1289 lines
41 KiB
C
1289 lines
41 KiB
C
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
/* Thanks to Thomas Pornin for the ideas how to implement the constat time
|
|
* binary multiplication. */
|
|
|
|
#ifdef FREEBL_NO_DEPEND
|
|
#include "stubs.h"
|
|
#endif
|
|
#include "blapii.h"
|
|
#include "blapit.h"
|
|
#include "blapi.h"
|
|
#include "gcm.h"
|
|
#include "ctr.h"
|
|
#include "secerr.h"
|
|
#include "prtypes.h"
|
|
#include "pkcs11t.h"
|
|
|
|
#include <limits.h>
|
|
|
|
/* old gcc doesn't support some poly64x2_t intrinsic */
|
|
#if defined(__aarch64__) && defined(IS_LITTLE_ENDIAN) && \
|
|
(defined(__clang__) || defined(__GNUC__) && __GNUC__ > 6)
|
|
#define USE_ARM_GCM
|
|
#elif defined(__arm__) && defined(IS_LITTLE_ENDIAN) && \
|
|
!defined(NSS_DISABLE_ARM32_NEON)
|
|
/* We don't test on big endian platform, so disable this on big endian. */
|
|
#define USE_ARM_GCM
|
|
#endif
|
|
|
|
#if defined(__ARM_NEON) || defined(__ARM_NEON__)
|
|
#include <arm_neon.h>
|
|
#endif
|
|
|
|
/* Forward declarations */
|
|
SECStatus gcm_HashInit_hw(gcmHashContext *ghash);
|
|
SECStatus gcm_HashWrite_hw(gcmHashContext *ghash, unsigned char *outbuf);
|
|
SECStatus gcm_HashMult_hw(gcmHashContext *ghash, const unsigned char *buf,
|
|
unsigned int count);
|
|
SECStatus gcm_HashZeroX_hw(gcmHashContext *ghash);
|
|
SECStatus gcm_HashMult_sftw(gcmHashContext *ghash, const unsigned char *buf,
|
|
unsigned int count);
|
|
SECStatus gcm_HashMult_sftw32(gcmHashContext *ghash, const unsigned char *buf,
|
|
unsigned int count);
|
|
|
|
/* Stub definitions for the above *_hw functions, which shouldn't be
|
|
* used unless NSS_X86_OR_X64 is defined */
|
|
#if !defined(NSS_X86_OR_X64) && !defined(USE_ARM_GCM) && !defined(USE_PPC_CRYPTO)
|
|
SECStatus
|
|
gcm_HashWrite_hw(gcmHashContext *ghash, unsigned char *outbuf)
|
|
{
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
SECStatus
|
|
gcm_HashMult_hw(gcmHashContext *ghash, const unsigned char *buf,
|
|
unsigned int count)
|
|
{
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
SECStatus
|
|
gcm_HashInit_hw(gcmHashContext *ghash)
|
|
{
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
SECStatus
|
|
gcm_HashZeroX_hw(gcmHashContext *ghash)
|
|
{
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
#endif /* !NSS_X86_OR_X64 && !USE_ARM_GCM && !USE_PPC_CRYPTO */
|
|
|
|
uint64_t
|
|
get64(const unsigned char *bytes)
|
|
{
|
|
return ((uint64_t)bytes[0]) << 56 |
|
|
((uint64_t)bytes[1]) << 48 |
|
|
((uint64_t)bytes[2]) << 40 |
|
|
((uint64_t)bytes[3]) << 32 |
|
|
((uint64_t)bytes[4]) << 24 |
|
|
((uint64_t)bytes[5]) << 16 |
|
|
((uint64_t)bytes[6]) << 8 |
|
|
((uint64_t)bytes[7]);
|
|
}
|
|
|
|
/* Initialize a gcmHashContext */
|
|
SECStatus
|
|
gcmHash_InitContext(gcmHashContext *ghash, const unsigned char *H, PRBool sw)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
|
|
ghash->cLen = 0;
|
|
ghash->bufLen = 0;
|
|
PORT_Memset(ghash->counterBuf, 0, sizeof(ghash->counterBuf));
|
|
|
|
ghash->h_low = get64(H + 8);
|
|
ghash->h_high = get64(H);
|
|
#ifdef USE_ARM_GCM
|
|
#if defined(__aarch64__)
|
|
if (arm_pmull_support() && !sw) {
|
|
#else
|
|
if (arm_neon_support() && !sw) {
|
|
#endif
|
|
#elif defined(USE_PPC_CRYPTO)
|
|
if (ppc_crypto_support() && !sw) {
|
|
#else
|
|
if (clmul_support() && !sw) {
|
|
#endif
|
|
rv = gcm_HashInit_hw(ghash);
|
|
} else {
|
|
/* We fall back to the software implementation if we can't use / don't
|
|
* want to use pclmul. */
|
|
#ifdef HAVE_INT128_SUPPORT
|
|
ghash->ghash_mul = gcm_HashMult_sftw;
|
|
#else
|
|
ghash->ghash_mul = gcm_HashMult_sftw32;
|
|
#endif
|
|
ghash->x_high = ghash->x_low = 0;
|
|
ghash->hw = PR_FALSE;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
#ifdef HAVE_INT128_SUPPORT
|
|
/* Binary multiplication x * y = r_high << 64 | r_low. */
|
|
void
|
|
bmul(uint64_t x, uint64_t y, uint64_t *r_high, uint64_t *r_low)
|
|
{
|
|
uint128_t x1, x2, x3, x4, x5;
|
|
uint128_t y1, y2, y3, y4, y5;
|
|
uint128_t r, z;
|
|
|
|
uint128_t m1 = (uint128_t)0x2108421084210842 << 64 | 0x1084210842108421;
|
|
uint128_t m2 = (uint128_t)0x4210842108421084 << 64 | 0x2108421084210842;
|
|
uint128_t m3 = (uint128_t)0x8421084210842108 << 64 | 0x4210842108421084;
|
|
uint128_t m4 = (uint128_t)0x0842108421084210 << 64 | 0x8421084210842108;
|
|
uint128_t m5 = (uint128_t)0x1084210842108421 << 64 | 0x0842108421084210;
|
|
|
|
x1 = x & m1;
|
|
y1 = y & m1;
|
|
x2 = x & m2;
|
|
y2 = y & m2;
|
|
x3 = x & m3;
|
|
y3 = y & m3;
|
|
x4 = x & m4;
|
|
y4 = y & m4;
|
|
x5 = x & m5;
|
|
y5 = y & m5;
|
|
|
|
z = (x1 * y1) ^ (x2 * y5) ^ (x3 * y4) ^ (x4 * y3) ^ (x5 * y2);
|
|
r = z & m1;
|
|
z = (x1 * y2) ^ (x2 * y1) ^ (x3 * y5) ^ (x4 * y4) ^ (x5 * y3);
|
|
r |= z & m2;
|
|
z = (x1 * y3) ^ (x2 * y2) ^ (x3 * y1) ^ (x4 * y5) ^ (x5 * y4);
|
|
r |= z & m3;
|
|
z = (x1 * y4) ^ (x2 * y3) ^ (x3 * y2) ^ (x4 * y1) ^ (x5 * y5);
|
|
r |= z & m4;
|
|
z = (x1 * y5) ^ (x2 * y4) ^ (x3 * y3) ^ (x4 * y2) ^ (x5 * y1);
|
|
r |= z & m5;
|
|
|
|
*r_high = (uint64_t)(r >> 64);
|
|
*r_low = (uint64_t)r;
|
|
}
|
|
|
|
SECStatus
|
|
gcm_HashMult_sftw(gcmHashContext *ghash, const unsigned char *buf,
|
|
unsigned int count)
|
|
{
|
|
uint64_t ci_low, ci_high;
|
|
size_t i;
|
|
uint64_t z2_low, z2_high, z0_low, z0_high, z1a_low, z1a_high;
|
|
uint128_t z_high = 0, z_low = 0;
|
|
|
|
ci_low = ghash->x_low;
|
|
ci_high = ghash->x_high;
|
|
for (i = 0; i < count; i++, buf += 16) {
|
|
ci_low ^= get64(buf + 8);
|
|
ci_high ^= get64(buf);
|
|
|
|
/* Do binary mult ghash->X = C * ghash->H (Karatsuba). */
|
|
bmul(ci_high, ghash->h_high, &z2_high, &z2_low);
|
|
bmul(ci_low, ghash->h_low, &z0_high, &z0_low);
|
|
bmul(ci_high ^ ci_low, ghash->h_high ^ ghash->h_low, &z1a_high, &z1a_low);
|
|
z1a_high ^= z2_high ^ z0_high;
|
|
z1a_low ^= z2_low ^ z0_low;
|
|
z_high = ((uint128_t)z2_high << 64) | (z2_low ^ z1a_high);
|
|
z_low = (((uint128_t)z0_high << 64) | z0_low) ^ (((uint128_t)z1a_low) << 64);
|
|
|
|
/* Shift one (multiply by x) as gcm spec is stupid. */
|
|
z_high = (z_high << 1) | (z_low >> 127);
|
|
z_low <<= 1;
|
|
|
|
/* Reduce */
|
|
z_low ^= (z_low << 127) ^ (z_low << 126) ^ (z_low << 121);
|
|
z_high ^= z_low ^ (z_low >> 1) ^ (z_low >> 2) ^ (z_low >> 7);
|
|
ci_low = (uint64_t)z_high;
|
|
ci_high = (uint64_t)(z_high >> 64);
|
|
}
|
|
ghash->x_low = ci_low;
|
|
ghash->x_high = ci_high;
|
|
return SECSuccess;
|
|
}
|
|
#else
|
|
/* Binary multiplication x * y = r_high << 32 | r_low. */
|
|
void
|
|
bmul32(uint32_t x, uint32_t y, uint32_t *r_high, uint32_t *r_low)
|
|
{
|
|
uint32_t x0, x1, x2, x3;
|
|
uint32_t y0, y1, y2, y3;
|
|
uint32_t m1 = (uint32_t)0x11111111;
|
|
uint32_t m2 = (uint32_t)0x22222222;
|
|
uint32_t m4 = (uint32_t)0x44444444;
|
|
uint32_t m8 = (uint32_t)0x88888888;
|
|
uint64_t z0, z1, z2, z3;
|
|
uint64_t z;
|
|
|
|
x0 = x & m1;
|
|
x1 = x & m2;
|
|
x2 = x & m4;
|
|
x3 = x & m8;
|
|
y0 = y & m1;
|
|
y1 = y & m2;
|
|
y2 = y & m4;
|
|
y3 = y & m8;
|
|
z0 = ((uint64_t)x0 * y0) ^ ((uint64_t)x1 * y3) ^
|
|
((uint64_t)x2 * y2) ^ ((uint64_t)x3 * y1);
|
|
z1 = ((uint64_t)x0 * y1) ^ ((uint64_t)x1 * y0) ^
|
|
((uint64_t)x2 * y3) ^ ((uint64_t)x3 * y2);
|
|
z2 = ((uint64_t)x0 * y2) ^ ((uint64_t)x1 * y1) ^
|
|
((uint64_t)x2 * y0) ^ ((uint64_t)x3 * y3);
|
|
z3 = ((uint64_t)x0 * y3) ^ ((uint64_t)x1 * y2) ^
|
|
((uint64_t)x2 * y1) ^ ((uint64_t)x3 * y0);
|
|
z0 &= ((uint64_t)m1 << 32) | m1;
|
|
z1 &= ((uint64_t)m2 << 32) | m2;
|
|
z2 &= ((uint64_t)m4 << 32) | m4;
|
|
z3 &= ((uint64_t)m8 << 32) | m8;
|
|
z = z0 | z1 | z2 | z3;
|
|
*r_high = (uint32_t)(z >> 32);
|
|
*r_low = (uint32_t)z;
|
|
}
|
|
|
|
SECStatus
|
|
gcm_HashMult_sftw32(gcmHashContext *ghash, const unsigned char *buf,
|
|
unsigned int count)
|
|
{
|
|
size_t i;
|
|
uint64_t ci_low, ci_high;
|
|
uint64_t z_high_h, z_high_l, z_low_h, z_low_l;
|
|
uint32_t ci_high_h, ci_high_l, ci_low_h, ci_low_l;
|
|
uint32_t b_a_h, b_a_l, a_a_h, a_a_l, b_b_h, b_b_l;
|
|
uint32_t a_b_h, a_b_l, b_c_h, b_c_l, a_c_h, a_c_l, c_c_h, c_c_l;
|
|
uint32_t ci_highXlow_h, ci_highXlow_l, c_a_h, c_a_l, c_b_h, c_b_l;
|
|
|
|
uint32_t h_high_h = (uint32_t)(ghash->h_high >> 32);
|
|
uint32_t h_high_l = (uint32_t)ghash->h_high;
|
|
uint32_t h_low_h = (uint32_t)(ghash->h_low >> 32);
|
|
uint32_t h_low_l = (uint32_t)ghash->h_low;
|
|
uint32_t h_highXlow_h = h_high_h ^ h_low_h;
|
|
uint32_t h_highXlow_l = h_high_l ^ h_low_l;
|
|
uint32_t h_highX_xored = h_highXlow_h ^ h_highXlow_l;
|
|
|
|
for (i = 0; i < count; i++, buf += 16) {
|
|
ci_low = ghash->x_low ^ get64(buf + 8);
|
|
ci_high = ghash->x_high ^ get64(buf);
|
|
ci_low_h = (uint32_t)(ci_low >> 32);
|
|
ci_low_l = (uint32_t)ci_low;
|
|
ci_high_h = (uint32_t)(ci_high >> 32);
|
|
ci_high_l = (uint32_t)ci_high;
|
|
ci_highXlow_h = ci_high_h ^ ci_low_h;
|
|
ci_highXlow_l = ci_high_l ^ ci_low_l;
|
|
|
|
/* Do binary mult ghash->X = C * ghash->H (recursive Karatsuba). */
|
|
bmul32(ci_high_h, h_high_h, &a_a_h, &a_a_l);
|
|
bmul32(ci_high_l, h_high_l, &a_b_h, &a_b_l);
|
|
bmul32(ci_high_h ^ ci_high_l, h_high_h ^ h_high_l, &a_c_h, &a_c_l);
|
|
a_c_h ^= a_a_h ^ a_b_h;
|
|
a_c_l ^= a_a_l ^ a_b_l;
|
|
a_a_l ^= a_c_h;
|
|
a_b_h ^= a_c_l;
|
|
/* ci_high * h_high = a_a_h:a_a_l:a_b_h:a_b_l */
|
|
|
|
bmul32(ci_low_h, h_low_h, &b_a_h, &b_a_l);
|
|
bmul32(ci_low_l, h_low_l, &b_b_h, &b_b_l);
|
|
bmul32(ci_low_h ^ ci_low_l, h_low_h ^ h_low_l, &b_c_h, &b_c_l);
|
|
b_c_h ^= b_a_h ^ b_b_h;
|
|
b_c_l ^= b_a_l ^ b_b_l;
|
|
b_a_l ^= b_c_h;
|
|
b_b_h ^= b_c_l;
|
|
/* ci_low * h_low = b_a_h:b_a_l:b_b_h:b_b_l */
|
|
|
|
bmul32(ci_highXlow_h, h_highXlow_h, &c_a_h, &c_a_l);
|
|
bmul32(ci_highXlow_l, h_highXlow_l, &c_b_h, &c_b_l);
|
|
bmul32(ci_highXlow_h ^ ci_highXlow_l, h_highX_xored, &c_c_h, &c_c_l);
|
|
c_c_h ^= c_a_h ^ c_b_h;
|
|
c_c_l ^= c_a_l ^ c_b_l;
|
|
c_a_l ^= c_c_h;
|
|
c_b_h ^= c_c_l;
|
|
/* (ci_high ^ ci_low) * (h_high ^ h_low) = c_a_h:c_a_l:c_b_h:c_b_l */
|
|
|
|
c_a_h ^= b_a_h ^ a_a_h;
|
|
c_a_l ^= b_a_l ^ a_a_l;
|
|
c_b_h ^= b_b_h ^ a_b_h;
|
|
c_b_l ^= b_b_l ^ a_b_l;
|
|
z_high_h = ((uint64_t)a_a_h << 32) | a_a_l;
|
|
z_high_l = (((uint64_t)a_b_h << 32) | a_b_l) ^
|
|
(((uint64_t)c_a_h << 32) | c_a_l);
|
|
z_low_h = (((uint64_t)b_a_h << 32) | b_a_l) ^
|
|
(((uint64_t)c_b_h << 32) | c_b_l);
|
|
z_low_l = ((uint64_t)b_b_h << 32) | b_b_l;
|
|
|
|
/* Shift one (multiply by x) as gcm spec is stupid. */
|
|
z_high_h = z_high_h << 1 | z_high_l >> 63;
|
|
z_high_l = z_high_l << 1 | z_low_h >> 63;
|
|
z_low_h = z_low_h << 1 | z_low_l >> 63;
|
|
z_low_l <<= 1;
|
|
|
|
/* Reduce */
|
|
z_low_h ^= (z_low_l << 63) ^ (z_low_l << 62) ^ (z_low_l << 57);
|
|
z_high_h ^= z_low_h ^ (z_low_h >> 1) ^ (z_low_h >> 2) ^ (z_low_h >> 7);
|
|
z_high_l ^= z_low_l ^ (z_low_l >> 1) ^ (z_low_l >> 2) ^ (z_low_l >> 7) ^
|
|
(z_low_h << 63) ^ (z_low_h << 62) ^ (z_low_h << 57);
|
|
ghash->x_high = z_high_h;
|
|
ghash->x_low = z_high_l;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
#endif /* HAVE_INT128_SUPPORT */
|
|
|
|
static SECStatus
|
|
gcm_zeroX(gcmHashContext *ghash)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
|
|
if (ghash->hw) {
|
|
rv = gcm_HashZeroX_hw(ghash);
|
|
}
|
|
|
|
ghash->x_high = ghash->x_low = 0;
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* implement GCM GHASH using the freebl GHASH function. The gcm_HashMult
|
|
* function always takes AES_BLOCK_SIZE lengths of data. gcmHash_Update will
|
|
* format the data properly.
|
|
*/
|
|
SECStatus
|
|
gcmHash_Update(gcmHashContext *ghash, const unsigned char *buf,
|
|
unsigned int len)
|
|
{
|
|
unsigned int blocks;
|
|
SECStatus rv;
|
|
|
|
ghash->cLen += (len * PR_BITS_PER_BYTE);
|
|
|
|
/* first deal with the current buffer of data. Try to fill it out so
|
|
* we can hash it */
|
|
if (ghash->bufLen) {
|
|
unsigned int needed = PR_MIN(len, AES_BLOCK_SIZE - ghash->bufLen);
|
|
if (needed != 0) {
|
|
PORT_Memcpy(ghash->buffer + ghash->bufLen, buf, needed);
|
|
}
|
|
buf += needed;
|
|
len -= needed;
|
|
ghash->bufLen += needed;
|
|
if (len == 0) {
|
|
/* didn't add enough to hash the data, nothing more do do */
|
|
return SECSuccess;
|
|
}
|
|
PORT_Assert(ghash->bufLen == AES_BLOCK_SIZE);
|
|
/* hash the buffer and clear it */
|
|
rv = ghash->ghash_mul(ghash, ghash->buffer, 1);
|
|
PORT_Memset(ghash->buffer, 0, AES_BLOCK_SIZE);
|
|
ghash->bufLen = 0;
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
}
|
|
/* now hash any full blocks remaining in the data stream */
|
|
blocks = len / AES_BLOCK_SIZE;
|
|
if (blocks) {
|
|
rv = ghash->ghash_mul(ghash, buf, blocks);
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
buf += blocks * AES_BLOCK_SIZE;
|
|
len -= blocks * AES_BLOCK_SIZE;
|
|
}
|
|
|
|
/* save any remainder in the buffer to be hashed with the next call */
|
|
if (len != 0) {
|
|
PORT_Memcpy(ghash->buffer, buf, len);
|
|
ghash->bufLen = len;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* write out any partial blocks zero padded through the GHASH engine,
|
|
* save the lengths for the final completion of the hash
|
|
*/
|
|
static SECStatus
|
|
gcmHash_Sync(gcmHashContext *ghash)
|
|
{
|
|
int i;
|
|
SECStatus rv;
|
|
|
|
/* copy the previous counter to the upper block */
|
|
PORT_Memcpy(ghash->counterBuf, &ghash->counterBuf[GCM_HASH_LEN_LEN],
|
|
GCM_HASH_LEN_LEN);
|
|
/* copy the current counter in the lower block */
|
|
for (i = 0; i < GCM_HASH_LEN_LEN; i++) {
|
|
ghash->counterBuf[GCM_HASH_LEN_LEN + i] =
|
|
(ghash->cLen >> ((GCM_HASH_LEN_LEN - 1 - i) * PR_BITS_PER_BYTE)) & 0xff;
|
|
}
|
|
ghash->cLen = 0;
|
|
|
|
/* now zero fill the buffer and hash the last block */
|
|
if (ghash->bufLen) {
|
|
PORT_Memset(ghash->buffer + ghash->bufLen, 0, AES_BLOCK_SIZE - ghash->bufLen);
|
|
rv = ghash->ghash_mul(ghash, ghash->buffer, 1);
|
|
PORT_Memset(ghash->buffer, 0, AES_BLOCK_SIZE);
|
|
ghash->bufLen = 0;
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
#define WRITE64(x, bytes) \
|
|
(bytes)[0] = (x) >> 56; \
|
|
(bytes)[1] = (x) >> 48; \
|
|
(bytes)[2] = (x) >> 40; \
|
|
(bytes)[3] = (x) >> 32; \
|
|
(bytes)[4] = (x) >> 24; \
|
|
(bytes)[5] = (x) >> 16; \
|
|
(bytes)[6] = (x) >> 8; \
|
|
(bytes)[7] = (x);
|
|
|
|
/*
|
|
* This does the final sync, hashes the lengths, then returns
|
|
* "T", the hashed output.
|
|
*/
|
|
SECStatus
|
|
gcmHash_Final(gcmHashContext *ghash, unsigned char *outbuf,
|
|
unsigned int *outlen, unsigned int maxout)
|
|
{
|
|
unsigned char T[MAX_BLOCK_SIZE];
|
|
SECStatus rv;
|
|
|
|
rv = gcmHash_Sync(ghash);
|
|
if (rv != SECSuccess) {
|
|
goto cleanup;
|
|
}
|
|
|
|
rv = ghash->ghash_mul(ghash, ghash->counterBuf,
|
|
(GCM_HASH_LEN_LEN * 2) / AES_BLOCK_SIZE);
|
|
if (rv != SECSuccess) {
|
|
goto cleanup;
|
|
}
|
|
|
|
if (ghash->hw) {
|
|
rv = gcm_HashWrite_hw(ghash, T);
|
|
if (rv != SECSuccess) {
|
|
goto cleanup;
|
|
}
|
|
} else {
|
|
WRITE64(ghash->x_low, T + 8);
|
|
WRITE64(ghash->x_high, T);
|
|
}
|
|
|
|
if (maxout > AES_BLOCK_SIZE) {
|
|
maxout = AES_BLOCK_SIZE;
|
|
}
|
|
PORT_Memcpy(outbuf, T, maxout);
|
|
*outlen = maxout;
|
|
rv = SECSuccess;
|
|
|
|
cleanup:
|
|
PORT_SafeZero(T, sizeof(T));
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
gcmHash_Reset(gcmHashContext *ghash, const unsigned char *AAD,
|
|
unsigned int AADLen)
|
|
{
|
|
SECStatus rv;
|
|
|
|
// Limit AADLen in accordance with SP800-38D
|
|
if (sizeof(AADLen) >= 8) {
|
|
unsigned long long AADLen_ull = AADLen;
|
|
if (AADLen_ull > (1ULL << 61) - 1) {
|
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
|
|
ghash->cLen = 0;
|
|
PORT_Memset(ghash->counterBuf, 0, GCM_HASH_LEN_LEN * 2);
|
|
ghash->bufLen = 0;
|
|
rv = gcm_zeroX(ghash);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
|
|
/* now kick things off by hashing the Additional Authenticated Data */
|
|
if (AADLen != 0) {
|
|
rv = gcmHash_Update(ghash, AAD, AADLen);
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
rv = gcmHash_Sync(ghash);
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
/**************************************************************************
|
|
* Now implement the GCM using gcmHash and CTR *
|
|
**************************************************************************/
|
|
|
|
/* state to handle the full GCM operation (hash and counter) */
|
|
struct GCMContextStr {
|
|
gcmHashContext *ghash_context;
|
|
CTRContext ctr_context;
|
|
freeblCipherFunc cipher;
|
|
void *cipher_context;
|
|
unsigned long tagBits;
|
|
unsigned char tagKey[MAX_BLOCK_SIZE];
|
|
PRBool ctr_context_init;
|
|
gcmIVContext gcm_iv;
|
|
};
|
|
|
|
SECStatus gcm_InitCounter(GCMContext *gcm, const unsigned char *iv,
|
|
unsigned int ivLen, unsigned int tagBits,
|
|
const unsigned char *aad, unsigned int aadLen);
|
|
|
|
GCMContext *
|
|
GCM_CreateContext(void *context, freeblCipherFunc cipher,
|
|
const unsigned char *params)
|
|
{
|
|
GCMContext *gcm = NULL;
|
|
gcmHashContext *ghash = NULL;
|
|
unsigned char H[MAX_BLOCK_SIZE];
|
|
unsigned int tmp;
|
|
const CK_NSS_GCM_PARAMS *gcmParams = (const CK_NSS_GCM_PARAMS *)params;
|
|
SECStatus rv;
|
|
#ifdef DISABLE_HW_GCM
|
|
const PRBool sw = PR_TRUE;
|
|
#else
|
|
const PRBool sw = PR_FALSE;
|
|
#endif
|
|
|
|
gcm = PORT_ZNew(GCMContext);
|
|
if (gcm == NULL) {
|
|
return NULL;
|
|
}
|
|
gcm->cipher = cipher;
|
|
gcm->cipher_context = context;
|
|
ghash = PORT_ZNewAligned(gcmHashContext, 16, mem);
|
|
|
|
/* first plug in the ghash context */
|
|
gcm->ghash_context = ghash;
|
|
PORT_Memset(H, 0, AES_BLOCK_SIZE);
|
|
rv = (*cipher)(context, H, &tmp, AES_BLOCK_SIZE, H, AES_BLOCK_SIZE, AES_BLOCK_SIZE);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
rv = gcmHash_InitContext(ghash, H, sw);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
|
|
gcm_InitIVContext(&gcm->gcm_iv);
|
|
gcm->ctr_context_init = PR_FALSE;
|
|
|
|
/* if gcmPara/ms is NULL, then we are creating an PKCS #11 MESSAGE
|
|
* style context, in which we initialize the key once, then do separate
|
|
* iv/aad's for each message. In that case we only initialize the key
|
|
* and ghash. We initialize the counter in each separate message */
|
|
if (gcmParams == NULL) {
|
|
/* OK we are finished with init, if we are doing MESSAGE interface,
|
|
* return from here */
|
|
return gcm;
|
|
}
|
|
|
|
rv = gcm_InitCounter(gcm, gcmParams->pIv, gcmParams->ulIvLen,
|
|
gcmParams->ulTagBits, gcmParams->pAAD,
|
|
gcmParams->ulAADLen);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
PORT_SafeZero(H, AES_BLOCK_SIZE);
|
|
gcm->ctr_context_init = PR_TRUE;
|
|
return gcm;
|
|
|
|
loser:
|
|
PORT_SafeZero(H, AES_BLOCK_SIZE);
|
|
if (ghash && ghash->mem) {
|
|
void *mem = ghash->mem;
|
|
PORT_SafeZero(ghash, sizeof(gcmHashContext));
|
|
PORT_Free(mem);
|
|
}
|
|
if (gcm) {
|
|
PORT_ZFree(gcm, sizeof(GCMContext));
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static inline unsigned int
|
|
load32_be(const unsigned char *p)
|
|
{
|
|
return ((unsigned int)p[0]) << 24 | p[1] << 16 | p[2] << 8 | p[3];
|
|
}
|
|
|
|
static inline void
|
|
store32_be(unsigned char *p, const unsigned int c)
|
|
{
|
|
p[0] = (unsigned char)(c >> 24);
|
|
p[1] = (unsigned char)(c >> 16);
|
|
p[2] = (unsigned char)(c >> 8);
|
|
p[3] = (unsigned char)c;
|
|
}
|
|
|
|
static inline void
|
|
gcm_ctr_xor(unsigned char *target, const unsigned char *x,
|
|
const unsigned char *y, unsigned int count)
|
|
{
|
|
for (unsigned int i = 0; i < count; i++) {
|
|
target[i] = x[i] ^ y[i];
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
gcm_ctr_xor_block(unsigned char *target, const unsigned char *x,
|
|
const unsigned char *y)
|
|
{
|
|
#if defined(__ARM_NEON) || defined(__ARM_NEON__)
|
|
vst1q_u8(target, veorq_u8(vld1q_u8(x), vld1q_u8(y)));
|
|
#else
|
|
gcm_ctr_xor(target, x, y, AES_BLOCK_SIZE);
|
|
#endif
|
|
}
|
|
|
|
static SECStatus
|
|
gcm_CTR_Update(CTRContext *ctr, unsigned char *outbuf,
|
|
unsigned int *outlen, unsigned int maxout,
|
|
const unsigned char *inbuf, unsigned int inlen)
|
|
{
|
|
PORT_Assert(ctr->counterBits == 32);
|
|
PORT_Assert(0 < ctr->bufPtr && ctr->bufPtr <= AES_BLOCK_SIZE);
|
|
|
|
// The AES-GCM message length limit is 2^32 - 2 blocks.
|
|
const unsigned int blockLimit = 0xFFFFFFFEUL;
|
|
|
|
unsigned char *const pCounter = ctr->counter + AES_BLOCK_SIZE - 4;
|
|
unsigned int counter = load32_be(pCounter);
|
|
|
|
// Calculate the number of times that the counter has already been incremented.
|
|
unsigned char *const pCounterFirst = ctr->counterFirst + AES_BLOCK_SIZE - 4;
|
|
unsigned int ticks = (counter - load32_be(pCounterFirst)) & 0xFFFFFFFFUL;
|
|
|
|
// Get the number of bytes of keystream that are available in the internal buffer.
|
|
const unsigned int bufBytes = AES_BLOCK_SIZE - ctr->bufPtr;
|
|
|
|
// Calculate the number of times that we will increment the counter while
|
|
// encrypting inbuf. We can encrypt bufBytes bytes of the input without
|
|
// incrementing the counter.
|
|
unsigned int newTicks;
|
|
if (inlen < bufBytes) {
|
|
newTicks = 0;
|
|
} else if ((inlen - bufBytes) % AES_BLOCK_SIZE) {
|
|
newTicks = ((inlen - bufBytes) / AES_BLOCK_SIZE) + 1;
|
|
} else {
|
|
newTicks = ((inlen - bufBytes) / AES_BLOCK_SIZE);
|
|
}
|
|
|
|
// Ensure that the counter will not exceed the limit.
|
|
if (ticks > blockLimit - newTicks) {
|
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
*outlen = inlen;
|
|
if (maxout < inlen) {
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (bufBytes) {
|
|
unsigned int needed = PR_MIN(bufBytes, inlen);
|
|
gcm_ctr_xor(outbuf, inbuf, ctr->buffer + ctr->bufPtr, needed);
|
|
ctr->bufPtr += needed;
|
|
outbuf += needed;
|
|
inbuf += needed;
|
|
inlen -= needed;
|
|
PORT_Assert(inlen == 0 || ctr->bufPtr == AES_BLOCK_SIZE);
|
|
}
|
|
while (inlen >= AES_BLOCK_SIZE) {
|
|
unsigned int tmp;
|
|
SECStatus rv = (*ctr->cipher)(ctr->context, ctr->buffer, &tmp, AES_BLOCK_SIZE,
|
|
ctr->counter, AES_BLOCK_SIZE, AES_BLOCK_SIZE);
|
|
PORT_Assert(rv == SECSuccess);
|
|
(void)rv;
|
|
store32_be(pCounter, ++counter);
|
|
gcm_ctr_xor_block(outbuf, inbuf, ctr->buffer);
|
|
outbuf += AES_BLOCK_SIZE;
|
|
inbuf += AES_BLOCK_SIZE;
|
|
inlen -= AES_BLOCK_SIZE;
|
|
}
|
|
if (inlen) {
|
|
unsigned int tmp;
|
|
SECStatus rv = (*ctr->cipher)(ctr->context, ctr->buffer, &tmp, AES_BLOCK_SIZE,
|
|
ctr->counter, AES_BLOCK_SIZE, AES_BLOCK_SIZE);
|
|
PORT_Assert(rv == SECSuccess);
|
|
(void)rv;
|
|
store32_be(pCounter, ++counter);
|
|
gcm_ctr_xor(outbuf, inbuf, ctr->buffer, inlen);
|
|
ctr->bufPtr = inlen;
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
gcm_InitCounter(GCMContext *gcm, const unsigned char *iv, unsigned int ivLen,
|
|
unsigned int tagBits, const unsigned char *aad,
|
|
unsigned int aadLen)
|
|
{
|
|
gcmHashContext *ghash = gcm->ghash_context;
|
|
unsigned int tmp;
|
|
PRBool freeCtr = PR_FALSE;
|
|
CK_AES_CTR_PARAMS ctrParams;
|
|
SECStatus rv;
|
|
|
|
/* Verify our parameters here */
|
|
if (ivLen == 0) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
goto loser;
|
|
}
|
|
|
|
if (tagBits != 128 && tagBits != 120 &&
|
|
tagBits != 112 && tagBits != 104 &&
|
|
tagBits != 96 && tagBits != 64 &&
|
|
tagBits != 32) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
goto loser;
|
|
}
|
|
|
|
/* fill in the Counter context */
|
|
ctrParams.ulCounterBits = 32;
|
|
PORT_Memset(ctrParams.cb, 0, sizeof(ctrParams.cb));
|
|
if (ivLen == 12) {
|
|
PORT_Memcpy(ctrParams.cb, iv, ivLen);
|
|
ctrParams.cb[AES_BLOCK_SIZE - 1] = 1;
|
|
} else {
|
|
rv = gcmHash_Reset(ghash, NULL, 0);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
rv = gcmHash_Update(ghash, iv, ivLen);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
rv = gcmHash_Final(ghash, ctrParams.cb, &tmp, AES_BLOCK_SIZE);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
}
|
|
rv = CTR_InitContext(&gcm->ctr_context, gcm->cipher_context, gcm->cipher,
|
|
(unsigned char *)&ctrParams);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
freeCtr = PR_TRUE;
|
|
|
|
/* fill in the gcm structure */
|
|
gcm->tagBits = tagBits; /* save for final step */
|
|
/* calculate the final tag key. NOTE: gcm->tagKey is zero to start with.
|
|
* if this assumption changes, we would need to explicitly clear it here */
|
|
PORT_Memset(gcm->tagKey, 0, sizeof(gcm->tagKey));
|
|
rv = gcm_CTR_Update(&gcm->ctr_context, gcm->tagKey, &tmp, AES_BLOCK_SIZE,
|
|
gcm->tagKey, AES_BLOCK_SIZE);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
|
|
/* finally mix in the AAD data */
|
|
rv = gcmHash_Reset(ghash, aad, aadLen);
|
|
if (rv != SECSuccess) {
|
|
goto loser;
|
|
}
|
|
|
|
PORT_SafeZero(&ctrParams, sizeof ctrParams);
|
|
return SECSuccess;
|
|
|
|
loser:
|
|
PORT_SafeZero(&ctrParams, sizeof ctrParams);
|
|
if (freeCtr) {
|
|
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
|
|
}
|
|
return SECFailure;
|
|
}
|
|
|
|
void
|
|
GCM_DestroyContext(GCMContext *gcm, PRBool freeit)
|
|
{
|
|
void *mem = gcm->ghash_context->mem;
|
|
/* ctr_context is statically allocated and will be freed when we free
|
|
* gcm. call their destroy functions to free up any locally
|
|
* allocated data (like mp_int's) */
|
|
if (gcm->ctr_context_init) {
|
|
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
|
|
}
|
|
PORT_Memset(gcm->ghash_context, 0, sizeof(gcmHashContext));
|
|
PORT_Free(mem);
|
|
PORT_Memset(&gcm->tagBits, 0, sizeof(gcm->tagBits));
|
|
PORT_Memset(gcm->tagKey, 0, sizeof(gcm->tagKey));
|
|
if (freeit) {
|
|
PORT_Free(gcm);
|
|
}
|
|
}
|
|
|
|
static SECStatus
|
|
gcm_GetTag(GCMContext *gcm, unsigned char *outbuf,
|
|
unsigned int *outlen, unsigned int maxout)
|
|
{
|
|
unsigned int tagBytes;
|
|
unsigned int extra;
|
|
unsigned int i;
|
|
SECStatus rv;
|
|
|
|
tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE;
|
|
extra = tagBytes * PR_BITS_PER_BYTE - gcm->tagBits;
|
|
|
|
if (outbuf == NULL) {
|
|
*outlen = tagBytes;
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (maxout < tagBytes) {
|
|
*outlen = tagBytes;
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
maxout = tagBytes;
|
|
rv = gcmHash_Final(gcm->ghash_context, outbuf, outlen, maxout);
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
|
|
for (i = 0; i < *outlen; i++) {
|
|
outbuf[i] ^= gcm->tagKey[i];
|
|
}
|
|
/* mask off any extra bits we got */
|
|
if (extra) {
|
|
outbuf[tagBytes - 1] &= ~((1 << extra) - 1);
|
|
}
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* See The Galois/Counter Mode of Operation, McGrew and Viega.
|
|
* GCM is basically counter mode with a specific initialization and
|
|
* built in macing operation.
|
|
*/
|
|
SECStatus
|
|
GCM_EncryptUpdate(GCMContext *gcm, unsigned char *outbuf,
|
|
unsigned int *outlen, unsigned int maxout,
|
|
const unsigned char *inbuf, unsigned int inlen,
|
|
unsigned int blocksize)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int tagBytes;
|
|
unsigned int len;
|
|
|
|
PORT_Assert(blocksize == AES_BLOCK_SIZE);
|
|
if (blocksize != AES_BLOCK_SIZE) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (!gcm->ctr_context_init) {
|
|
PORT_SetError(SEC_ERROR_NOT_INITIALIZED);
|
|
return SECFailure;
|
|
}
|
|
|
|
tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE;
|
|
if (UINT_MAX - inlen < tagBytes) {
|
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
if (maxout < inlen + tagBytes) {
|
|
*outlen = inlen + tagBytes;
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
rv = gcm_CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout,
|
|
inbuf, inlen);
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
rv = gcmHash_Update(gcm->ghash_context, outbuf, *outlen);
|
|
if (rv != SECSuccess) {
|
|
PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */
|
|
*outlen = 0;
|
|
return SECFailure;
|
|
}
|
|
rv = gcm_GetTag(gcm, outbuf + *outlen, &len, maxout - *outlen);
|
|
if (rv != SECSuccess) {
|
|
PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */
|
|
*outlen = 0;
|
|
return SECFailure;
|
|
};
|
|
*outlen += len;
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* See The Galois/Counter Mode of Operation, McGrew and Viega.
|
|
* GCM is basically counter mode with a specific initialization and
|
|
* built in macing operation. NOTE: the only difference between Encrypt
|
|
* and Decrypt is when we calculate the mac. That is because the mac must
|
|
* always be calculated on the cipher text, not the plain text, so for
|
|
* encrypt, we do the CTR update first and for decrypt we do the mac first.
|
|
*/
|
|
SECStatus
|
|
GCM_DecryptUpdate(GCMContext *gcm, unsigned char *outbuf,
|
|
unsigned int *outlen, unsigned int maxout,
|
|
const unsigned char *inbuf, unsigned int inlen,
|
|
unsigned int blocksize)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int tagBytes;
|
|
unsigned char tag[MAX_BLOCK_SIZE];
|
|
const unsigned char *intag;
|
|
unsigned int len;
|
|
|
|
PORT_Assert(blocksize == AES_BLOCK_SIZE);
|
|
if (blocksize != AES_BLOCK_SIZE) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (!gcm->ctr_context_init) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE;
|
|
|
|
/* get the authentication block */
|
|
if (inlen < tagBytes) {
|
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
inlen -= tagBytes;
|
|
intag = inbuf + inlen;
|
|
|
|
/* verify the block */
|
|
rv = gcmHash_Update(gcm->ghash_context, inbuf, inlen);
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
rv = gcm_GetTag(gcm, tag, &len, AES_BLOCK_SIZE);
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
/* Don't decrypt if we can't authenticate the encrypted data!
|
|
* This assumes that if tagBits is not a multiple of 8, intag will
|
|
* preserve the masked off missing bits. */
|
|
if (NSS_SecureMemcmp(tag, intag, tagBytes) != 0) {
|
|
/* force a CKR_ENCRYPTED_DATA_INVALID error at in softoken */
|
|
PORT_SetError(SEC_ERROR_BAD_DATA);
|
|
PORT_SafeZero(tag, sizeof(tag));
|
|
return SECFailure;
|
|
}
|
|
PORT_SafeZero(tag, sizeof(tag));
|
|
/* finish the decryption */
|
|
return gcm_CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout,
|
|
inbuf, inlen);
|
|
}
|
|
|
|
void
|
|
gcm_InitIVContext(gcmIVContext *gcmIv)
|
|
{
|
|
gcmIv->counter = 0;
|
|
gcmIv->max_count = 0;
|
|
gcmIv->ivGen = CKG_GENERATE;
|
|
gcmIv->ivLen = 0;
|
|
gcmIv->fixedBits = 0;
|
|
}
|
|
|
|
/*
|
|
* generate the IV on the fly and return it to the application.
|
|
* This function keeps a counter, which may be used in the IV
|
|
* generation, or may be used in simply to make sure we don't
|
|
* generate to many IV's from this same key.
|
|
* PKCS #11 defines 4 generating values:
|
|
* 1) CKG_NO_GENERATE: just use the passed in IV as it.
|
|
* 2) CKG_GENERATE: the application doesn't care what generation
|
|
* scheme is use (we default to counter in this code).
|
|
* 3) CKG_GENERATE_COUNTER: The IV is the value of a counter.
|
|
* 4) CKG_GENERATE_RANDOM: The IV is randomly generated.
|
|
* We add a fifth rule:
|
|
* 5) CKG_GENERATE_COUNTER_XOR: The Counter value is xor'ed with
|
|
* the IV.
|
|
* The value fixedBits specifies the number of bits that will be passed
|
|
* on from the original IV. The counter or the random data is is loaded
|
|
* in the remainder of the IV not covered by fixedBits, overwriting any
|
|
* data there. In the xor case the counter is xor'ed with the data in the
|
|
* IV. In all cases only bits outside of fixedBits is modified.
|
|
* The number of IV's we can generate is restricted by the size of the
|
|
* variable part of the IV and the generation algorithm used. Because of
|
|
* this, we require subsequent calls on this context to use the same
|
|
* generator, IV len, and fixed bits as the first call.
|
|
*/
|
|
SECStatus
|
|
gcm_GenerateIV(gcmIVContext *gcmIv, unsigned char *iv, unsigned int ivLen,
|
|
unsigned int fixedBits, CK_GENERATOR_FUNCTION ivGen)
|
|
{
|
|
unsigned int i;
|
|
unsigned int flexBits;
|
|
unsigned int ivOffset;
|
|
unsigned int ivNewCount;
|
|
unsigned char ivMask;
|
|
unsigned char ivSave;
|
|
SECStatus rv;
|
|
|
|
if (gcmIv->counter != 0) {
|
|
/* If we've already generated a message, make sure all subsequent
|
|
* messages are using the same generator */
|
|
if ((gcmIv->ivGen != ivGen) || (gcmIv->fixedBits != fixedBits) ||
|
|
(gcmIv->ivLen != ivLen)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
} else {
|
|
/* remember these values */
|
|
gcmIv->ivGen = ivGen;
|
|
gcmIv->fixedBits = fixedBits;
|
|
gcmIv->ivLen = ivLen;
|
|
/* now calculate how may bits of IV we have to supply */
|
|
flexBits = ivLen * PR_BITS_PER_BYTE; /* bytes->bits */
|
|
/* first make sure we aren't going to overflow */
|
|
if (flexBits < fixedBits) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
flexBits -= fixedBits;
|
|
/* if we are generating a random number reduce the acceptable bits to
|
|
* avoid birthday attacks */
|
|
if (ivGen == CKG_GENERATE_RANDOM) {
|
|
if (flexBits <= GCMIV_RANDOM_BIRTHDAY_BITS) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
/* see freebl/blapit.h for how we calculate
|
|
* GCMIV_RANDOM_BIRTHDAY_BITS */
|
|
flexBits -= GCMIV_RANDOM_BIRTHDAY_BITS;
|
|
flexBits = flexBits >> 1;
|
|
}
|
|
if (flexBits == 0) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
/* Turn those bits into the number of IV's we can safely return */
|
|
if (flexBits >= sizeof(gcmIv->max_count) * PR_BITS_PER_BYTE) {
|
|
gcmIv->max_count = PR_UINT64(0xffffffffffffffff);
|
|
} else {
|
|
gcmIv->max_count = PR_UINT64(1) << flexBits;
|
|
}
|
|
}
|
|
|
|
/* no generate, accept the IV from the source */
|
|
if (ivGen == CKG_NO_GENERATE) {
|
|
gcmIv->counter = 1;
|
|
return SECSuccess;
|
|
}
|
|
|
|
/* make sure we haven't exceeded the number of IVs we can return
|
|
* for this key, generator, and IV size */
|
|
if (gcmIv->counter >= gcmIv->max_count) {
|
|
/* use a unique error from just bad user input */
|
|
PORT_SetError(SEC_ERROR_EXTRA_INPUT);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* build to mask to handle the first byte of the IV */
|
|
ivOffset = fixedBits / PR_BITS_PER_BYTE;
|
|
ivMask = 0xff >> ((8 - (fixedBits & 7)) & 7);
|
|
ivNewCount = ivLen - ivOffset;
|
|
|
|
/* finally generate the IV */
|
|
switch (ivGen) {
|
|
case CKG_GENERATE: /* default to counter */
|
|
case CKG_GENERATE_COUNTER:
|
|
iv[ivOffset] = (iv[ivOffset] & ~ivMask) |
|
|
(PORT_GET_BYTE_BE(gcmIv->counter, 0, ivNewCount) & ivMask);
|
|
for (i = 1; i < ivNewCount; i++) {
|
|
iv[ivOffset + i] = PORT_GET_BYTE_BE(gcmIv->counter, i, ivNewCount);
|
|
}
|
|
break;
|
|
/* for TLS 1.3 */
|
|
case CKG_GENERATE_COUNTER_XOR:
|
|
iv[ivOffset] ^=
|
|
(PORT_GET_BYTE_BE(gcmIv->counter, 0, ivNewCount) & ivMask);
|
|
for (i = 1; i < ivNewCount; i++) {
|
|
iv[ivOffset + i] ^= PORT_GET_BYTE_BE(gcmIv->counter, i, ivNewCount);
|
|
}
|
|
break;
|
|
case CKG_GENERATE_RANDOM:
|
|
ivSave = iv[ivOffset] & ~ivMask;
|
|
rv = RNG_GenerateGlobalRandomBytes(iv + ivOffset, ivNewCount);
|
|
iv[ivOffset] = ivSave | (iv[ivOffset] & ivMask);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
break;
|
|
}
|
|
gcmIv->counter++;
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
GCM_EncryptAEAD(GCMContext *gcm, unsigned char *outbuf,
|
|
unsigned int *outlen, unsigned int maxout,
|
|
const unsigned char *inbuf, unsigned int inlen,
|
|
void *params, unsigned int paramLen,
|
|
const unsigned char *aad, unsigned int aadLen,
|
|
unsigned int blocksize)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int tagBytes;
|
|
unsigned int len;
|
|
const CK_GCM_MESSAGE_PARAMS *gcmParams =
|
|
(const CK_GCM_MESSAGE_PARAMS *)params;
|
|
|
|
PORT_Assert(blocksize == AES_BLOCK_SIZE);
|
|
if (blocksize != AES_BLOCK_SIZE) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* paramLen comes all the way from the application layer, make sure
|
|
* it's correct */
|
|
if (paramLen != sizeof(CK_GCM_MESSAGE_PARAMS)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
/* if we were initialized with the C_EncryptInit, we shouldn't be in this
|
|
* function */
|
|
if (gcm->ctr_context_init) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (maxout < inlen) {
|
|
*outlen = inlen;
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
rv = gcm_GenerateIV(&gcm->gcm_iv, gcmParams->pIv, gcmParams->ulIvLen,
|
|
gcmParams->ulIvFixedBits, gcmParams->ivGenerator);
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
|
|
rv = gcm_InitCounter(gcm, gcmParams->pIv, gcmParams->ulIvLen,
|
|
gcmParams->ulTagBits, aad, aadLen);
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
|
|
tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE;
|
|
|
|
rv = gcm_CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout,
|
|
inbuf, inlen);
|
|
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
rv = gcmHash_Update(gcm->ghash_context, outbuf, *outlen);
|
|
if (rv != SECSuccess) {
|
|
PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */
|
|
*outlen = 0;
|
|
return SECFailure;
|
|
}
|
|
rv = gcm_GetTag(gcm, gcmParams->pTag, &len, tagBytes);
|
|
if (rv != SECSuccess) {
|
|
PORT_Memset(outbuf, 0, *outlen); /* clear the output buffer */
|
|
*outlen = 0;
|
|
return SECFailure;
|
|
};
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
GCM_DecryptAEAD(GCMContext *gcm, unsigned char *outbuf,
|
|
unsigned int *outlen, unsigned int maxout,
|
|
const unsigned char *inbuf, unsigned int inlen,
|
|
void *params, unsigned int paramLen,
|
|
const unsigned char *aad, unsigned int aadLen,
|
|
unsigned int blocksize)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int tagBytes;
|
|
unsigned char tag[MAX_BLOCK_SIZE];
|
|
const unsigned char *intag;
|
|
unsigned int len;
|
|
const CK_GCM_MESSAGE_PARAMS *gcmParams =
|
|
(const CK_GCM_MESSAGE_PARAMS *)params;
|
|
|
|
PORT_Assert(blocksize == AES_BLOCK_SIZE);
|
|
if (blocksize != AES_BLOCK_SIZE) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* paramLen comes all the way from the application layer, make sure
|
|
* it's correct */
|
|
if (paramLen != sizeof(CK_GCM_MESSAGE_PARAMS)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ARGS);
|
|
return SECFailure;
|
|
}
|
|
/* if we were initialized with the C_DecryptInit, we shouldn't be in this
|
|
* function */
|
|
if (gcm->ctr_context_init) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (maxout < inlen) {
|
|
*outlen = inlen;
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
rv = gcm_InitCounter(gcm, gcmParams->pIv, gcmParams->ulIvLen,
|
|
gcmParams->ulTagBits, aad, aadLen);
|
|
if (rv != SECSuccess) {
|
|
return SECFailure;
|
|
}
|
|
|
|
tagBytes = (gcm->tagBits + (PR_BITS_PER_BYTE - 1)) / PR_BITS_PER_BYTE;
|
|
intag = gcmParams->pTag;
|
|
PORT_Assert(tagBytes != 0);
|
|
|
|
/* verify the block */
|
|
rv = gcmHash_Update(gcm->ghash_context, inbuf, inlen);
|
|
if (rv != SECSuccess) {
|
|
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
|
|
return SECFailure;
|
|
}
|
|
rv = gcm_GetTag(gcm, tag, &len, AES_BLOCK_SIZE);
|
|
if (rv != SECSuccess) {
|
|
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
|
|
return SECFailure;
|
|
}
|
|
/* Don't decrypt if we can't authenticate the encrypted data!
|
|
* This assumes that if tagBits is may not be a multiple of 8, intag will
|
|
* preserve the masked off missing bits. */
|
|
if (NSS_SecureMemcmp(tag, intag, tagBytes) != 0) {
|
|
/* force a CKR_ENCRYPTED_DATA_INVALID error at in softoken */
|
|
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
|
|
PORT_SetError(SEC_ERROR_BAD_DATA);
|
|
PORT_SafeZero(tag, sizeof(tag));
|
|
return SECFailure;
|
|
}
|
|
PORT_SafeZero(tag, sizeof(tag));
|
|
/* finish the decryption */
|
|
rv = gcm_CTR_Update(&gcm->ctr_context, outbuf, outlen, maxout,
|
|
inbuf, inlen);
|
|
CTR_DestroyContext(&gcm->ctr_context, PR_FALSE);
|
|
return rv;
|
|
}
|