-right' are 'auto', so they get
|
|
// equal values
|
|
aMargin.IStart(aContainingBlockWM) = aAvailMarginSpace / 2;
|
|
aMargin.IEnd(aContainingBlockWM) =
|
|
aAvailMarginSpace - aMargin.IStart(aContainingBlockWM);
|
|
}
|
|
} else {
|
|
// Just 'margin-left' is 'auto'
|
|
aMargin.IStart(aContainingBlockWM) = aAvailMarginSpace;
|
|
}
|
|
} else {
|
|
if (aIsMarginIEndAuto) {
|
|
// Just 'margin-right' is 'auto'
|
|
aMargin.IEnd(aContainingBlockWM) = aAvailMarginSpace;
|
|
}
|
|
// Else, both margins are non-auto. This margin box would align to the
|
|
// inset-reduced containing block, so it's not overconstrained.
|
|
}
|
|
}
|
|
|
|
// static
|
|
void ReflowInput::ComputeAbsPosBlockAutoMargin(nscoord aAvailMarginSpace,
|
|
WritingMode aContainingBlockWM,
|
|
bool aIsMarginBStartAuto,
|
|
bool aIsMarginBEndAuto,
|
|
LogicalMargin& aMargin,
|
|
LogicalMargin& aOffsets) {
|
|
if (aIsMarginBStartAuto) {
|
|
if (aIsMarginBEndAuto) {
|
|
// Both 'margin-top' and 'margin-bottom' are 'auto', so they get
|
|
// equal values
|
|
aMargin.BStart(aContainingBlockWM) = aAvailMarginSpace / 2;
|
|
aMargin.BEnd(aContainingBlockWM) =
|
|
aAvailMarginSpace - aMargin.BStart(aContainingBlockWM);
|
|
} else {
|
|
// Just margin-block-start is 'auto'
|
|
aMargin.BStart(aContainingBlockWM) = aAvailMarginSpace;
|
|
}
|
|
} else {
|
|
if (aIsMarginBEndAuto) {
|
|
// Just margin-block-end is 'auto'
|
|
aMargin.BEnd(aContainingBlockWM) = aAvailMarginSpace;
|
|
}
|
|
// Else, both margins are non-auto. See comment in the inline version.
|
|
}
|
|
}
|
|
|
|
void ReflowInput::ApplyRelativePositioning(
|
|
nsIFrame* aFrame, WritingMode aWritingMode,
|
|
const LogicalMargin& aComputedOffsets, LogicalPoint* aPosition,
|
|
const nsSize& aContainerSize) {
|
|
// Subtract the size of the frame from the container size that we
|
|
// use for converting between the logical and physical origins of
|
|
// the frame. This accounts for the fact that logical origins in RTL
|
|
// coordinate systems are at the top right of the frame instead of
|
|
// the top left.
|
|
nsSize frameSize = aFrame->GetSize();
|
|
nsPoint pos =
|
|
aPosition->GetPhysicalPoint(aWritingMode, aContainerSize - frameSize);
|
|
ApplyRelativePositioning(
|
|
aFrame, aComputedOffsets.GetPhysicalMargin(aWritingMode), &pos);
|
|
*aPosition = LogicalPoint(aWritingMode, pos, aContainerSize - frameSize);
|
|
}
|
|
|
|
nsIFrame* ReflowInput::GetHypotheticalBoxContainer(nsIFrame* aFrame,
|
|
nscoord& aCBIStartEdge,
|
|
LogicalSize& aCBSize) const {
|
|
aFrame = aFrame->GetContainingBlock();
|
|
NS_ASSERTION(aFrame != mFrame, "How did that happen?");
|
|
|
|
/* Now aFrame is the containing block we want */
|
|
|
|
/* Check whether the containing block is currently being reflowed.
|
|
If so, use the info from the reflow input. */
|
|
const ReflowInput* reflowInput;
|
|
if (aFrame->HasAnyStateBits(NS_FRAME_IN_REFLOW)) {
|
|
for (reflowInput = mParentReflowInput;
|
|
reflowInput && reflowInput->mFrame != aFrame;
|
|
reflowInput = reflowInput->mParentReflowInput) {
|
|
/* do nothing */
|
|
}
|
|
} else {
|
|
reflowInput = nullptr;
|
|
}
|
|
|
|
if (reflowInput) {
|
|
WritingMode wm = reflowInput->GetWritingMode();
|
|
NS_ASSERTION(wm == aFrame->GetWritingMode(), "unexpected writing mode");
|
|
aCBIStartEdge = reflowInput->ComputedLogicalBorderPadding(wm).IStart(wm);
|
|
aCBSize = reflowInput->ComputedSize(wm);
|
|
} else {
|
|
/* Didn't find a reflow reflowInput for aFrame. Just compute the
|
|
information we want, on the assumption that aFrame already knows its
|
|
size. This really ought to be true by now. */
|
|
NS_ASSERTION(!aFrame->HasAnyStateBits(NS_FRAME_IN_REFLOW),
|
|
"aFrame shouldn't be in reflow; we'll lie if it is");
|
|
WritingMode wm = aFrame->GetWritingMode();
|
|
// Compute CB's offset & content-box size by subtracting borderpadding from
|
|
// frame size.
|
|
const auto& bp = aFrame->GetLogicalUsedBorderAndPadding(wm);
|
|
aCBIStartEdge = bp.IStart(wm);
|
|
aCBSize = aFrame->GetLogicalSize(wm) - bp.Size(wm);
|
|
}
|
|
|
|
return aFrame;
|
|
}
|
|
|
|
struct nsHypotheticalPosition {
|
|
// offset from inline-start edge of containing block (which is a padding edge)
|
|
nscoord mIStart = 0;
|
|
// offset from block-start edge of containing block (which is a padding edge)
|
|
nscoord mBStart = 0;
|
|
WritingMode mWritingMode;
|
|
};
|
|
|
|
/**
|
|
* aInsideBoxSizing returns the part of the padding, border, and margin
|
|
* in the aAxis dimension that goes inside the edge given by box-sizing;
|
|
* aOutsideBoxSizing returns the rest.
|
|
*/
|
|
void ReflowInput::CalculateBorderPaddingMargin(
|
|
LogicalAxis aAxis, nscoord aContainingBlockSize, nscoord* aInsideBoxSizing,
|
|
nscoord* aOutsideBoxSizing) const {
|
|
WritingMode wm = GetWritingMode();
|
|
Side startSide = wm.PhysicalSide(MakeLogicalSide(aAxis, LogicalEdge::Start));
|
|
Side endSide = wm.PhysicalSide(MakeLogicalSide(aAxis, LogicalEdge::End));
|
|
|
|
nsMargin styleBorder = mStyleBorder->GetComputedBorder();
|
|
nscoord borderStartEnd =
|
|
styleBorder.Side(startSide) + styleBorder.Side(endSide);
|
|
|
|
nscoord paddingStartEnd, marginStartEnd;
|
|
|
|
// See if the style system can provide us the padding directly
|
|
const auto* stylePadding = mFrame->StylePadding();
|
|
if (nsMargin padding; stylePadding->GetPadding(padding)) {
|
|
paddingStartEnd = padding.Side(startSide) + padding.Side(endSide);
|
|
} else {
|
|
// We have to compute the start and end values
|
|
const nscoord start = nsLayoutUtils::ComputeCBDependentValue(
|
|
aContainingBlockSize, stylePadding->mPadding.Get(startSide));
|
|
const nscoord end = nsLayoutUtils::ComputeCBDependentValue(
|
|
aContainingBlockSize, stylePadding->mPadding.Get(endSide));
|
|
paddingStartEnd = start + end;
|
|
}
|
|
|
|
// See if the style system can provide us the margin directly
|
|
if (nsMargin margin; mStyleMargin->GetMargin(margin)) {
|
|
marginStartEnd = margin.Side(startSide) + margin.Side(endSide);
|
|
} else {
|
|
// If the margin is 'auto', ComputeCBDependentValue() will return 0. The
|
|
// correct margin value will be computed later in InitAbsoluteConstraints
|
|
// (which is caller of this function, via CalculateHypotheticalPosition).
|
|
const auto positionProperty = mStyleDisplay->mPosition;
|
|
const nscoord start = nsLayoutUtils::ComputeCBDependentValue(
|
|
aContainingBlockSize,
|
|
mStyleMargin->GetMargin(startSide, positionProperty));
|
|
const nscoord end = nsLayoutUtils::ComputeCBDependentValue(
|
|
aContainingBlockSize,
|
|
mStyleMargin->GetMargin(endSide, positionProperty));
|
|
marginStartEnd = start + end;
|
|
}
|
|
|
|
nscoord outside = paddingStartEnd + borderStartEnd + marginStartEnd;
|
|
nscoord inside = 0;
|
|
if (mStylePosition->mBoxSizing == StyleBoxSizing::Border) {
|
|
inside = borderStartEnd + paddingStartEnd;
|
|
}
|
|
outside -= inside;
|
|
*aInsideBoxSizing = inside;
|
|
*aOutsideBoxSizing = outside;
|
|
}
|
|
|
|
/**
|
|
* Returns true iff a pre-order traversal of the normal child
|
|
* frames rooted at aFrame finds no non-empty frame before aDescendant.
|
|
*/
|
|
static bool AreAllEarlierInFlowFramesEmpty(nsIFrame* aFrame,
|
|
nsIFrame* aDescendant,
|
|
bool* aFound) {
|
|
if (aFrame == aDescendant) {
|
|
*aFound = true;
|
|
return true;
|
|
}
|
|
if (aFrame->IsPlaceholderFrame()) {
|
|
auto ph = static_cast<nsPlaceholderFrame*>(aFrame);
|
|
MOZ_ASSERT(ph->IsSelfEmpty() && ph->PrincipalChildList().IsEmpty());
|
|
ph->SetLineIsEmptySoFar(true);
|
|
} else {
|
|
if (!aFrame->IsSelfEmpty()) {
|
|
*aFound = false;
|
|
return false;
|
|
}
|
|
for (nsIFrame* f : aFrame->PrincipalChildList()) {
|
|
bool allEmpty = AreAllEarlierInFlowFramesEmpty(f, aDescendant, aFound);
|
|
if (*aFound || !allEmpty) {
|
|
return allEmpty;
|
|
}
|
|
}
|
|
}
|
|
*aFound = false;
|
|
return true;
|
|
}
|
|
|
|
static bool AxisPolarityFlipped(LogicalAxis aThisAxis, WritingMode aThisWm,
|
|
WritingMode aOtherWm) {
|
|
if (MOZ_LIKELY(aThisWm == aOtherWm)) {
|
|
// Dedicated short circuit for the common case.
|
|
return false;
|
|
}
|
|
LogicalAxis otherAxis = aThisWm.IsOrthogonalTo(aOtherWm)
|
|
? GetOrthogonalAxis(aThisAxis)
|
|
: aThisAxis;
|
|
NS_ASSERTION(
|
|
aThisWm.PhysicalAxis(aThisAxis) == aOtherWm.PhysicalAxis(otherAxis),
|
|
"Physical axes must match!");
|
|
Side thisStartSide =
|
|
aThisWm.PhysicalSide(MakeLogicalSide(aThisAxis, LogicalEdge::Start));
|
|
Side otherStartSide =
|
|
aOtherWm.PhysicalSide(MakeLogicalSide(otherAxis, LogicalEdge::Start));
|
|
return thisStartSide != otherStartSide;
|
|
}
|
|
|
|
static bool InlinePolarityFlipped(WritingMode aThisWm, WritingMode aOtherWm) {
|
|
return AxisPolarityFlipped(LogicalAxis::Inline, aThisWm, aOtherWm);
|
|
}
|
|
|
|
static bool BlockPolarityFlipped(WritingMode aThisWm, WritingMode aOtherWm) {
|
|
return AxisPolarityFlipped(LogicalAxis::Block, aThisWm, aOtherWm);
|
|
}
|
|
|
|
// In the code below, |aCBReflowInput->mFrame| is the absolute containing block,
|
|
// while |containingBlock| is the nearest block container of the placeholder
|
|
// frame, which may be different from the absolute containing block.
|
|
void ReflowInput::CalculateHypotheticalPosition(
|
|
nsPlaceholderFrame* aPlaceholderFrame, const ReflowInput* aCBReflowInput,
|
|
nsHypotheticalPosition& aHypotheticalPos) const {
|
|
NS_ASSERTION(mStyleDisplay->mOriginalDisplay != StyleDisplay::None,
|
|
"mOriginalDisplay has not been properly initialized");
|
|
|
|
// Find the nearest containing block frame to the placeholder frame,
|
|
// and its inline-start edge and width.
|
|
nscoord blockIStartContentEdge;
|
|
// Dummy writing mode for blockContentSize, will be changed as needed by
|
|
// GetHypotheticalBoxContainer.
|
|
WritingMode cbwm = aCBReflowInput->GetWritingMode();
|
|
LogicalSize blockContentSize(cbwm);
|
|
nsIFrame* containingBlock = GetHypotheticalBoxContainer(
|
|
aPlaceholderFrame, blockIStartContentEdge, blockContentSize);
|
|
// Now blockContentSize is in containingBlock's writing mode.
|
|
|
|
// If it's a replaced element and it has a 'auto' value for
|
|
//'inline size', see if we can get the intrinsic size. This will allow
|
|
// us to exactly determine both the inline edges
|
|
WritingMode wm = containingBlock->GetWritingMode();
|
|
|
|
const auto positionProperty = mStyleDisplay->mPosition;
|
|
const auto styleISize = mStylePosition->ISize(wm, positionProperty);
|
|
bool isAutoISize = styleISize->IsAuto();
|
|
Maybe<nsSize> intrinsicSize;
|
|
if (mFlags.mIsReplaced && isAutoISize) {
|
|
// See if we can get the intrinsic size of the element
|
|
intrinsicSize = mFrame->GetIntrinsicSize().ToSize();
|
|
}
|
|
|
|
// See if we can calculate what the box inline size would have been if
|
|
// the element had been in the flow
|
|
Maybe<nscoord> boxISize;
|
|
if (mStyleDisplay->IsOriginalDisplayInlineOutside() && !mFlags.mIsReplaced) {
|
|
// For non-replaced inline-level elements the 'inline size' property
|
|
// doesn't apply, so we don't know what the inline size would have
|
|
// been without reflowing it
|
|
} else {
|
|
// It's either a replaced inline-level element or a block-level element
|
|
|
|
// Determine the total amount of inline direction
|
|
// border/padding/margin that the element would have had if it had
|
|
// been in the flow. Note that we ignore any 'auto' and 'inherit'
|
|
// values
|
|
nscoord contentEdgeToBoxSizingISize, boxSizingToMarginEdgeISize;
|
|
CalculateBorderPaddingMargin(
|
|
LogicalAxis::Inline, blockContentSize.ISize(wm),
|
|
&contentEdgeToBoxSizingISize, &boxSizingToMarginEdgeISize);
|
|
|
|
if (mFlags.mIsReplaced && isAutoISize) {
|
|
// It's a replaced element with an 'auto' inline size so the box inline
|
|
// size is its intrinsic size plus any border/padding/margin
|
|
if (intrinsicSize) {
|
|
boxISize.emplace(LogicalSize(wm, *intrinsicSize).ISize(wm) +
|
|
contentEdgeToBoxSizingISize +
|
|
boxSizingToMarginEdgeISize);
|
|
}
|
|
} else if (isAutoISize) {
|
|
// The box inline size is the containing block inline size
|
|
boxISize.emplace(blockContentSize.ISize(wm));
|
|
} else {
|
|
// We need to compute it. It's important we do this, because if it's
|
|
// percentage based this computed value may be different from the computed
|
|
// value calculated using the absolute containing block width
|
|
nscoord contentEdgeToBoxSizingBSize, dummy;
|
|
CalculateBorderPaddingMargin(LogicalAxis::Block,
|
|
blockContentSize.ISize(wm),
|
|
&contentEdgeToBoxSizingBSize, &dummy);
|
|
|
|
const auto contentISize =
|
|
mFrame
|
|
->ComputeISizeValue(mRenderingContext, wm, blockContentSize,
|
|
LogicalSize(wm, contentEdgeToBoxSizingISize,
|
|
contentEdgeToBoxSizingBSize),
|
|
boxSizingToMarginEdgeISize, *styleISize,
|
|
*mStylePosition->BSize(wm, positionProperty),
|
|
mFrame->GetAspectRatio())
|
|
.mISize;
|
|
boxISize.emplace(contentISize + contentEdgeToBoxSizingISize +
|
|
boxSizingToMarginEdgeISize);
|
|
}
|
|
}
|
|
|
|
// Get the placeholder x-offset and y-offset in the coordinate
|
|
// space of its containing block
|
|
// XXXbz the placeholder is not fully reflowed yet if our containing block is
|
|
// relatively positioned...
|
|
nsSize containerSize =
|
|
containingBlock->HasAnyStateBits(NS_FRAME_IN_REFLOW)
|
|
? aCBReflowInput->ComputedSizeAsContainerIfConstrained()
|
|
: containingBlock->GetSize();
|
|
LogicalPoint placeholderOffset(
|
|
wm, aPlaceholderFrame->GetOffsetToIgnoringScrolling(containingBlock),
|
|
containerSize);
|
|
|
|
// First, determine the hypothetical box's mBStart. We want to check the
|
|
// content insertion frame of containingBlock for block-ness, but make
|
|
// sure to compute all coordinates in the coordinate system of
|
|
// containingBlock.
|
|
nsBlockFrame* blockFrame =
|
|
do_QueryFrame(containingBlock->GetContentInsertionFrame());
|
|
if (blockFrame) {
|
|
// Use a null containerSize to convert a LogicalPoint functioning as a
|
|
// vector into a physical nsPoint vector.
|
|
const nsSize nullContainerSize;
|
|
LogicalPoint blockOffset(
|
|
wm, blockFrame->GetOffsetToIgnoringScrolling(containingBlock),
|
|
nullContainerSize);
|
|
bool isValid;
|
|
nsBlockInFlowLineIterator iter(blockFrame, aPlaceholderFrame, &isValid);
|
|
if (!isValid) {
|
|
// Give up. We're probably dealing with somebody using
|
|
// position:absolute inside native-anonymous content anyway.
|
|
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
|
|
} else {
|
|
NS_ASSERTION(iter.GetContainer() == blockFrame,
|
|
"Found placeholder in wrong block!");
|
|
nsBlockFrame::LineIterator lineBox = iter.GetLine();
|
|
|
|
// How we determine the hypothetical box depends on whether the element
|
|
// would have been inline-level or block-level
|
|
LogicalRect lineBounds = lineBox->GetBounds().ConvertTo(
|
|
wm, lineBox->mWritingMode, lineBox->mContainerSize);
|
|
if (mStyleDisplay->IsOriginalDisplayInlineOutside()) {
|
|
// Use the block-start of the inline box which the placeholder lives in
|
|
// as the hypothetical box's block-start.
|
|
aHypotheticalPos.mBStart = lineBounds.BStart(wm) + blockOffset.B(wm);
|
|
} else {
|
|
// The element would have been block-level which means it would
|
|
// be below the line containing the placeholder frame, unless
|
|
// all the frames before it are empty. In that case, it would
|
|
// have been just before this line.
|
|
// XXXbz the line box is not fully reflowed yet if our
|
|
// containing block is relatively positioned...
|
|
if (lineBox != iter.End()) {
|
|
nsIFrame* firstFrame = lineBox->mFirstChild;
|
|
bool allEmpty = false;
|
|
if (firstFrame == aPlaceholderFrame) {
|
|
aPlaceholderFrame->SetLineIsEmptySoFar(true);
|
|
allEmpty = true;
|
|
} else {
|
|
auto* prev = aPlaceholderFrame->GetPrevSibling();
|
|
if (prev && prev->IsPlaceholderFrame()) {
|
|
auto* ph = static_cast<nsPlaceholderFrame*>(prev);
|
|
if (ph->GetLineIsEmptySoFar(&allEmpty)) {
|
|
aPlaceholderFrame->SetLineIsEmptySoFar(allEmpty);
|
|
}
|
|
}
|
|
}
|
|
if (!allEmpty) {
|
|
bool found = false;
|
|
while (firstFrame) { // See bug 223064
|
|
allEmpty = AreAllEarlierInFlowFramesEmpty(
|
|
firstFrame, aPlaceholderFrame, &found);
|
|
if (found || !allEmpty) {
|
|
break;
|
|
}
|
|
firstFrame = firstFrame->GetNextSibling();
|
|
}
|
|
aPlaceholderFrame->SetLineIsEmptySoFar(allEmpty);
|
|
}
|
|
NS_ASSERTION(firstFrame, "Couldn't find placeholder!");
|
|
|
|
if (allEmpty) {
|
|
// The top of the hypothetical box is the top of the line
|
|
// containing the placeholder, since there is nothing in the
|
|
// line before our placeholder except empty frames.
|
|
aHypotheticalPos.mBStart =
|
|
lineBounds.BStart(wm) + blockOffset.B(wm);
|
|
} else {
|
|
// The top of the hypothetical box is just below the line
|
|
// containing the placeholder.
|
|
aHypotheticalPos.mBStart = lineBounds.BEnd(wm) + blockOffset.B(wm);
|
|
}
|
|
} else {
|
|
// Just use the placeholder's block-offset wrt the containing block
|
|
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// The containing block is not a block, so it's probably something
|
|
// like a XUL box, etc.
|
|
// Just use the placeholder's block-offset
|
|
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
|
|
}
|
|
|
|
// Second, determine the hypothetical box's mIStart.
|
|
// How we determine the hypothetical box depends on whether the element
|
|
// would have been inline-level or block-level
|
|
if (mStyleDisplay->IsOriginalDisplayInlineOutside() ||
|
|
mFlags.mIOffsetsNeedCSSAlign) {
|
|
// The placeholder represents the IStart edge of the hypothetical box.
|
|
// (Or if mFlags.mIOffsetsNeedCSSAlign is set, it represents the IStart
|
|
// edge of the Alignment Container.)
|
|
aHypotheticalPos.mIStart = placeholderOffset.I(wm);
|
|
} else {
|
|
aHypotheticalPos.mIStart = blockIStartContentEdge;
|
|
}
|
|
|
|
// The current coordinate space is that of the nearest block to the
|
|
// placeholder. Convert to the coordinate space of the absolute containing
|
|
// block.
|
|
const nsIFrame* cbFrame = aCBReflowInput->mFrame;
|
|
nsPoint cbOffset = containingBlock->GetOffsetToIgnoringScrolling(cbFrame);
|
|
if (cbFrame->IsViewportFrame()) {
|
|
// When the containing block is the ViewportFrame, i.e. we are calculating
|
|
// the static position for a fixed-positioned frame, we need to adjust the
|
|
// origin to exclude the scrollbar or scrollbar-gutter area. The
|
|
// ViewportFrame's containing block rect is passed into
|
|
// nsAbsoluteContainingBlock::ReflowAbsoluteFrame(), and it will add the
|
|
// rect's origin to the fixed-positioned frame's final position if needed.
|
|
//
|
|
// Note: The origin of the containing block rect is adjusted in
|
|
// ViewportFrame::AdjustReflowInputForScrollbars(). Ensure the code there
|
|
// remains in sync with the logic here.
|
|
if (ScrollContainerFrame* sf =
|
|
do_QueryFrame(cbFrame->PrincipalChildList().FirstChild())) {
|
|
const nsMargin scrollbarSizes = sf->GetActualScrollbarSizes();
|
|
cbOffset.MoveBy(-scrollbarSizes.left, -scrollbarSizes.top);
|
|
}
|
|
}
|
|
|
|
nsSize reflowSize = aCBReflowInput->ComputedSizeAsContainerIfConstrained();
|
|
LogicalPoint logCBOffs(wm, cbOffset, reflowSize - containerSize);
|
|
aHypotheticalPos.mIStart += logCBOffs.I(wm);
|
|
aHypotheticalPos.mBStart += logCBOffs.B(wm);
|
|
|
|
// If block direction doesn't match (whether orthogonal or antiparallel),
|
|
// we'll have to convert aHypotheticalPos to be in terms of cbwm.
|
|
// This upcoming conversion must be taken into account for border offsets.
|
|
const bool hypotheticalPosWillUseCbwm =
|
|
cbwm.GetBlockDir() != wm.GetBlockDir();
|
|
// The specified offsets are relative to the absolute containing block's
|
|
// padding edge and our current values are relative to the border edge, so
|
|
// translate.
|
|
const LogicalMargin border = aCBReflowInput->ComputedLogicalBorder(wm);
|
|
if (hypotheticalPosWillUseCbwm && InlinePolarityFlipped(wm, cbwm)) {
|
|
aHypotheticalPos.mIStart += border.IEnd(wm);
|
|
} else {
|
|
aHypotheticalPos.mIStart -= border.IStart(wm);
|
|
}
|
|
|
|
if (hypotheticalPosWillUseCbwm && BlockPolarityFlipped(wm, cbwm)) {
|
|
aHypotheticalPos.mBStart += border.BEnd(wm);
|
|
} else {
|
|
aHypotheticalPos.mBStart -= border.BStart(wm);
|
|
}
|
|
// At this point, we have computed aHypotheticalPos using the writing mode
|
|
// of the placeholder's containing block.
|
|
|
|
if (hypotheticalPosWillUseCbwm) {
|
|
// If the block direction we used in calculating aHypotheticalPos does not
|
|
// match the absolute containing block's, we need to convert here so that
|
|
// aHypotheticalPos is usable in relation to the absolute containing block.
|
|
// This requires computing or measuring the abspos frame's block-size,
|
|
// which is not otherwise required/used here (as aHypotheticalPos
|
|
// records only the block-start coordinate).
|
|
|
|
// This is similar to the inline-size calculation for a replaced
|
|
// inline-level element or a block-level element (above), except that
|
|
// 'auto' sizing is handled differently in the block direction for non-
|
|
// replaced elements and replaced elements lacking an intrinsic size.
|
|
|
|
// Determine the total amount of block direction
|
|
// border/padding/margin that the element would have had if it had
|
|
// been in the flow. Note that we ignore any 'auto' and 'inherit'
|
|
// values.
|
|
nscoord insideBoxSizing, outsideBoxSizing;
|
|
CalculateBorderPaddingMargin(LogicalAxis::Block, blockContentSize.BSize(wm),
|
|
&insideBoxSizing, &outsideBoxSizing);
|
|
|
|
nscoord boxBSize;
|
|
const auto styleBSize = mStylePosition->BSize(wm, positionProperty);
|
|
const bool isAutoBSize =
|
|
nsLayoutUtils::IsAutoBSize(*styleBSize, blockContentSize.BSize(wm));
|
|
if (isAutoBSize) {
|
|
if (mFlags.mIsReplaced && intrinsicSize) {
|
|
// It's a replaced element with an 'auto' block size so the box
|
|
// block size is its intrinsic size plus any border/padding/margin
|
|
boxBSize = LogicalSize(wm, *intrinsicSize).BSize(wm) +
|
|
outsideBoxSizing + insideBoxSizing;
|
|
} else {
|
|
// XXX Bug 1191801
|
|
// Figure out how to get the correct boxBSize here (need to reflow the
|
|
// positioned frame?)
|
|
boxBSize = 0;
|
|
}
|
|
} else if (styleBSize->BehavesLikeStretchOnBlockAxis()) {
|
|
MOZ_ASSERT(blockContentSize.BSize(wm) != NS_UNCONSTRAINEDSIZE,
|
|
"If we're 'stretch' with unconstrained size, isAutoBSize "
|
|
"should be true which should make us skip this code");
|
|
// TODO(dholbert) The 'insideBoxSizing' and 'outsideBoxSizing' usages
|
|
// here aren't quite right, because we're supposed to be passing margin
|
|
// and borderPadding specifically. The arithmetic seems to work out in
|
|
// testcases though.
|
|
boxBSize = nsLayoutUtils::ComputeStretchContentBoxBSize(
|
|
blockContentSize.BSize(wm), outsideBoxSizing, insideBoxSizing);
|
|
} else {
|
|
// We need to compute it. It's important we do this, because if it's
|
|
// percentage-based this computed value may be different from the
|
|
// computed value calculated using the absolute containing block height.
|
|
boxBSize = nsLayoutUtils::ComputeBSizeValue(
|
|
blockContentSize.BSize(wm), insideBoxSizing,
|
|
styleBSize->AsLengthPercentage()) +
|
|
insideBoxSizing + outsideBoxSizing;
|
|
}
|
|
|
|
LogicalSize boxSize(wm, boxISize.valueOr(0), boxBSize);
|
|
|
|
LogicalPoint origin(wm, aHypotheticalPos.mIStart, aHypotheticalPos.mBStart);
|
|
origin = origin.ConvertRectOriginTo(cbwm, wm, boxSize.GetPhysicalSize(wm),
|
|
reflowSize);
|
|
|
|
aHypotheticalPos.mIStart = origin.I(cbwm);
|
|
aHypotheticalPos.mBStart = origin.B(cbwm);
|
|
aHypotheticalPos.mWritingMode = cbwm;
|
|
} else {
|
|
aHypotheticalPos.mWritingMode = wm;
|
|
}
|
|
}
|
|
|
|
void ReflowInput::InitAbsoluteConstraints(const ReflowInput* aCBReflowInput,
|
|
const LogicalSize& aCBSize) {
|
|
WritingMode wm = GetWritingMode();
|
|
WritingMode cbwm = aCBReflowInput->GetWritingMode();
|
|
NS_WARNING_ASSERTION(aCBSize.BSize(cbwm) != NS_UNCONSTRAINEDSIZE,
|
|
"containing block bsize must be constrained");
|
|
|
|
NS_ASSERTION(!mFrame->IsTableFrame(),
|
|
"InitAbsoluteConstraints should not be called on table frames");
|
|
NS_ASSERTION(mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
|
|
"Why are we here?");
|
|
|
|
const auto iStartOffset = mStylePosition->GetAnchorResolvedInset(
|
|
LogicalSide::IStart, cbwm, StylePositionProperty::Absolute);
|
|
const auto iEndOffset = mStylePosition->GetAnchorResolvedInset(
|
|
LogicalSide::IEnd, cbwm, StylePositionProperty::Absolute);
|
|
const auto bStartOffset = mStylePosition->GetAnchorResolvedInset(
|
|
LogicalSide::BStart, cbwm, StylePositionProperty::Absolute);
|
|
const auto bEndOffset = mStylePosition->GetAnchorResolvedInset(
|
|
LogicalSide::BEnd, cbwm, StylePositionProperty::Absolute);
|
|
bool iStartIsAuto = iStartOffset->IsAuto();
|
|
bool iEndIsAuto = iEndOffset->IsAuto();
|
|
bool bStartIsAuto = bStartOffset->IsAuto();
|
|
bool bEndIsAuto = bEndOffset->IsAuto();
|
|
|
|
// If both 'inline-start' and 'inline-end' are 'auto' or both 'block-start'
|
|
// and 'block-end' are 'auto', then compute the hypothetical box position
|
|
// where the element would have if it were in the flow.
|
|
nsHypotheticalPosition hypotheticalPos;
|
|
if ((iStartIsAuto && iEndIsAuto) || (bStartIsAuto && bEndIsAuto)) {
|
|
nsPlaceholderFrame* placeholderFrame = mFrame->GetPlaceholderFrame();
|
|
MOZ_ASSERT(placeholderFrame, "no placeholder frame");
|
|
nsIFrame* placeholderParent = placeholderFrame->GetParent();
|
|
MOZ_ASSERT(placeholderParent, "shouldn't have unparented placeholders");
|
|
|
|
if (placeholderFrame->HasAnyStateBits(
|
|
PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN)) {
|
|
MOZ_ASSERT(placeholderParent->IsFlexOrGridContainer(),
|
|
"This flag should only be set on grid/flex children");
|
|
// If the (as-yet unknown) static position will determine the inline
|
|
// and/or block offsets, set flags to note those offsets aren't valid
|
|
// until we can do CSS Box Alignment on the OOF frame.
|
|
mFlags.mIOffsetsNeedCSSAlign = (iStartIsAuto && iEndIsAuto);
|
|
mFlags.mBOffsetsNeedCSSAlign = (bStartIsAuto && bEndIsAuto);
|
|
}
|
|
|
|
if (mFlags.mStaticPosIsCBOrigin) {
|
|
hypotheticalPos.mWritingMode = cbwm;
|
|
hypotheticalPos.mIStart = nscoord(0);
|
|
hypotheticalPos.mBStart = nscoord(0);
|
|
if (placeholderParent->IsGridContainerFrame() &&
|
|
placeholderParent->HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY |
|
|
NS_STATE_GRID_IS_ROW_MASONRY)) {
|
|
// Disable CSS alignment in Masonry layout since we don't have real grid
|
|
// areas in that axis. We'll use the placeholder position instead as it
|
|
// was calculated by nsGridContainerFrame::MasonryLayout.
|
|
auto cbsz = aCBSize.GetPhysicalSize(cbwm);
|
|
LogicalPoint pos = placeholderFrame->GetLogicalPosition(cbwm, cbsz);
|
|
if (placeholderParent->HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY)) {
|
|
mFlags.mIOffsetsNeedCSSAlign = false;
|
|
hypotheticalPos.mIStart = pos.I(cbwm);
|
|
} else {
|
|
mFlags.mBOffsetsNeedCSSAlign = false;
|
|
hypotheticalPos.mBStart = pos.B(cbwm);
|
|
}
|
|
}
|
|
} else {
|
|
// XXXmats all this is broken for orthogonal writing-modes: bug 1521988.
|
|
CalculateHypotheticalPosition(placeholderFrame, aCBReflowInput,
|
|
hypotheticalPos);
|
|
if (aCBReflowInput->mFrame->IsGridContainerFrame()) {
|
|
// 'hypotheticalPos' is relative to the padding rect of the CB *frame*.
|
|
// In grid layout the CB is the grid area rectangle, so we translate
|
|
// 'hypotheticalPos' to be relative that rectangle here.
|
|
nsRect cb = nsGridContainerFrame::GridItemCB(mFrame);
|
|
nscoord left(0);
|
|
nscoord right(0);
|
|
if (cbwm.IsBidiLTR()) {
|
|
left = cb.X();
|
|
} else {
|
|
right = aCBReflowInput->ComputedWidth() +
|
|
aCBReflowInput->ComputedPhysicalPadding().LeftRight() -
|
|
cb.XMost();
|
|
}
|
|
LogicalMargin offsets(cbwm, nsMargin(cb.Y(), right, nscoord(0), left));
|
|
hypotheticalPos.mIStart -= offsets.IStart(cbwm);
|
|
hypotheticalPos.mBStart -= offsets.BStart(cbwm);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Size of the containing block in its writing mode
|
|
LogicalSize cbSize = aCBSize;
|
|
LogicalMargin offsets(cbwm);
|
|
|
|
// Handle auto inset values, as per [1].
|
|
// Technically superceded by a new section [2], but none of the browsers seem
|
|
// to follow this behaviour.
|
|
//
|
|
// [1] https://drafts.csswg.org/css-position-3/#abspos-old
|
|
// [2] https://drafts.csswg.org/css-position-3/#resolving-insets
|
|
if (iStartIsAuto) {
|
|
offsets.IStart(cbwm) = 0;
|
|
} else {
|
|
offsets.IStart(cbwm) = nsLayoutUtils::ComputeCBDependentValue(
|
|
cbSize.ISize(cbwm), iStartOffset);
|
|
}
|
|
if (iEndIsAuto) {
|
|
offsets.IEnd(cbwm) = 0;
|
|
} else {
|
|
offsets.IEnd(cbwm) =
|
|
nsLayoutUtils::ComputeCBDependentValue(cbSize.ISize(cbwm), iEndOffset);
|
|
}
|
|
|
|
if (iStartIsAuto && iEndIsAuto) {
|
|
if (cbwm.IsInlineReversed() !=
|
|
hypotheticalPos.mWritingMode.IsInlineReversed()) {
|
|
offsets.IEnd(cbwm) = hypotheticalPos.mIStart;
|
|
iEndIsAuto = false;
|
|
} else {
|
|
offsets.IStart(cbwm) = hypotheticalPos.mIStart;
|
|
iStartIsAuto = false;
|
|
}
|
|
}
|
|
|
|
if (bStartIsAuto) {
|
|
offsets.BStart(cbwm) = 0;
|
|
} else {
|
|
offsets.BStart(cbwm) = nsLayoutUtils::ComputeCBDependentValue(
|
|
cbSize.BSize(cbwm), bStartOffset);
|
|
}
|
|
if (bEndIsAuto) {
|
|
offsets.BEnd(cbwm) = 0;
|
|
} else {
|
|
offsets.BEnd(cbwm) =
|
|
nsLayoutUtils::ComputeCBDependentValue(cbSize.BSize(cbwm), bEndOffset);
|
|
}
|
|
|
|
if (bStartIsAuto && bEndIsAuto) {
|
|
// Treat 'top' like 'static-position'
|
|
offsets.BStart(cbwm) = hypotheticalPos.mBStart;
|
|
bStartIsAuto = false;
|
|
}
|
|
|
|
SetComputedLogicalOffsets(cbwm, offsets);
|
|
|
|
if (wm.IsOrthogonalTo(cbwm)) {
|
|
if (bStartIsAuto || bEndIsAuto) {
|
|
mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
|
|
}
|
|
} else {
|
|
if (iStartIsAuto || iEndIsAuto) {
|
|
mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
|
|
}
|
|
}
|
|
|
|
nsIFrame::SizeComputationResult sizeResult = {
|
|
LogicalSize(wm), nsIFrame::AspectRatioUsage::None};
|
|
{
|
|
AutoMaybeDisableFontInflation an(mFrame);
|
|
|
|
sizeResult = mFrame->ComputeSize(
|
|
mRenderingContext, wm, cbSize.ConvertTo(wm, cbwm),
|
|
cbSize.ConvertTo(wm, cbwm).ISize(wm), // XXX or AvailableISize()?
|
|
ComputedLogicalMargin(wm).Size(wm) +
|
|
ComputedLogicalOffsets(wm).Size(wm),
|
|
ComputedLogicalBorderPadding(wm).Size(wm), {}, mComputeSizeFlags);
|
|
mComputedSize = sizeResult.mLogicalSize;
|
|
NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
|
|
NS_ASSERTION(
|
|
ComputedBSize() == NS_UNCONSTRAINEDSIZE || ComputedBSize() >= 0,
|
|
"Bogus block-size");
|
|
}
|
|
|
|
LogicalSize& computedSize = sizeResult.mLogicalSize;
|
|
computedSize = computedSize.ConvertTo(cbwm, wm);
|
|
|
|
mFlags.mIsBSizeSetByAspectRatio = sizeResult.mAspectRatioUsage ==
|
|
nsIFrame::AspectRatioUsage::ToComputeBSize;
|
|
|
|
// XXX Now that we have ComputeSize, can we condense many of the
|
|
// branches off of widthIsAuto?
|
|
|
|
LogicalMargin margin = ComputedLogicalMargin(cbwm);
|
|
const LogicalMargin borderPadding = ComputedLogicalBorderPadding(cbwm);
|
|
|
|
bool iSizeIsAuto =
|
|
mStylePosition->ISize(cbwm, mStyleDisplay->mPosition)->IsAuto();
|
|
bool marginIStartIsAuto = false;
|
|
bool marginIEndIsAuto = false;
|
|
bool marginBStartIsAuto = false;
|
|
bool marginBEndIsAuto = false;
|
|
if (iStartIsAuto) {
|
|
// We know 'right' is not 'auto' anymore thanks to the hypothetical
|
|
// box code above.
|
|
// Solve for 'left'.
|
|
if (iSizeIsAuto) {
|
|
// XXXldb This, and the corresponding code in
|
|
// nsAbsoluteContainingBlock.cpp, could probably go away now that
|
|
// we always compute widths.
|
|
offsets.IStart(cbwm) = NS_AUTOOFFSET;
|
|
} else {
|
|
offsets.IStart(cbwm) = cbSize.ISize(cbwm) - offsets.IEnd(cbwm) -
|
|
computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
|
|
borderPadding.IStartEnd(cbwm);
|
|
}
|
|
} else if (iEndIsAuto) {
|
|
// We know 'left' is not 'auto' anymore thanks to the hypothetical
|
|
// box code above.
|
|
// Solve for 'right'.
|
|
if (iSizeIsAuto) {
|
|
// XXXldb This, and the corresponding code in
|
|
// nsAbsoluteContainingBlock.cpp, could probably go away now that
|
|
// we always compute widths.
|
|
offsets.IEnd(cbwm) = NS_AUTOOFFSET;
|
|
} else {
|
|
offsets.IEnd(cbwm) = cbSize.ISize(cbwm) - offsets.IStart(cbwm) -
|
|
computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
|
|
borderPadding.IStartEnd(cbwm);
|
|
}
|
|
} else if (!mFrame->HasIntrinsicKeywordForBSize() ||
|
|
!wm.IsOrthogonalTo(cbwm)) {
|
|
// Neither 'inline-start' nor 'inline-end' is 'auto'.
|
|
// The inline-size might not fill all the available space (even though we
|
|
// didn't shrink-wrap) in case:
|
|
// * insets are explicitly set and the child frame is not stretched
|
|
// * inline-size was specified
|
|
// * we're dealing with a replaced element
|
|
// * width was constrained by min- or max-inline-size.
|
|
|
|
nscoord availMarginSpace =
|
|
aCBSize.ISize(cbwm) - offsets.IStartEnd(cbwm) - margin.IStartEnd(cbwm) -
|
|
borderPadding.IStartEnd(cbwm) - computedSize.ISize(cbwm);
|
|
marginIStartIsAuto = mStyleMargin
|
|
->GetMargin(LogicalSide::IStart, cbwm,
|
|
StylePositionProperty::Absolute)
|
|
->IsAuto();
|
|
marginIEndIsAuto = mStyleMargin
|
|
->GetMargin(LogicalSide::IEnd, cbwm,
|
|
StylePositionProperty::Absolute)
|
|
->IsAuto();
|
|
ComputeAbsPosInlineAutoMargin(availMarginSpace, cbwm, marginIStartIsAuto,
|
|
marginIEndIsAuto, margin, offsets);
|
|
}
|
|
|
|
bool bSizeIsAuto = mStylePosition->BSize(cbwm, mStyleDisplay->mPosition)
|
|
->BehavesLikeInitialValueOnBlockAxis();
|
|
if (bStartIsAuto) {
|
|
// solve for block-start
|
|
if (bSizeIsAuto) {
|
|
offsets.BStart(cbwm) = NS_AUTOOFFSET;
|
|
} else {
|
|
offsets.BStart(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
|
|
borderPadding.BStartEnd(cbwm) -
|
|
computedSize.BSize(cbwm) - offsets.BEnd(cbwm);
|
|
}
|
|
} else if (bEndIsAuto) {
|
|
// solve for block-end
|
|
if (bSizeIsAuto) {
|
|
offsets.BEnd(cbwm) = NS_AUTOOFFSET;
|
|
} else {
|
|
offsets.BEnd(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
|
|
borderPadding.BStartEnd(cbwm) -
|
|
computedSize.BSize(cbwm) - offsets.BStart(cbwm);
|
|
}
|
|
} else if (!mFrame->HasIntrinsicKeywordForBSize() ||
|
|
wm.IsOrthogonalTo(cbwm)) {
|
|
// Neither block-start nor -end is 'auto'.
|
|
nscoord autoBSize = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
|
|
borderPadding.BStartEnd(cbwm) - offsets.BStartEnd(cbwm);
|
|
autoBSize = std::max(autoBSize, 0);
|
|
// FIXME: Bug 1602669: if |autoBSize| happens to be numerically equal to
|
|
// NS_UNCONSTRAINEDSIZE, we may get some unexpected behavior. We need a
|
|
// better way to distinguish between unconstrained size and resolved size.
|
|
NS_WARNING_ASSERTION(autoBSize != NS_UNCONSTRAINEDSIZE,
|
|
"Unexpected size from block-start and block-end");
|
|
|
|
// The block-size might not fill all the available space in case:
|
|
// * insets are explicitly set and the child frame is not stretched
|
|
// * bsize was specified
|
|
// * we're dealing with a replaced element
|
|
// * bsize was constrained by min- or max-bsize.
|
|
nscoord availMarginSpace = autoBSize - computedSize.BSize(cbwm);
|
|
marginBStartIsAuto = mStyleMargin
|
|
->GetMargin(LogicalSide::BStart, cbwm,
|
|
StylePositionProperty::Absolute)
|
|
->IsAuto();
|
|
marginBEndIsAuto = mStyleMargin
|
|
->GetMargin(LogicalSide::BEnd, cbwm,
|
|
StylePositionProperty::Absolute)
|
|
->IsAuto();
|
|
|
|
ComputeAbsPosBlockAutoMargin(availMarginSpace, cbwm, marginBStartIsAuto,
|
|
marginBEndIsAuto, margin, offsets);
|
|
}
|
|
mComputedSize = computedSize.ConvertTo(wm, cbwm);
|
|
|
|
SetComputedLogicalOffsets(cbwm, offsets);
|
|
SetComputedLogicalMargin(cbwm, margin);
|
|
|
|
// If we have auto margins, update our UsedMarginProperty. The property
|
|
// will have already been created by InitOffsets if it is needed.
|
|
if (marginIStartIsAuto || marginIEndIsAuto || marginBStartIsAuto ||
|
|
marginBEndIsAuto) {
|
|
nsMargin* propValue = mFrame->GetProperty(nsIFrame::UsedMarginProperty());
|
|
MOZ_ASSERT(propValue,
|
|
"UsedMarginProperty should have been created "
|
|
"by InitOffsets.");
|
|
*propValue = margin.GetPhysicalMargin(cbwm);
|
|
}
|
|
}
|
|
|
|
// This will not be converted to abstract coordinates because it's only
|
|
// used in CalcQuirkContainingBlockHeight
|
|
static nscoord GetBlockMarginBorderPadding(const ReflowInput* aReflowInput) {
|
|
nscoord result = 0;
|
|
if (!aReflowInput) {
|
|
return result;
|
|
}
|
|
|
|
// zero auto margins
|
|
nsMargin margin = aReflowInput->ComputedPhysicalMargin();
|
|
if (NS_AUTOMARGIN == margin.top) {
|
|
margin.top = 0;
|
|
}
|
|
if (NS_AUTOMARGIN == margin.bottom) {
|
|
margin.bottom = 0;
|
|
}
|
|
|
|
result += margin.top + margin.bottom;
|
|
result += aReflowInput->ComputedPhysicalBorderPadding().top +
|
|
aReflowInput->ComputedPhysicalBorderPadding().bottom;
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Get the height based on the viewport of the containing block specified
|
|
* in aReflowInput when the containing block has mComputedHeight ==
|
|
* NS_UNCONSTRAINEDSIZE This will walk up the chain of containing blocks looking
|
|
* for a computed height until it finds the canvas frame, or it encounters a
|
|
* frame that is not a block, area, or scroll frame. This handles compatibility
|
|
* with IE (see bug 85016 and bug 219693)
|
|
*
|
|
* When we encounter scrolledContent block frames, we skip over them,
|
|
* since they are guaranteed to not be useful for computing the containing
|
|
* block.
|
|
*
|
|
* See also IsQuirkContainingBlockHeight.
|
|
*/
|
|
static nscoord CalcQuirkContainingBlockHeight(
|
|
const ReflowInput* aCBReflowInput) {
|
|
const ReflowInput* firstAncestorRI = nullptr; // a candidate for html frame
|
|
const ReflowInput* secondAncestorRI = nullptr; // a candidate for body frame
|
|
|
|
// initialize the default to NS_UNCONSTRAINEDSIZE as this is the containings
|
|
// block computed height when this function is called. It is possible that we
|
|
// don't alter this height especially if we are restricted to one level
|
|
nscoord result = NS_UNCONSTRAINEDSIZE;
|
|
|
|
const ReflowInput* ri = aCBReflowInput;
|
|
for (; ri; ri = ri->mParentReflowInput) {
|
|
LayoutFrameType frameType = ri->mFrame->Type();
|
|
// if the ancestor is auto height then skip it and continue up if it
|
|
// is the first block frame and possibly the body/html
|
|
if (LayoutFrameType::Block == frameType ||
|
|
LayoutFrameType::ScrollContainer == frameType) {
|
|
secondAncestorRI = firstAncestorRI;
|
|
firstAncestorRI = ri;
|
|
|
|
// If the current frame we're looking at is positioned, we don't want to
|
|
// go any further (see bug 221784). The behavior we want here is: 1) If
|
|
// not auto-height, use this as the percentage base. 2) If auto-height,
|
|
// keep looking, unless the frame is positioned.
|
|
if (NS_UNCONSTRAINEDSIZE == ri->ComputedHeight()) {
|
|
if (ri->mFrame->IsAbsolutelyPositioned(ri->mStyleDisplay)) {
|
|
break;
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
} else if (LayoutFrameType::Canvas == frameType) {
|
|
// Always continue on to the height calculation
|
|
} else if (LayoutFrameType::PageContent == frameType) {
|
|
nsIFrame* prevInFlow = ri->mFrame->GetPrevInFlow();
|
|
// only use the page content frame for a height basis if it is the first
|
|
// in flow
|
|
if (prevInFlow) {
|
|
break;
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
|
|
// if the ancestor is the page content frame then the percent base is
|
|
// the avail height, otherwise it is the computed height
|
|
result = (LayoutFrameType::PageContent == frameType) ? ri->AvailableHeight()
|
|
: ri->ComputedHeight();
|
|
// if unconstrained - don't sutract borders - would result in huge height
|
|
if (NS_UNCONSTRAINEDSIZE == result) {
|
|
return result;
|
|
}
|
|
|
|
// if we got to the canvas or page content frame, then subtract out
|
|
// margin/border/padding for the BODY and HTML elements
|
|
if ((LayoutFrameType::Canvas == frameType) ||
|
|
(LayoutFrameType::PageContent == frameType)) {
|
|
result -= GetBlockMarginBorderPadding(firstAncestorRI);
|
|
result -= GetBlockMarginBorderPadding(secondAncestorRI);
|
|
|
|
#ifdef DEBUG
|
|
// make sure the first ancestor is the HTML and the second is the BODY
|
|
if (firstAncestorRI) {
|
|
nsIContent* frameContent = firstAncestorRI->mFrame->GetContent();
|
|
if (frameContent) {
|
|
NS_ASSERTION(frameContent->IsHTMLElement(nsGkAtoms::html),
|
|
"First ancestor is not HTML");
|
|
}
|
|
}
|
|
if (secondAncestorRI) {
|
|
nsIContent* frameContent = secondAncestorRI->mFrame->GetContent();
|
|
if (frameContent) {
|
|
NS_ASSERTION(frameContent->IsHTMLElement(nsGkAtoms::body),
|
|
"Second ancestor is not BODY");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}
|
|
// if we got to the html frame (a block child of the canvas) ...
|
|
else if (LayoutFrameType::Block == frameType && ri->mParentReflowInput &&
|
|
ri->mParentReflowInput->mFrame->IsCanvasFrame()) {
|
|
// ... then subtract out margin/border/padding for the BODY element
|
|
result -= GetBlockMarginBorderPadding(secondAncestorRI);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Make sure not to return a negative height here!
|
|
return std::max(result, 0);
|
|
}
|
|
|
|
// Called by InitConstraints() to compute the containing block rectangle for
|
|
// the element. Handles the special logic for absolutely positioned elements
|
|
LogicalSize ReflowInput::ComputeContainingBlockRectangle(
|
|
nsPresContext* aPresContext, const ReflowInput* aContainingBlockRI) const {
|
|
// Unless the element is absolutely positioned, the containing block is
|
|
// formed by the content edge of the nearest block-level ancestor
|
|
LogicalSize cbSize = aContainingBlockRI->ComputedSize();
|
|
|
|
WritingMode wm = aContainingBlockRI->GetWritingMode();
|
|
|
|
if (aContainingBlockRI->mFlags.mTreatBSizeAsIndefinite) {
|
|
cbSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
|
|
} else if (aContainingBlockRI->mPercentageBasisInBlockAxis) {
|
|
MOZ_ASSERT(cbSize.BSize(wm) == NS_UNCONSTRAINEDSIZE,
|
|
"Why provide a percentage basis when the containing block's "
|
|
"block-size is definite?");
|
|
cbSize.BSize(wm) = *aContainingBlockRI->mPercentageBasisInBlockAxis;
|
|
}
|
|
|
|
if (((mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) &&
|
|
// XXXfr hack for making frames behave properly when in overflow
|
|
// container lists, see bug 154892; need to revisit later
|
|
!mFrame->GetPrevInFlow()) ||
|
|
(mFrame->IsTableFrame() &&
|
|
mFrame->GetParent()->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW))) &&
|
|
mStyleDisplay->IsAbsolutelyPositioned(mFrame)) {
|
|
// See if the ancestor is block-level or inline-level
|
|
const auto computedPadding = aContainingBlockRI->ComputedLogicalPadding(wm);
|
|
if (aContainingBlockRI->mStyleDisplay->IsInlineOutsideStyle()) {
|
|
// Base our size on the actual size of the frame. In cases when this is
|
|
// completely bogus (eg initial reflow), this code shouldn't even be
|
|
// called, since the code in nsInlineFrame::Reflow will pass in
|
|
// the containing block dimensions to our constructor.
|
|
// XXXbz we should be taking the in-flows into account too, but
|
|
// that's very hard.
|
|
|
|
LogicalMargin computedBorder =
|
|
aContainingBlockRI->ComputedLogicalBorderPadding(wm) -
|
|
computedPadding;
|
|
cbSize.ISize(wm) =
|
|
aContainingBlockRI->mFrame->ISize(wm) - computedBorder.IStartEnd(wm);
|
|
NS_ASSERTION(cbSize.ISize(wm) >= 0, "Negative containing block isize!");
|
|
cbSize.BSize(wm) =
|
|
aContainingBlockRI->mFrame->BSize(wm) - computedBorder.BStartEnd(wm);
|
|
NS_ASSERTION(cbSize.BSize(wm) >= 0, "Negative containing block bsize!");
|
|
} else {
|
|
// If the ancestor is block-level, the containing block is formed by the
|
|
// padding edge of the ancestor
|
|
cbSize += computedPadding.Size(wm);
|
|
}
|
|
} else {
|
|
auto IsQuirky = [](const StyleSize& aSize) -> bool {
|
|
return aSize.ConvertsToPercentage();
|
|
};
|
|
const auto positionProperty = mStyleDisplay->mPosition;
|
|
// an element in quirks mode gets a containing block based on looking for a
|
|
// parent with a non-auto height if the element has a percent height.
|
|
// Note: We don't emulate this quirk for percents in calc(), or in vertical
|
|
// writing modes, or if the containing block is a flex or grid item.
|
|
if (!wm.IsVertical() && NS_UNCONSTRAINEDSIZE == cbSize.BSize(wm)) {
|
|
if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
|
|
!aContainingBlockRI->mFrame->IsFlexOrGridItem() &&
|
|
(IsQuirky(*mStylePosition->GetHeight(positionProperty)) ||
|
|
(mFrame->IsTableWrapperFrame() &&
|
|
IsQuirky(*mFrame->PrincipalChildList()
|
|
.FirstChild()
|
|
->StylePosition()
|
|
->GetHeight(positionProperty))))) {
|
|
cbSize.BSize(wm) = CalcQuirkContainingBlockHeight(aContainingBlockRI);
|
|
}
|
|
}
|
|
}
|
|
|
|
return cbSize.ConvertTo(GetWritingMode(), wm);
|
|
}
|
|
|
|
// XXX refactor this code to have methods for each set of properties
|
|
// we are computing: width,height,line-height; margin; offsets
|
|
|
|
void ReflowInput::InitConstraints(
|
|
nsPresContext* aPresContext, const Maybe<LogicalSize>& aContainingBlockSize,
|
|
const Maybe<LogicalMargin>& aBorder, const Maybe<LogicalMargin>& aPadding,
|
|
LayoutFrameType aFrameType) {
|
|
WritingMode wm = GetWritingMode();
|
|
LogicalSize cbSize = aContainingBlockSize.valueOr(
|
|
LogicalSize(mWritingMode, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE));
|
|
|
|
// If this is a reflow root, then set the computed width and
|
|
// height equal to the available space
|
|
if (nullptr == mParentReflowInput || mFlags.mDummyParentReflowInput) {
|
|
// XXXldb This doesn't mean what it used to!
|
|
InitOffsets(wm, cbSize.ISize(wm), aFrameType, mComputeSizeFlags, aBorder,
|
|
aPadding, mStyleDisplay);
|
|
// Override mComputedMargin since reflow roots start from the
|
|
// frame's boundary, which is inside the margin.
|
|
SetComputedLogicalMargin(wm, LogicalMargin(wm));
|
|
SetComputedLogicalOffsets(wm, LogicalMargin(wm));
|
|
|
|
const auto borderPadding = ComputedLogicalBorderPadding(wm);
|
|
SetComputedISize(
|
|
std::max(0, AvailableISize() - borderPadding.IStartEnd(wm)),
|
|
ResetResizeFlags::No);
|
|
SetComputedBSize(
|
|
AvailableBSize() != NS_UNCONSTRAINEDSIZE
|
|
? std::max(0, AvailableBSize() - borderPadding.BStartEnd(wm))
|
|
: NS_UNCONSTRAINEDSIZE,
|
|
ResetResizeFlags::No);
|
|
|
|
mComputedMinSize.SizeTo(mWritingMode, 0, 0);
|
|
mComputedMaxSize.SizeTo(mWritingMode, NS_UNCONSTRAINEDSIZE,
|
|
NS_UNCONSTRAINEDSIZE);
|
|
} else {
|
|
// Get the containing block's reflow input
|
|
const ReflowInput* cbri = mCBReflowInput;
|
|
MOZ_ASSERT(cbri, "no containing block");
|
|
MOZ_ASSERT(mFrame->GetParent());
|
|
|
|
// If we weren't given a containing block size, then compute one.
|
|
if (aContainingBlockSize.isNothing()) {
|
|
cbSize = ComputeContainingBlockRectangle(aPresContext, cbri);
|
|
}
|
|
|
|
// See if the containing block height is based on the size of its
|
|
// content
|
|
if (NS_UNCONSTRAINEDSIZE == cbSize.BSize(wm)) {
|
|
// See if the containing block is a cell frame which needs
|
|
// to use the mComputedHeight of the cell instead of what the cell block
|
|
// passed in.
|
|
// XXX It seems like this could lead to bugs with min-height and friends
|
|
if (cbri->mParentReflowInput && cbri->mFrame->IsTableCellFrame()) {
|
|
cbSize.BSize(wm) = cbri->ComputedSize(wm).BSize(wm);
|
|
}
|
|
}
|
|
|
|
// XXX Might need to also pass the CB height (not width) for page boxes,
|
|
// too, if we implement them.
|
|
|
|
// For calculating positioning offsets, margins, borders and
|
|
// padding, we use the writing mode of the containing block
|
|
WritingMode cbwm = cbri->GetWritingMode();
|
|
InitOffsets(cbwm, cbSize.ConvertTo(cbwm, wm).ISize(cbwm), aFrameType,
|
|
mComputeSizeFlags, aBorder, aPadding, mStyleDisplay);
|
|
|
|
// For calculating the size of this box, we use its own writing mode
|
|
const auto blockSize = mStylePosition->BSize(wm, mStyleDisplay->mPosition);
|
|
bool isAutoBSize = blockSize->BehavesLikeInitialValueOnBlockAxis();
|
|
|
|
// Check for a percentage based block size and a containing block
|
|
// block size that depends on the content block size
|
|
if (blockSize->HasPercent()) {
|
|
if (NS_UNCONSTRAINEDSIZE == cbSize.BSize(wm)) {
|
|
// this if clause enables %-blockSize on replaced inline frames,
|
|
// such as images. See bug 54119. The else clause "blockSizeUnit =
|
|
// eStyleUnit_Auto;" used to be called exclusively.
|
|
if (mFlags.mIsReplaced && mStyleDisplay->IsInlineOutsideStyle()) {
|
|
// Get the containing block's reflow input
|
|
NS_ASSERTION(cbri, "no containing block");
|
|
// in quirks mode, get the cb height using the special quirk method
|
|
if (!wm.IsVertical() &&
|
|
eCompatibility_NavQuirks == aPresContext->CompatibilityMode()) {
|
|
if (!cbri->mFrame->IsTableCellFrame() &&
|
|
!cbri->mFrame->IsFlexOrGridItem()) {
|
|
cbSize.BSize(wm) = CalcQuirkContainingBlockHeight(cbri);
|
|
if (cbSize.BSize(wm) == NS_UNCONSTRAINEDSIZE) {
|
|
isAutoBSize = true;
|
|
}
|
|
} else {
|
|
isAutoBSize = true;
|
|
}
|
|
}
|
|
// in standard mode, use the cb block size. if it's "auto",
|
|
// as will be the case by default in BODY, use auto block size
|
|
// as per CSS2 spec.
|
|
else {
|
|
nscoord computedBSize = cbri->ComputedSize(wm).BSize(wm);
|
|
if (NS_UNCONSTRAINEDSIZE != computedBSize) {
|
|
cbSize.BSize(wm) = computedBSize;
|
|
} else {
|
|
isAutoBSize = true;
|
|
}
|
|
}
|
|
} else {
|
|
// default to interpreting the blockSize like 'auto'
|
|
isAutoBSize = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute our offsets if the element is relatively positioned. We
|
|
// need the correct containing block inline-size and block-size
|
|
// here, which is why we need to do it after all the quirks-n-such
|
|
// above. (If the element is sticky positioned, we need to wait
|
|
// until the scroll container knows its size, so we compute offsets
|
|
// from StickyScrollContainer::UpdatePositions.)
|
|
if (mStyleDisplay->IsRelativelyPositioned(mFrame)) {
|
|
const LogicalMargin offsets =
|
|
ComputeRelativeOffsets(cbwm, mFrame, cbSize.ConvertTo(cbwm, wm));
|
|
SetComputedLogicalOffsets(cbwm, offsets);
|
|
} else {
|
|
// Initialize offsets to 0
|
|
SetComputedLogicalOffsets(wm, LogicalMargin(wm));
|
|
}
|
|
|
|
// Calculate the computed values for min and max properties. Note that
|
|
// this MUST come after we've computed our border and padding.
|
|
ComputeMinMaxValues(cbSize);
|
|
|
|
// Calculate the computed inlineSize and blockSize.
|
|
// This varies by frame type.
|
|
|
|
if (IsInternalTableFrame()) {
|
|
// Internal table elements. The rules vary depending on the type.
|
|
// Calculate the computed isize
|
|
bool rowOrRowGroup = false;
|
|
const auto inlineSize =
|
|
mStylePosition->ISize(wm, mStyleDisplay->mPosition);
|
|
bool isAutoISize = inlineSize->IsAuto();
|
|
if ((StyleDisplay::TableRow == mStyleDisplay->mDisplay) ||
|
|
(StyleDisplay::TableRowGroup == mStyleDisplay->mDisplay)) {
|
|
// 'inlineSize' property doesn't apply to table rows and row groups
|
|
isAutoISize = true;
|
|
rowOrRowGroup = true;
|
|
}
|
|
|
|
// calc() with both percentages and lengths act like auto on internal
|
|
// table elements
|
|
if (isAutoISize || inlineSize->HasLengthAndPercentage()) {
|
|
if (AvailableISize() != NS_UNCONSTRAINEDSIZE && !rowOrRowGroup) {
|
|
// Internal table elements don't have margins. Only tables and
|
|
// cells have border and padding
|
|
SetComputedISize(
|
|
std::max(0, AvailableISize() -
|
|
ComputedLogicalBorderPadding(wm).IStartEnd(wm)),
|
|
ResetResizeFlags::No);
|
|
} else {
|
|
SetComputedISize(AvailableISize(), ResetResizeFlags::No);
|
|
}
|
|
NS_ASSERTION(ComputedISize() >= 0, "Bogus computed isize");
|
|
|
|
} else {
|
|
SetComputedISize(
|
|
ComputeISizeValue(cbSize, mStylePosition->mBoxSizing, *inlineSize),
|
|
ResetResizeFlags::No);
|
|
}
|
|
|
|
// Calculate the computed block size
|
|
if (StyleDisplay::TableColumn == mStyleDisplay->mDisplay ||
|
|
StyleDisplay::TableColumnGroup == mStyleDisplay->mDisplay) {
|
|
// 'blockSize' property doesn't apply to table columns and column groups
|
|
isAutoBSize = true;
|
|
}
|
|
// calc() with both percentages and lengths acts like 'auto' on internal
|
|
// table elements
|
|
if (isAutoBSize || blockSize->HasLengthAndPercentage()) {
|
|
SetComputedBSize(NS_UNCONSTRAINEDSIZE, ResetResizeFlags::No);
|
|
} else {
|
|
SetComputedBSize(
|
|
ComputeBSizeValue(cbSize.BSize(wm), mStylePosition->mBoxSizing,
|
|
blockSize->AsLengthPercentage()),
|
|
ResetResizeFlags::No);
|
|
}
|
|
|
|
// Doesn't apply to internal table elements
|
|
mComputedMinSize.SizeTo(mWritingMode, 0, 0);
|
|
mComputedMaxSize.SizeTo(mWritingMode, NS_UNCONSTRAINEDSIZE,
|
|
NS_UNCONSTRAINEDSIZE);
|
|
} else if (mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) &&
|
|
mStyleDisplay->IsAbsolutelyPositionedStyle() &&
|
|
// XXXfr hack for making frames behave properly when in overflow
|
|
// container lists, see bug 154892; need to revisit later
|
|
!mFrame->GetPrevInFlow()) {
|
|
InitAbsoluteConstraints(cbri,
|
|
cbSize.ConvertTo(cbri->GetWritingMode(), wm));
|
|
} else {
|
|
AutoMaybeDisableFontInflation an(mFrame);
|
|
|
|
nsIFrame* const alignCB = [&] {
|
|
nsIFrame* cb = mFrame->GetParent();
|
|
if (cb->IsTableWrapperFrame()) {
|
|
nsIFrame* alignCBParent = cb->GetParent();
|
|
if (alignCBParent && alignCBParent->IsGridContainerFrame()) {
|
|
return alignCBParent;
|
|
}
|
|
}
|
|
return cb;
|
|
}();
|
|
|
|
const bool isInlineLevel = [&] {
|
|
if (mFrame->IsTableFrame()) {
|
|
// An inner table frame is not inline-level, even if it happens to
|
|
// have 'display:inline-table'. (That makes its table-wrapper frame be
|
|
// inline-level, but not the inner table frame)
|
|
return false;
|
|
}
|
|
if (mStyleDisplay->IsInlineOutsideStyle()) {
|
|
return true;
|
|
}
|
|
if (mFlags.mIsReplaced && (mStyleDisplay->IsInnerTableStyle() ||
|
|
mStyleDisplay->DisplayOutside() ==
|
|
StyleDisplayOutside::TableCaption)) {
|
|
// Internal table values on replaced elements behave as inline
|
|
// https://drafts.csswg.org/css-tables-3/#table-structure
|
|
//
|
|
// ... it is handled instead as though the author had declared
|
|
// either 'block' (for 'table' display) or 'inline' (for all
|
|
// other values)"
|
|
//
|
|
// FIXME(emilio): The only test that covers this is
|
|
// table-anonymous-objects-211.xht, which fails on other browsers (but
|
|
// differently to us, if you just remove this condition).
|
|
return true;
|
|
}
|
|
if (mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) &&
|
|
!mStyleDisplay->IsAbsolutelyPositionedStyle()) {
|
|
// Floats are treated as inline-level and also shrink-wrap.
|
|
return true;
|
|
}
|
|
return false;
|
|
}();
|
|
|
|
if (mParentReflowInput->mFlags.mOrthogonalCellFinalReflow) {
|
|
// This is the "extra" reflow for the inner content of an orthogonal
|
|
// table cell, after the row size has been determined; so we want to
|
|
// respect the cell's size without further adjustment. Its rect may
|
|
// not yet be correct, however, so we base our size on the parent
|
|
// reflow input's available size, adjusted for border widths.
|
|
MOZ_ASSERT(mFrame->GetParent()->IsTableCellFrame(),
|
|
"unexpected mOrthogonalCellFinalReflow flag!");
|
|
cbSize = mParentReflowInput->AvailableSize().ConvertTo(
|
|
wm, mParentReflowInput->GetWritingMode());
|
|
cbSize -= mParentReflowInput->ComputedLogicalBorder(wm).Size(wm);
|
|
SetAvailableISize(cbSize.ISize(wm));
|
|
} else {
|
|
const bool shouldShrinkWrap = [&] {
|
|
if (isInlineLevel) {
|
|
return true;
|
|
}
|
|
if (mFlags.mIsReplaced && !alignCB->IsFlexOrGridContainer()) {
|
|
// Shrink-wrap replaced elements when in-flow (out of flows are
|
|
// handled above). We exclude replaced elements in grid or flex
|
|
// contexts, where we don't want to shrink-wrap unconditionally (so
|
|
// that stretching can happen). When grid/flex explicitly want
|
|
// shrink-wrapping, they can request it directly using the relevant
|
|
// flag.
|
|
return true;
|
|
}
|
|
if (!alignCB->IsGridContainerFrame() &&
|
|
mWritingMode.IsOrthogonalTo(alignCB->GetWritingMode())) {
|
|
// Shrink-wrap blocks that are orthogonal to their container (unless
|
|
// we're in a grid?)
|
|
return true;
|
|
}
|
|
return false;
|
|
}();
|
|
|
|
if (shouldShrinkWrap) {
|
|
mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
|
|
}
|
|
|
|
if (cbSize.ISize(wm) == NS_UNCONSTRAINEDSIZE) {
|
|
// For orthogonal flows, where we found a parent orthogonal-limit for
|
|
// AvailableISize() in Init(), we'll use the same here as well.
|
|
cbSize.ISize(wm) = AvailableISize();
|
|
}
|
|
}
|
|
|
|
auto size =
|
|
mFrame->ComputeSize(mRenderingContext, wm, cbSize, AvailableISize(),
|
|
ComputedLogicalMargin(wm).Size(wm),
|
|
ComputedLogicalBorderPadding(wm).Size(wm),
|
|
mStyleSizeOverrides, mComputeSizeFlags);
|
|
|
|
mComputedSize = size.mLogicalSize;
|
|
NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
|
|
NS_ASSERTION(
|
|
ComputedBSize() == NS_UNCONSTRAINEDSIZE || ComputedBSize() >= 0,
|
|
"Bogus block-size");
|
|
|
|
mFlags.mIsBSizeSetByAspectRatio =
|
|
size.mAspectRatioUsage == nsIFrame::AspectRatioUsage::ToComputeBSize;
|
|
|
|
const bool shouldCalculateBlockSideMargins = [&]() {
|
|
if (isInlineLevel) {
|
|
return false;
|
|
}
|
|
if (mFrame->IsTableFrame()) {
|
|
return false;
|
|
}
|
|
if (alignCB->IsFlexOrGridContainer()) {
|
|
// Exclude flex and grid items.
|
|
return false;
|
|
}
|
|
const auto pseudoType = mFrame->Style()->GetPseudoType();
|
|
if (pseudoType == PseudoStyleType::marker &&
|
|
mFrame->GetParent()->StyleList()->mListStylePosition ==
|
|
StyleListStylePosition::Outside) {
|
|
// Exclude outside ::markers.
|
|
return false;
|
|
}
|
|
if (pseudoType == PseudoStyleType::columnContent) {
|
|
// Exclude -moz-column-content since it cannot have any margin.
|
|
return false;
|
|
}
|
|
return true;
|
|
}();
|
|
|
|
if (shouldCalculateBlockSideMargins) {
|
|
CalculateBlockSideMargins();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Save our containing block dimensions
|
|
mContainingBlockSize = cbSize;
|
|
}
|
|
|
|
static void UpdateProp(nsIFrame* aFrame,
|
|
const FramePropertyDescriptor<nsMargin>* aProperty,
|
|
bool aNeeded, const nsMargin& aNewValue) {
|
|
if (aNeeded) {
|
|
if (nsMargin* propValue = aFrame->GetProperty(aProperty)) {
|
|
*propValue = aNewValue;
|
|
} else {
|
|
aFrame->AddProperty(aProperty, new nsMargin(aNewValue));
|
|
}
|
|
} else {
|
|
aFrame->RemoveProperty(aProperty);
|
|
}
|
|
}
|
|
|
|
void SizeComputationInput::InitOffsets(WritingMode aCBWM, nscoord aPercentBasis,
|
|
LayoutFrameType aFrameType,
|
|
ComputeSizeFlags aFlags,
|
|
const Maybe<LogicalMargin>& aBorder,
|
|
const Maybe<LogicalMargin>& aPadding,
|
|
const nsStyleDisplay* aDisplay) {
|
|
nsPresContext* presContext = mFrame->PresContext();
|
|
|
|
// Compute margins from the specified margin style information. These
|
|
// become the default computed values, and may be adjusted below
|
|
// XXX fix to provide 0,0 for the top&bottom margins for
|
|
// inline-non-replaced elements
|
|
bool needMarginProp = ComputeMargin(aCBWM, aPercentBasis, aFrameType);
|
|
// Note that ComputeMargin() simplistically resolves 'auto' margins to 0.
|
|
// In formatting contexts where this isn't correct, some later code will
|
|
// need to update the UsedMargin() property with the actual resolved value.
|
|
// One example of this is ::CalculateBlockSideMargins().
|
|
::UpdateProp(mFrame, nsIFrame::UsedMarginProperty(), needMarginProp,
|
|
ComputedPhysicalMargin());
|
|
|
|
const WritingMode wm = GetWritingMode();
|
|
const nsStyleDisplay* disp = mFrame->StyleDisplayWithOptionalParam(aDisplay);
|
|
bool needPaddingProp;
|
|
LayoutDeviceIntMargin widgetPadding;
|
|
if (mIsThemed && presContext->Theme()->GetWidgetPadding(
|
|
presContext->DeviceContext(), mFrame,
|
|
disp->EffectiveAppearance(), &widgetPadding)) {
|
|
const nsMargin padding = LayoutDevicePixel::ToAppUnits(
|
|
widgetPadding, presContext->AppUnitsPerDevPixel());
|
|
SetComputedLogicalPadding(wm, LogicalMargin(wm, padding));
|
|
needPaddingProp = false;
|
|
} else if (mFrame->IsInSVGTextSubtree()) {
|
|
SetComputedLogicalPadding(wm, LogicalMargin(wm));
|
|
needPaddingProp = false;
|
|
} else if (aPadding) { // padding is an input arg
|
|
SetComputedLogicalPadding(wm, *aPadding);
|
|
nsMargin stylePadding;
|
|
// If the caller passes a padding that doesn't match our style (like
|
|
// nsTextControlFrame might due due to theming), then we also need a
|
|
// padding prop.
|
|
needPaddingProp = !mFrame->StylePadding()->GetPadding(stylePadding) ||
|
|
aPadding->GetPhysicalMargin(wm) != stylePadding;
|
|
} else {
|
|
needPaddingProp = ComputePadding(aCBWM, aPercentBasis, aFrameType);
|
|
}
|
|
|
|
// Add [align|justify]-content:baseline padding contribution.
|
|
typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop;
|
|
auto ApplyBaselinePadding = [this, wm, &needPaddingProp](LogicalAxis aAxis,
|
|
Prop aProp) {
|
|
bool found;
|
|
nscoord val = mFrame->GetProperty(aProp, &found);
|
|
if (found) {
|
|
NS_ASSERTION(val != nscoord(0), "zero in this property is useless");
|
|
LogicalSide side;
|
|
if (val > 0) {
|
|
side = MakeLogicalSide(aAxis, LogicalEdge::Start);
|
|
} else {
|
|
side = MakeLogicalSide(aAxis, LogicalEdge::End);
|
|
val = -val;
|
|
}
|
|
mComputedPadding.Side(side, wm) += val;
|
|
needPaddingProp = true;
|
|
if (aAxis == LogicalAxis::Block && val > 0) {
|
|
// We have a baseline-adjusted block-axis start padding, so
|
|
// we need this to mark lines dirty when mIsBResize is true:
|
|
this->mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
|
|
}
|
|
}
|
|
};
|
|
if (!aFlags.contains(ComputeSizeFlag::IsGridMeasuringReflow)) {
|
|
ApplyBaselinePadding(LogicalAxis::Block, nsIFrame::BBaselinePadProperty());
|
|
}
|
|
if (!aFlags.contains(ComputeSizeFlag::ShrinkWrap)) {
|
|
ApplyBaselinePadding(LogicalAxis::Inline, nsIFrame::IBaselinePadProperty());
|
|
}
|
|
|
|
LogicalMargin border(wm);
|
|
if (mIsThemed) {
|
|
const LayoutDeviceIntMargin widgetBorder =
|
|
presContext->Theme()->GetWidgetBorder(
|
|
presContext->DeviceContext(), mFrame, disp->EffectiveAppearance());
|
|
border = LogicalMargin(
|
|
wm, LayoutDevicePixel::ToAppUnits(widgetBorder,
|
|
presContext->AppUnitsPerDevPixel()));
|
|
} else if (mFrame->IsInSVGTextSubtree()) {
|
|
// Do nothing since the border local variable is initialized all zero.
|
|
} else if (aBorder) { // border is an input arg
|
|
border = *aBorder;
|
|
} else {
|
|
border = LogicalMargin(wm, mFrame->StyleBorder()->GetComputedBorder());
|
|
}
|
|
SetComputedLogicalBorderPadding(wm, border + ComputedLogicalPadding(wm));
|
|
|
|
if (aFrameType == LayoutFrameType::Scrollbar) {
|
|
// scrollbars may have had their width or height smashed to zero
|
|
// by the associated scrollframe, in which case we must not report
|
|
// any padding or border.
|
|
nsSize size(mFrame->GetSize());
|
|
if (size.width == 0 || size.height == 0) {
|
|
SetComputedLogicalPadding(wm, LogicalMargin(wm));
|
|
SetComputedLogicalBorderPadding(wm, LogicalMargin(wm));
|
|
}
|
|
}
|
|
|
|
bool hasPaddingChange;
|
|
if (nsMargin* oldPadding =
|
|
mFrame->GetProperty(nsIFrame::UsedPaddingProperty())) {
|
|
// Note: If a padding change is already detectable without resolving the
|
|
// percentage, e.g. a padding is changing from 50px to 50%,
|
|
// nsIFrame::DidSetComputedStyle() will cache the old padding in
|
|
// UsedPaddingProperty().
|
|
hasPaddingChange = *oldPadding != ComputedPhysicalPadding();
|
|
} else {
|
|
// Our padding may have changed, but we can't tell at this point.
|
|
hasPaddingChange = needPaddingProp;
|
|
}
|
|
// Keep mHasPaddingChange bit set until we've done reflow. We'll clear it in
|
|
// nsIFrame::DidReflow()
|
|
mFrame->SetHasPaddingChange(mFrame->HasPaddingChange() || hasPaddingChange);
|
|
|
|
::UpdateProp(mFrame, nsIFrame::UsedPaddingProperty(), needPaddingProp,
|
|
ComputedPhysicalPadding());
|
|
}
|
|
|
|
// This code enforces section 10.3.3 of the CSS2 spec for this formula:
|
|
//
|
|
// 'margin-left' + 'border-left-width' + 'padding-left' + 'width' +
|
|
// 'padding-right' + 'border-right-width' + 'margin-right'
|
|
// = width of containing block
|
|
//
|
|
// Note: the width unit is not auto when this is called
|
|
void ReflowInput::CalculateBlockSideMargins() {
|
|
MOZ_ASSERT(!mFrame->IsTableFrame(),
|
|
"Inner table frame cannot have computed margins!");
|
|
|
|
// Calculations here are done in the containing block's writing mode,
|
|
// which is where margins will eventually be applied: we're calculating
|
|
// margins that will be used by the container in its inline direction,
|
|
// which in the case of an orthogonal contained block will correspond to
|
|
// the block direction of this reflow input. So in the orthogonal-flow
|
|
// case, "CalculateBlock*Side*Margins" will actually end up adjusting
|
|
// the BStart/BEnd margins; those are the "sides" of the block from its
|
|
// container's point of view.
|
|
WritingMode cbWM = GetCBWritingMode();
|
|
|
|
nscoord availISizeCBWM = AvailableSize(cbWM).ISize(cbWM);
|
|
nscoord computedISizeCBWM = ComputedSize(cbWM).ISize(cbWM);
|
|
if (computedISizeCBWM == NS_UNCONSTRAINEDSIZE) {
|
|
// For orthogonal flows, where we found a parent orthogonal-limit
|
|
// for AvailableISize() in Init(), we don't have meaningful sizes to
|
|
// adjust. Act like the sum is already correct (below).
|
|
return;
|
|
}
|
|
|
|
LAYOUT_WARN_IF_FALSE(NS_UNCONSTRAINEDSIZE != computedISizeCBWM &&
|
|
NS_UNCONSTRAINEDSIZE != availISizeCBWM,
|
|
"have unconstrained inline-size; this should only "
|
|
"result from very large sizes, not attempts at "
|
|
"intrinsic inline-size calculation");
|
|
|
|
LogicalMargin margin = ComputedLogicalMargin(cbWM);
|
|
LogicalMargin borderPadding = ComputedLogicalBorderPadding(cbWM);
|
|
nscoord sum = margin.IStartEnd(cbWM) + borderPadding.IStartEnd(cbWM) +
|
|
computedISizeCBWM;
|
|
if (sum == availISizeCBWM) {
|
|
// The sum is already correct
|
|
return;
|
|
}
|
|
|
|
// Determine the start and end margin values. The isize value
|
|
// remains constant while we do this.
|
|
|
|
// Calculate how much space is available for margins
|
|
nscoord availMarginSpace = availISizeCBWM - sum;
|
|
|
|
// If the available margin space is negative, then don't follow the
|
|
// usual overconstraint rules.
|
|
if (availMarginSpace < 0) {
|
|
margin.IEnd(cbWM) += availMarginSpace;
|
|
SetComputedLogicalMargin(cbWM, margin);
|
|
return;
|
|
}
|
|
|
|
const auto positionProperty = mStyleDisplay->mPosition;
|
|
// The css2 spec clearly defines how block elements should behave
|
|
// in section 10.3.3.
|
|
bool isAutoStartMargin =
|
|
mStyleMargin->GetMargin(LogicalSide::IStart, cbWM, positionProperty)
|
|
->IsAuto();
|
|
bool isAutoEndMargin =
|
|
mStyleMargin->GetMargin(LogicalSide::IEnd, cbWM, positionProperty)
|
|
->IsAuto();
|
|
if (!isAutoStartMargin && !isAutoEndMargin) {
|
|
// Neither margin is 'auto' so we're over constrained. Use the
|
|
// 'direction' property of the parent to tell which margin to
|
|
// ignore
|
|
// First check if there is an HTML alignment that we should honor
|
|
const StyleTextAlign* textAlign =
|
|
mParentReflowInput
|
|
? &mParentReflowInput->mFrame->StyleText()->mTextAlign
|
|
: nullptr;
|
|
if (textAlign && (*textAlign == StyleTextAlign::MozLeft ||
|
|
*textAlign == StyleTextAlign::MozCenter ||
|
|
*textAlign == StyleTextAlign::MozRight)) {
|
|
if (mParentReflowInput->mWritingMode.IsBidiLTR()) {
|
|
isAutoStartMargin = *textAlign != StyleTextAlign::MozLeft;
|
|
isAutoEndMargin = *textAlign != StyleTextAlign::MozRight;
|
|
} else {
|
|
isAutoStartMargin = *textAlign != StyleTextAlign::MozRight;
|
|
isAutoEndMargin = *textAlign != StyleTextAlign::MozLeft;
|
|
}
|
|
}
|
|
// Otherwise apply the CSS rules, and ignore one margin by forcing
|
|
// it to 'auto', depending on 'direction'.
|
|
else {
|
|
isAutoEndMargin = true;
|
|
}
|
|
}
|
|
|
|
// Logic which is common to blocks and tables
|
|
// The computed margins need not be zero because the 'auto' could come from
|
|
// overconstraint or from HTML alignment so values need to be accumulated
|
|
|
|
if (isAutoStartMargin) {
|
|
if (isAutoEndMargin) {
|
|
// Both margins are 'auto' so the computed addition should be equal
|
|
nscoord forStart = availMarginSpace / 2;
|
|
margin.IStart(cbWM) += forStart;
|
|
margin.IEnd(cbWM) += availMarginSpace - forStart;
|
|
} else {
|
|
margin.IStart(cbWM) += availMarginSpace;
|
|
}
|
|
} else if (isAutoEndMargin) {
|
|
margin.IEnd(cbWM) += availMarginSpace;
|
|
}
|
|
SetComputedLogicalMargin(cbWM, margin);
|
|
|
|
if (isAutoStartMargin || isAutoEndMargin) {
|
|
// Update the UsedMargin property if we were tracking it already.
|
|
nsMargin* propValue = mFrame->GetProperty(nsIFrame::UsedMarginProperty());
|
|
if (propValue) {
|
|
*propValue = margin.GetPhysicalMargin(cbWM);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For "normal" we use the font's normal line height (em height + leading).
|
|
// If both internal leading and external leading specified by font itself are
|
|
// zeros, we should compensate this by creating extra (external) leading.
|
|
// This is necessary because without this compensation, normal line height might
|
|
// look too tight.
|
|
static nscoord GetNormalLineHeight(nsFontMetrics* aFontMetrics) {
|
|
MOZ_ASSERT(aFontMetrics, "no font metrics");
|
|
nscoord externalLeading = aFontMetrics->ExternalLeading();
|
|
nscoord internalLeading = aFontMetrics->InternalLeading();
|
|
nscoord emHeight = aFontMetrics->EmHeight();
|
|
if (!internalLeading && !externalLeading) {
|
|
return NSToCoordRound(static_cast<float>(emHeight) *
|
|
ReflowInput::kNormalLineHeightFactor);
|
|
}
|
|
return emHeight + internalLeading + externalLeading;
|
|
}
|
|
|
|
static inline nscoord ComputeLineHeight(const StyleLineHeight& aLh,
|
|
const nsFont& aFont, nsAtom* aLanguage,
|
|
bool aExplicitLanguage,
|
|
nsPresContext* aPresContext,
|
|
bool aIsVertical, nscoord aBlockBSize,
|
|
float aFontSizeInflation) {
|
|
if (aLh.IsLength()) {
|
|
nscoord result = aLh.AsLength().ToAppUnits();
|
|
if (aFontSizeInflation != 1.0f) {
|
|
result = NSToCoordRound(static_cast<float>(result) * aFontSizeInflation);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
if (aLh.IsNumber()) {
|
|
// For factor units the computed value of the line-height property
|
|
// is found by multiplying the factor by the font's computed size
|
|
// (adjusted for min-size prefs and text zoom).
|
|
return aFont.size.ScaledBy(aLh.AsNumber() * aFontSizeInflation)
|
|
.ToAppUnits();
|
|
}
|
|
|
|
MOZ_ASSERT(aLh.IsNormal() || aLh.IsMozBlockHeight());
|
|
if (aLh.IsMozBlockHeight() && aBlockBSize != NS_UNCONSTRAINEDSIZE) {
|
|
return aBlockBSize;
|
|
}
|
|
|
|
auto size = aFont.size;
|
|
size.ScaleBy(aFontSizeInflation);
|
|
|
|
if (aPresContext) {
|
|
nsFont font = aFont;
|
|
font.size = size;
|
|
nsFontMetrics::Params params;
|
|
params.language = aLanguage;
|
|
params.explicitLanguage = aExplicitLanguage;
|
|
params.orientation =
|
|
aIsVertical ? nsFontMetrics::eVertical : nsFontMetrics::eHorizontal;
|
|
params.userFontSet = aPresContext->GetUserFontSet();
|
|
params.textPerf = aPresContext->GetTextPerfMetrics();
|
|
params.featureValueLookup = aPresContext->GetFontFeatureValuesLookup();
|
|
RefPtr<nsFontMetrics> fm = aPresContext->GetMetricsFor(font, params);
|
|
return GetNormalLineHeight(fm);
|
|
}
|
|
// If we don't have a pres context, use a 1.2em fallback.
|
|
size.ScaleBy(ReflowInput::kNormalLineHeightFactor);
|
|
return size.ToAppUnits();
|
|
}
|
|
|
|
nscoord ReflowInput::GetLineHeight() const {
|
|
if (mLineHeight != NS_UNCONSTRAINEDSIZE) {
|
|
return mLineHeight;
|
|
}
|
|
|
|
nscoord blockBSize = nsLayoutUtils::IsNonWrapperBlock(mFrame)
|
|
? ComputedBSize()
|
|
: (mCBReflowInput ? mCBReflowInput->ComputedBSize()
|
|
: NS_UNCONSTRAINEDSIZE);
|
|
mLineHeight = CalcLineHeight(*mFrame->Style(), mFrame->PresContext(),
|
|
mFrame->GetContent(), blockBSize,
|
|
nsLayoutUtils::FontSizeInflationFor(mFrame));
|
|
return mLineHeight;
|
|
}
|
|
|
|
void ReflowInput::SetLineHeight(nscoord aLineHeight) {
|
|
MOZ_ASSERT(aLineHeight >= 0, "aLineHeight must be >= 0!");
|
|
|
|
if (mLineHeight != aLineHeight) {
|
|
mLineHeight = aLineHeight;
|
|
// Setting used line height can change a frame's block-size if mFrame's
|
|
// block-size behaves as auto.
|
|
InitResizeFlags(mFrame->PresContext(), mFrame->Type());
|
|
}
|
|
}
|
|
|
|
/* static */
|
|
nscoord ReflowInput::CalcLineHeight(const ComputedStyle& aStyle,
|
|
nsPresContext* aPresContext,
|
|
const nsIContent* aContent,
|
|
nscoord aBlockBSize,
|
|
float aFontSizeInflation) {
|
|
const StyleLineHeight& lh = aStyle.StyleFont()->mLineHeight;
|
|
WritingMode wm(&aStyle);
|
|
const bool vertical = wm.IsVertical() && !wm.IsSideways();
|
|
return CalcLineHeight(lh, *aStyle.StyleFont(), aPresContext, vertical,
|
|
aContent, aBlockBSize, aFontSizeInflation);
|
|
}
|
|
|
|
nscoord ReflowInput::CalcLineHeight(
|
|
const StyleLineHeight& aLh, const nsStyleFont& aRelativeToFont,
|
|
nsPresContext* aPresContext, bool aIsVertical, const nsIContent* aContent,
|
|
nscoord aBlockBSize, float aFontSizeInflation) {
|
|
nscoord lineHeight =
|
|
ComputeLineHeight(aLh, aRelativeToFont.mFont, aRelativeToFont.mLanguage,
|
|
aRelativeToFont.mExplicitLanguage, aPresContext,
|
|
aIsVertical, aBlockBSize, aFontSizeInflation);
|
|
|
|
NS_ASSERTION(lineHeight >= 0, "ComputeLineHeight screwed up");
|
|
|
|
const auto* input = HTMLInputElement::FromNodeOrNull(aContent);
|
|
if (input && input->IsSingleLineTextControl()) {
|
|
// For Web-compatibility, single-line text input elements cannot
|
|
// have a line-height smaller than 'normal'.
|
|
if (!aLh.IsNormal()) {
|
|
nscoord normal = ComputeLineHeight(
|
|
StyleLineHeight::Normal(), aRelativeToFont.mFont,
|
|
aRelativeToFont.mLanguage, aRelativeToFont.mExplicitLanguage,
|
|
aPresContext, aIsVertical, aBlockBSize, aFontSizeInflation);
|
|
if (lineHeight < normal) {
|
|
lineHeight = normal;
|
|
}
|
|
}
|
|
}
|
|
|
|
return lineHeight;
|
|
}
|
|
|
|
nscoord ReflowInput::CalcLineHeightForCanvas(const StyleLineHeight& aLh,
|
|
const nsFont& aRelativeToFont,
|
|
nsAtom* aLanguage,
|
|
bool aExplicitLanguage,
|
|
nsPresContext* aPresContext,
|
|
WritingMode aWM) {
|
|
return ComputeLineHeight(aLh, aRelativeToFont, aLanguage, aExplicitLanguage,
|
|
aPresContext, aWM.IsVertical() && !aWM.IsSideways(),
|
|
NS_UNCONSTRAINEDSIZE, 1.0f);
|
|
}
|
|
|
|
bool SizeComputationInput::ComputeMargin(WritingMode aCBWM,
|
|
nscoord aPercentBasis,
|
|
LayoutFrameType aFrameType) {
|
|
// SVG text frames have no margin.
|
|
if (mFrame->IsInSVGTextSubtree()) {
|
|
return false;
|
|
}
|
|
|
|
if (aFrameType == LayoutFrameType::Table) {
|
|
// Table frame's margin is inherited to the table wrapper frame via the
|
|
// ::-moz-table-wrapper rule in ua.css, so don't set any margins for it.
|
|
SetComputedLogicalMargin(mWritingMode, LogicalMargin(mWritingMode));
|
|
return false;
|
|
}
|
|
|
|
// If style style can provide us the margin directly, then use it.
|
|
const nsStyleMargin* styleMargin = mFrame->StyleMargin();
|
|
|
|
nsMargin margin;
|
|
const bool isLayoutDependent = !styleMargin->GetMargin(margin);
|
|
if (isLayoutDependent) {
|
|
// We have to compute the value. Note that this calculation is
|
|
// performed according to the writing mode of the containing block
|
|
// (http://dev.w3.org/csswg/css-writing-modes-3/#orthogonal-flows)
|
|
if (aPercentBasis == NS_UNCONSTRAINEDSIZE) {
|
|
aPercentBasis = 0;
|
|
}
|
|
LogicalMargin m(aCBWM);
|
|
const auto positionProperty = mFrame->StyleDisplay()->mPosition;
|
|
for (const LogicalSide side : LogicalSides::All) {
|
|
m.Side(side, aCBWM) = nsLayoutUtils::ComputeCBDependentValue(
|
|
aPercentBasis, styleMargin->GetMargin(side, aCBWM, positionProperty));
|
|
}
|
|
SetComputedLogicalMargin(aCBWM, m);
|
|
} else {
|
|
SetComputedLogicalMargin(mWritingMode, LogicalMargin(mWritingMode, margin));
|
|
}
|
|
|
|
// ... but font-size-inflation-based margin adjustment uses the
|
|
// frame's writing mode
|
|
nscoord marginAdjustment = FontSizeInflationListMarginAdjustment(mFrame);
|
|
|
|
if (marginAdjustment > 0) {
|
|
LogicalMargin m = ComputedLogicalMargin(mWritingMode);
|
|
m.IStart(mWritingMode) += marginAdjustment;
|
|
SetComputedLogicalMargin(mWritingMode, m);
|
|
}
|
|
|
|
return isLayoutDependent;
|
|
}
|
|
|
|
bool SizeComputationInput::ComputePadding(WritingMode aCBWM,
|
|
nscoord aPercentBasis,
|
|
LayoutFrameType aFrameType) {
|
|
// If style can provide us the padding directly, then use it.
|
|
const nsStylePadding* stylePadding = mFrame->StylePadding();
|
|
nsMargin padding;
|
|
bool isCBDependent = !stylePadding->GetPadding(padding);
|
|
// a table row/col group, row/col doesn't have padding
|
|
// XXXldb Neither do border-collapse tables.
|
|
if (LayoutFrameType::TableRowGroup == aFrameType ||
|
|
LayoutFrameType::TableColGroup == aFrameType ||
|
|
LayoutFrameType::TableRow == aFrameType ||
|
|
LayoutFrameType::TableCol == aFrameType) {
|
|
SetComputedLogicalPadding(mWritingMode, LogicalMargin(mWritingMode));
|
|
} else if (isCBDependent) {
|
|
// We have to compute the value. This calculation is performed
|
|
// according to the writing mode of the containing block
|
|
// (http://dev.w3.org/csswg/css-writing-modes-3/#orthogonal-flows)
|
|
// clamp negative calc() results to 0
|
|
if (aPercentBasis == NS_UNCONSTRAINEDSIZE) {
|
|
aPercentBasis = 0;
|
|
}
|
|
LogicalMargin p(aCBWM);
|
|
for (const LogicalSide side : LogicalSides::All) {
|
|
p.Side(side, aCBWM) = std::max(
|
|
0, nsLayoutUtils::ComputeCBDependentValue(
|
|
aPercentBasis, stylePadding->mPadding.Get(side, aCBWM)));
|
|
}
|
|
SetComputedLogicalPadding(aCBWM, p);
|
|
} else {
|
|
SetComputedLogicalPadding(mWritingMode,
|
|
LogicalMargin(mWritingMode, padding));
|
|
}
|
|
return isCBDependent;
|
|
}
|
|
|
|
void ReflowInput::ComputeMinMaxValues(const LogicalSize& aCBSize) {
|
|
WritingMode wm = GetWritingMode();
|
|
|
|
const auto positionProperty = mStyleDisplay->mPosition;
|
|
const auto minISize = mStylePosition->MinISize(wm, positionProperty);
|
|
const auto maxISize = mStylePosition->MaxISize(wm, positionProperty);
|
|
const auto minBSize = mStylePosition->MinBSize(wm, positionProperty);
|
|
const auto maxBSize = mStylePosition->MaxBSize(wm, positionProperty);
|
|
|
|
LogicalSize minWidgetSize(wm);
|
|
if (mIsThemed) {
|
|
nsPresContext* pc = mFrame->PresContext();
|
|
const LayoutDeviceIntSize widget = pc->Theme()->GetMinimumWidgetSize(
|
|
pc, mFrame, mStyleDisplay->EffectiveAppearance());
|
|
|
|
// Convert themed widget's physical dimensions to logical coords.
|
|
minWidgetSize = {
|
|
wm, LayoutDeviceIntSize::ToAppUnits(widget, pc->AppUnitsPerDevPixel())};
|
|
|
|
// GetMinimumWidgetSize() returns border-box; we need content-box.
|
|
minWidgetSize -= ComputedLogicalBorderPadding(wm).Size(wm);
|
|
}
|
|
|
|
// NOTE: min-width:auto resolves to 0, except on a flex item. (But
|
|
// even there, it's supposed to be ignored (i.e. treated as 0) until
|
|
// the flex container explicitly resolves & considers it.)
|
|
if (minISize->IsAuto()) {
|
|
SetComputedMinISize(0);
|
|
} else {
|
|
SetComputedMinISize(
|
|
ComputeISizeValue(aCBSize, mStylePosition->mBoxSizing, *minISize));
|
|
}
|
|
|
|
if (mIsThemed) {
|
|
SetComputedMinISize(std::max(ComputedMinISize(), minWidgetSize.ISize(wm)));
|
|
}
|
|
|
|
if (maxISize->IsNone()) {
|
|
// Specified value of 'none'
|
|
SetComputedMaxISize(NS_UNCONSTRAINEDSIZE);
|
|
} else {
|
|
SetComputedMaxISize(
|
|
ComputeISizeValue(aCBSize, mStylePosition->mBoxSizing, *maxISize));
|
|
}
|
|
|
|
// If the computed value of 'min-width' is greater than the value of
|
|
// 'max-width', 'max-width' is set to the value of 'min-width'
|
|
if (ComputedMinISize() > ComputedMaxISize()) {
|
|
SetComputedMaxISize(ComputedMinISize());
|
|
}
|
|
|
|
// Check for percentage based values and a containing block height that
|
|
// depends on the content height. Treat them like the initial value.
|
|
// Likewise, check for calc() with percentages on internal table elements;
|
|
// that's treated as the initial value too.
|
|
const bool isInternalTableFrame = IsInternalTableFrame();
|
|
const nscoord& bPercentageBasis = aCBSize.BSize(wm);
|
|
auto BSizeBehavesAsInitialValue = [&](const auto& aBSize) {
|
|
if (nsLayoutUtils::IsAutoBSize(aBSize, bPercentageBasis)) {
|
|
return true;
|
|
}
|
|
if (isInternalTableFrame) {
|
|
return aBSize.HasLengthAndPercentage();
|
|
}
|
|
return false;
|
|
};
|
|
|
|
// NOTE: min-height:auto resolves to 0, except on a flex item. (But
|
|
// even there, it's supposed to be ignored (i.e. treated as 0) until
|
|
// the flex container explicitly resolves & considers it.)
|
|
if (BSizeBehavesAsInitialValue(*minBSize)) {
|
|
SetComputedMinBSize(0);
|
|
} else {
|
|
SetComputedMinBSize(ComputeBSizeValueHandlingStretch(
|
|
bPercentageBasis, mStylePosition->mBoxSizing, *minBSize));
|
|
}
|
|
|
|
if (mIsThemed) {
|
|
SetComputedMinBSize(std::max(ComputedMinBSize(), minWidgetSize.BSize(wm)));
|
|
}
|
|
|
|
if (BSizeBehavesAsInitialValue(*maxBSize)) {
|
|
// Specified value of 'none'
|
|
SetComputedMaxBSize(NS_UNCONSTRAINEDSIZE);
|
|
} else {
|
|
SetComputedMaxBSize(ComputeBSizeValueHandlingStretch(
|
|
bPercentageBasis, mStylePosition->mBoxSizing, *maxBSize));
|
|
}
|
|
|
|
// If the computed value of 'min-height' is greater than the value of
|
|
// 'max-height', 'max-height' is set to the value of 'min-height'
|
|
if (ComputedMinBSize() > ComputedMaxBSize()) {
|
|
SetComputedMaxBSize(ComputedMinBSize());
|
|
}
|
|
}
|
|
|
|
bool ReflowInput::IsInternalTableFrame() const {
|
|
return mFrame->IsTableRowGroupFrame() || mFrame->IsTableColGroupFrame() ||
|
|
mFrame->IsTableRowFrame() || mFrame->IsTableCellFrame();
|
|
}
|