1980 lines
71 KiB
Rust
1980 lines
71 KiB
Rust
/* This Source Code Form is subject to the terms of the Mozilla Public
|
||
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
||
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */
|
||
|
||
//! [Calc expressions][calc].
|
||
//!
|
||
//! [calc]: https://drafts.csswg.org/css-values/#calc-notation
|
||
|
||
use crate::values::generics::length::GenericAnchorSizeFunction;
|
||
use crate::values::generics::position::{AnchorSide, GenericAnchorFunction};
|
||
use num_traits::Zero;
|
||
use smallvec::SmallVec;
|
||
use std::fmt::{self, Write};
|
||
use std::ops::{Add, Mul, Neg, Rem, Sub};
|
||
use std::{cmp, mem};
|
||
use style_traits::{CssWriter, ToCss};
|
||
|
||
/// Whether we're a `min` or `max` function.
|
||
#[derive(
|
||
Clone,
|
||
Copy,
|
||
Debug,
|
||
Deserialize,
|
||
MallocSizeOf,
|
||
PartialEq,
|
||
Serialize,
|
||
ToAnimatedZero,
|
||
ToResolvedValue,
|
||
ToShmem,
|
||
)]
|
||
#[repr(u8)]
|
||
pub enum MinMaxOp {
|
||
/// `min()`
|
||
Min,
|
||
/// `max()`
|
||
Max,
|
||
}
|
||
|
||
/// Whether we're a `mod` or `rem` function.
|
||
#[derive(
|
||
Clone,
|
||
Copy,
|
||
Debug,
|
||
Deserialize,
|
||
MallocSizeOf,
|
||
PartialEq,
|
||
Serialize,
|
||
ToAnimatedZero,
|
||
ToResolvedValue,
|
||
ToShmem,
|
||
)]
|
||
#[repr(u8)]
|
||
pub enum ModRemOp {
|
||
/// `mod()`
|
||
Mod,
|
||
/// `rem()`
|
||
Rem,
|
||
}
|
||
|
||
impl ModRemOp {
|
||
fn apply(self, dividend: f32, divisor: f32) -> f32 {
|
||
// In mod(A, B) only, if B is infinite and A has opposite sign to B
|
||
// (including an oppositely-signed zero), the result is NaN.
|
||
// https://drafts.csswg.org/css-values/#round-infinities
|
||
if matches!(self, Self::Mod) &&
|
||
divisor.is_infinite() &&
|
||
dividend.is_sign_negative() != divisor.is_sign_negative()
|
||
{
|
||
return f32::NAN;
|
||
}
|
||
|
||
let (r, same_sign_as) = match self {
|
||
Self::Mod => (dividend - divisor * (dividend / divisor).floor(), divisor),
|
||
Self::Rem => (dividend - divisor * (dividend / divisor).trunc(), dividend),
|
||
};
|
||
if r == 0.0 && same_sign_as.is_sign_negative() {
|
||
-0.0
|
||
} else {
|
||
r
|
||
}
|
||
}
|
||
}
|
||
|
||
/// The strategy used in `round()`
|
||
#[derive(
|
||
Clone,
|
||
Copy,
|
||
Debug,
|
||
Deserialize,
|
||
MallocSizeOf,
|
||
PartialEq,
|
||
Serialize,
|
||
ToAnimatedZero,
|
||
ToResolvedValue,
|
||
ToShmem,
|
||
)]
|
||
#[repr(u8)]
|
||
pub enum RoundingStrategy {
|
||
/// `round(nearest, a, b)`
|
||
/// round a to the nearest multiple of b
|
||
Nearest,
|
||
/// `round(up, a, b)`
|
||
/// round a up to the nearest multiple of b
|
||
Up,
|
||
/// `round(down, a, b)`
|
||
/// round a down to the nearest multiple of b
|
||
Down,
|
||
/// `round(to-zero, a, b)`
|
||
/// round a to the nearest multiple of b that is towards zero
|
||
ToZero,
|
||
}
|
||
|
||
/// This determines the order in which we serialize members of a calc() sum.
|
||
///
|
||
/// See https://drafts.csswg.org/css-values-4/#sort-a-calculations-children
|
||
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
|
||
#[allow(missing_docs)]
|
||
pub enum SortKey {
|
||
Number,
|
||
Percentage,
|
||
Cap,
|
||
Ch,
|
||
Cqb,
|
||
Cqh,
|
||
Cqi,
|
||
Cqmax,
|
||
Cqmin,
|
||
Cqw,
|
||
Deg,
|
||
Dppx,
|
||
Dvb,
|
||
Dvh,
|
||
Dvi,
|
||
Dvmax,
|
||
Dvmin,
|
||
Dvw,
|
||
Em,
|
||
Ex,
|
||
Ic,
|
||
Lh,
|
||
Lvb,
|
||
Lvh,
|
||
Lvi,
|
||
Lvmax,
|
||
Lvmin,
|
||
Lvw,
|
||
Px,
|
||
Rem,
|
||
Rlh,
|
||
Sec,
|
||
Svb,
|
||
Svh,
|
||
Svi,
|
||
Svmax,
|
||
Svmin,
|
||
Svw,
|
||
Vb,
|
||
Vh,
|
||
Vi,
|
||
Vmax,
|
||
Vmin,
|
||
Vw,
|
||
ColorComponent,
|
||
Other,
|
||
}
|
||
|
||
/// `anchor()` function used in math functions.
|
||
pub type GenericCalcAnchorFunction<L> =
|
||
GenericAnchorFunction<Box<GenericCalcNode<L>>, Box<GenericCalcNode<L>>>;
|
||
/// `anchor-size()` function used in math functions.
|
||
pub type GenericCalcAnchorSizeFunction<L> = GenericAnchorSizeFunction<Box<GenericCalcNode<L>>>;
|
||
|
||
/// A generic node in a calc expression.
|
||
///
|
||
/// FIXME: This would be much more elegant if we used `Self` in the types below,
|
||
/// but we can't because of https://github.com/serde-rs/serde/issues/1565.
|
||
///
|
||
/// FIXME: The following annotations are to workaround an LLVM inlining bug, see
|
||
/// bug 1631929.
|
||
///
|
||
/// cbindgen:destructor-attributes=MOZ_NEVER_INLINE
|
||
/// cbindgen:copy-constructor-attributes=MOZ_NEVER_INLINE
|
||
/// cbindgen:eq-attributes=MOZ_NEVER_INLINE
|
||
#[repr(u8)]
|
||
#[derive(
|
||
Clone,
|
||
Debug,
|
||
Deserialize,
|
||
MallocSizeOf,
|
||
PartialEq,
|
||
Serialize,
|
||
ToAnimatedZero,
|
||
ToResolvedValue,
|
||
ToShmem,
|
||
)]
|
||
pub enum GenericCalcNode<L> {
|
||
/// A leaf node.
|
||
Leaf(L),
|
||
/// A node that negates its child, e.g. Negate(1) == -1.
|
||
Negate(Box<GenericCalcNode<L>>),
|
||
/// A node that inverts its child, e.g. Invert(10) == 1 / 10 == 0.1. The child must always
|
||
/// resolve to a number unit.
|
||
Invert(Box<GenericCalcNode<L>>),
|
||
/// A sum node, representing `a + b + c` where a, b, and c are the
|
||
/// arguments.
|
||
Sum(crate::OwnedSlice<GenericCalcNode<L>>),
|
||
/// A product node, representing `a * b * c` where a, b, and c are the
|
||
/// arguments.
|
||
Product(crate::OwnedSlice<GenericCalcNode<L>>),
|
||
/// A `min` or `max` function.
|
||
MinMax(crate::OwnedSlice<GenericCalcNode<L>>, MinMaxOp),
|
||
/// A `clamp()` function.
|
||
Clamp {
|
||
/// The minimum value.
|
||
min: Box<GenericCalcNode<L>>,
|
||
/// The central value.
|
||
center: Box<GenericCalcNode<L>>,
|
||
/// The maximum value.
|
||
max: Box<GenericCalcNode<L>>,
|
||
},
|
||
/// A `round()` function.
|
||
Round {
|
||
/// The rounding strategy.
|
||
strategy: RoundingStrategy,
|
||
/// The value to round.
|
||
value: Box<GenericCalcNode<L>>,
|
||
/// The step value.
|
||
step: Box<GenericCalcNode<L>>,
|
||
},
|
||
/// A `mod()` or `rem()` function.
|
||
ModRem {
|
||
/// The dividend calculation.
|
||
dividend: Box<GenericCalcNode<L>>,
|
||
/// The divisor calculation.
|
||
divisor: Box<GenericCalcNode<L>>,
|
||
/// Is the function mod or rem?
|
||
op: ModRemOp,
|
||
},
|
||
/// A `hypot()` function
|
||
Hypot(crate::OwnedSlice<GenericCalcNode<L>>),
|
||
/// An `abs()` function.
|
||
Abs(Box<GenericCalcNode<L>>),
|
||
/// A `sign()` function.
|
||
Sign(Box<GenericCalcNode<L>>),
|
||
/// An `anchor()` function.
|
||
Anchor(Box<GenericCalcAnchorFunction<L>>),
|
||
/// An `anchor-size()` function.
|
||
AnchorSize(Box<GenericCalcAnchorSizeFunction<L>>),
|
||
}
|
||
|
||
pub use self::GenericCalcNode as CalcNode;
|
||
|
||
bitflags! {
|
||
/// Expected units we allow parsing within a `calc()` expression.
|
||
///
|
||
/// This is used as a hint for the parser to fast-reject invalid
|
||
/// expressions. Numbers are always allowed because they multiply other
|
||
/// units.
|
||
#[derive(Clone, Copy, PartialEq, Eq)]
|
||
pub struct CalcUnits: u8 {
|
||
/// <length>
|
||
const LENGTH = 1 << 0;
|
||
/// <percentage>
|
||
const PERCENTAGE = 1 << 1;
|
||
/// <angle>
|
||
const ANGLE = 1 << 2;
|
||
/// <time>
|
||
const TIME = 1 << 3;
|
||
/// <resolution>
|
||
const RESOLUTION = 1 << 4;
|
||
/// A component of a color (r, g, b, h, s, l, alpha, etc.)
|
||
const COLOR_COMPONENT = 1 << 5;
|
||
|
||
/// <length-percentage>
|
||
const LENGTH_PERCENTAGE = Self::LENGTH.bits() | Self::PERCENTAGE.bits();
|
||
// NOTE: When you add to this, make sure to make Atan2 deal with these.
|
||
/// Allow all units.
|
||
const ALL = Self::LENGTH.bits() | Self::PERCENTAGE.bits() | Self::ANGLE.bits() |
|
||
Self::TIME.bits() | Self::RESOLUTION.bits() | Self::COLOR_COMPONENT.bits();
|
||
}
|
||
}
|
||
|
||
impl CalcUnits {
|
||
/// Returns whether the flags only represent a single unit. This will return true for 0, which
|
||
/// is a "number" this is also fine.
|
||
#[inline]
|
||
fn is_single_unit(&self) -> bool {
|
||
self.bits() == 0 || self.bits() & (self.bits() - 1) == 0
|
||
}
|
||
|
||
/// Returns true if this unit is allowed to be summed with the given unit, otherwise false.
|
||
#[inline]
|
||
fn can_sum_with(&self, other: Self) -> bool {
|
||
match *self {
|
||
Self::LENGTH => other.intersects(Self::LENGTH | Self::PERCENTAGE),
|
||
Self::PERCENTAGE => other.intersects(Self::LENGTH | Self::PERCENTAGE),
|
||
Self::LENGTH_PERCENTAGE => other.intersects(Self::LENGTH | Self::PERCENTAGE),
|
||
u => u.is_single_unit() && other == u,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// For percentage resolution, sometimes we can't assume that the percentage basis is positive (so
|
||
/// we don't know whether a percentage is larger than another).
|
||
pub enum PositivePercentageBasis {
|
||
/// The percent basis is not known-positive, we can't compare percentages.
|
||
Unknown,
|
||
/// The percent basis is known-positive, we assume larger percentages are larger.
|
||
Yes,
|
||
}
|
||
|
||
macro_rules! compare_helpers {
|
||
() => {
|
||
/// Return whether a leaf is greater than another.
|
||
#[allow(unused)]
|
||
fn gt(&self, other: &Self, basis_positive: PositivePercentageBasis) -> bool {
|
||
self.compare(other, basis_positive) == Some(cmp::Ordering::Greater)
|
||
}
|
||
|
||
/// Return whether a leaf is less than another.
|
||
fn lt(&self, other: &Self, basis_positive: PositivePercentageBasis) -> bool {
|
||
self.compare(other, basis_positive) == Some(cmp::Ordering::Less)
|
||
}
|
||
|
||
/// Return whether a leaf is smaller or equal than another.
|
||
fn lte(&self, other: &Self, basis_positive: PositivePercentageBasis) -> bool {
|
||
match self.compare(other, basis_positive) {
|
||
Some(cmp::Ordering::Less) => true,
|
||
Some(cmp::Ordering::Equal) => true,
|
||
Some(cmp::Ordering::Greater) => false,
|
||
None => false,
|
||
}
|
||
}
|
||
};
|
||
}
|
||
|
||
/// A trait that represents all the stuff a valid leaf of a calc expression.
|
||
pub trait CalcNodeLeaf: Clone + Sized + PartialEq + ToCss {
|
||
/// Returns the unit of the leaf.
|
||
fn unit(&self) -> CalcUnits;
|
||
|
||
/// Returns the unitless value of this leaf if one is available.
|
||
fn unitless_value(&self) -> Option<f32>;
|
||
|
||
/// Return true if the units of both leaves are equal. (NOTE: Does not take
|
||
/// the values into account)
|
||
fn is_same_unit_as(&self, other: &Self) -> bool {
|
||
std::mem::discriminant(self) == std::mem::discriminant(other)
|
||
}
|
||
|
||
/// Do a partial comparison of these values.
|
||
fn compare(
|
||
&self,
|
||
other: &Self,
|
||
base_is_positive: PositivePercentageBasis,
|
||
) -> Option<cmp::Ordering>;
|
||
compare_helpers!();
|
||
|
||
/// Create a new leaf with a number value.
|
||
fn new_number(value: f32) -> Self;
|
||
|
||
/// Returns a float value if the leaf is a number.
|
||
fn as_number(&self) -> Option<f32>;
|
||
|
||
/// Whether this value is known-negative.
|
||
fn is_negative(&self) -> Result<bool, ()> {
|
||
self.unitless_value()
|
||
.map(|v| Ok(v.is_sign_negative()))
|
||
.unwrap_or_else(|| Err(()))
|
||
}
|
||
|
||
/// Whether this value is infinite.
|
||
fn is_infinite(&self) -> Result<bool, ()> {
|
||
self.unitless_value()
|
||
.map(|v| Ok(v.is_infinite()))
|
||
.unwrap_or_else(|| Err(()))
|
||
}
|
||
|
||
/// Whether this value is zero.
|
||
fn is_zero(&self) -> Result<bool, ()> {
|
||
self.unitless_value()
|
||
.map(|v| Ok(v.is_zero()))
|
||
.unwrap_or_else(|| Err(()))
|
||
}
|
||
|
||
/// Whether this value is NaN.
|
||
fn is_nan(&self) -> Result<bool, ()> {
|
||
self.unitless_value()
|
||
.map(|v| Ok(v.is_nan()))
|
||
.unwrap_or_else(|| Err(()))
|
||
}
|
||
|
||
/// Tries to merge one leaf into another using the sum, that is, perform `x` + `y`.
|
||
fn try_sum_in_place(&mut self, other: &Self) -> Result<(), ()>;
|
||
|
||
/// Try to merge the right leaf into the left by using a multiplication. Return true if the
|
||
/// merge was successful, otherwise false.
|
||
fn try_product_in_place(&mut self, other: &mut Self) -> bool;
|
||
|
||
/// Tries a generic arithmetic operation.
|
||
fn try_op<O>(&self, other: &Self, op: O) -> Result<Self, ()>
|
||
where
|
||
O: Fn(f32, f32) -> f32;
|
||
|
||
/// Map the value of this node with the given operation.
|
||
fn map(&mut self, op: impl FnMut(f32) -> f32) -> Result<(), ()>;
|
||
|
||
/// Canonicalizes the expression if necessary.
|
||
fn simplify(&mut self);
|
||
|
||
/// Returns the sort key for simplification.
|
||
fn sort_key(&self) -> SortKey;
|
||
|
||
/// Create a new leaf containing the sign() result of the given leaf.
|
||
fn sign_from(leaf: &impl CalcNodeLeaf) -> Result<Self, ()> {
|
||
let Some(value) = leaf.unitless_value() else {
|
||
return Err(());
|
||
};
|
||
|
||
Ok(Self::new_number(if value.is_nan() {
|
||
f32::NAN
|
||
} else if value.is_zero() {
|
||
value
|
||
} else if value.is_sign_negative() {
|
||
-1.0
|
||
} else {
|
||
1.0
|
||
}))
|
||
}
|
||
}
|
||
|
||
/// The level of any argument being serialized in `to_css_impl`.
|
||
enum ArgumentLevel {
|
||
/// The root of a calculation tree.
|
||
CalculationRoot,
|
||
/// The root of an operand node's argument, e.g. `min(10, 20)`, `10` and `20` will have this
|
||
/// level, but min in this case will have `TopMost`.
|
||
ArgumentRoot,
|
||
/// Any other values serialized in the tree.
|
||
Nested,
|
||
}
|
||
|
||
impl<L: CalcNodeLeaf> CalcNode<L> {
|
||
/// Create a dummy CalcNode that can be used to do replacements of other nodes.
|
||
fn dummy() -> Self {
|
||
Self::MinMax(Default::default(), MinMaxOp::Max)
|
||
}
|
||
|
||
/// Change all the leaf nodes to have the given value. This is useful when
|
||
/// you have `calc(1px * nan)` and you want to replace the product node with
|
||
/// `calc(nan)`, in which case the unit will be retained.
|
||
fn coerce_to_value(&mut self, value: f32) -> Result<(), ()> {
|
||
self.map(|_| value)
|
||
}
|
||
|
||
/// Return true if a product is distributive over this node.
|
||
/// Is distributive: (2 + 3) * 4 = 8 + 12
|
||
/// Not distributive: sign(2 + 3) * 4 != sign(8 + 12)
|
||
#[inline]
|
||
pub fn is_product_distributive(&self) -> bool {
|
||
match self {
|
||
Self::Leaf(l) => l.unit() != CalcUnits::COLOR_COMPONENT,
|
||
Self::Sum(children) => children.iter().all(|c| c.is_product_distributive()),
|
||
_ => false,
|
||
}
|
||
}
|
||
|
||
/// If the node has a valid unit outcome, then return it, otherwise fail.
|
||
pub fn unit(&self) -> Result<CalcUnits, ()> {
|
||
Ok(match self {
|
||
CalcNode::Leaf(l) => l.unit(),
|
||
CalcNode::Negate(child) | CalcNode::Invert(child) | CalcNode::Abs(child) => {
|
||
child.unit()?
|
||
},
|
||
CalcNode::Sum(children) => {
|
||
let mut unit = children.first().unwrap().unit()?;
|
||
for child in children.iter().skip(1) {
|
||
let child_unit = child.unit()?;
|
||
if !child_unit.can_sum_with(unit) {
|
||
return Err(());
|
||
}
|
||
unit |= child_unit;
|
||
}
|
||
unit
|
||
},
|
||
CalcNode::Product(children) => {
|
||
// Only one node is allowed to have a unit, the rest must be numbers.
|
||
let mut unit = None;
|
||
for child in children.iter() {
|
||
let child_unit = child.unit()?;
|
||
if child_unit.is_empty() {
|
||
// Numbers are always allowed in a product, so continue with the next.
|
||
continue;
|
||
}
|
||
|
||
if unit.is_some() {
|
||
// We already have a unit for the node, so another unit node is invalid.
|
||
return Err(());
|
||
}
|
||
|
||
// We have the unit for the node.
|
||
unit = Some(child_unit);
|
||
}
|
||
// We only keep track of specified units, so if we end up with a None and no failure
|
||
// so far, then we have a number.
|
||
unit.unwrap_or(CalcUnits::empty())
|
||
},
|
||
CalcNode::MinMax(children, _) | CalcNode::Hypot(children) => {
|
||
let mut unit = children.first().unwrap().unit()?;
|
||
for child in children.iter().skip(1) {
|
||
let child_unit = child.unit()?;
|
||
if !child_unit.can_sum_with(unit) {
|
||
return Err(());
|
||
}
|
||
unit |= child_unit;
|
||
}
|
||
unit
|
||
},
|
||
CalcNode::Clamp { min, center, max } => {
|
||
let min_unit = min.unit()?;
|
||
let center_unit = center.unit()?;
|
||
|
||
if !min_unit.can_sum_with(center_unit) {
|
||
return Err(());
|
||
}
|
||
|
||
let max_unit = max.unit()?;
|
||
|
||
if !center_unit.can_sum_with(max_unit) {
|
||
return Err(());
|
||
}
|
||
|
||
min_unit | center_unit | max_unit
|
||
},
|
||
CalcNode::Round { value, step, .. } => {
|
||
let value_unit = value.unit()?;
|
||
let step_unit = step.unit()?;
|
||
if !step_unit.can_sum_with(value_unit) {
|
||
return Err(());
|
||
}
|
||
value_unit | step_unit
|
||
},
|
||
CalcNode::ModRem {
|
||
dividend, divisor, ..
|
||
} => {
|
||
let dividend_unit = dividend.unit()?;
|
||
let divisor_unit = divisor.unit()?;
|
||
if !divisor_unit.can_sum_with(dividend_unit) {
|
||
return Err(());
|
||
}
|
||
dividend_unit | divisor_unit
|
||
},
|
||
CalcNode::Sign(ref child) => {
|
||
// sign() always resolves to a number, but we still need to make sure that the
|
||
// child units make sense.
|
||
let _ = child.unit()?;
|
||
CalcUnits::empty()
|
||
},
|
||
CalcNode::Anchor(..) | CalcNode::AnchorSize(..) => {
|
||
CalcUnits::LENGTH_PERCENTAGE
|
||
}
|
||
})
|
||
}
|
||
|
||
/// Negate the node inline. If the node is distributive, it is replaced by the result,
|
||
/// otherwise the node is wrapped in a [`Negate`] node.
|
||
pub fn negate(&mut self) {
|
||
/// Node(params) -> Negate(Node(params))
|
||
fn wrap_self_in_negate<L: CalcNodeLeaf>(s: &mut CalcNode<L>) {
|
||
let result = mem::replace(s, CalcNode::dummy());
|
||
*s = CalcNode::Negate(Box::new(result));
|
||
}
|
||
|
||
match *self {
|
||
CalcNode::Leaf(ref mut leaf) => {
|
||
if leaf.map(std::ops::Neg::neg).is_err() {
|
||
wrap_self_in_negate(self)
|
||
}
|
||
},
|
||
CalcNode::Negate(ref mut value) => {
|
||
// Don't negate the value here. Replace `self` with it's child.
|
||
let result = mem::replace(value.as_mut(), Self::dummy());
|
||
*self = result;
|
||
},
|
||
CalcNode::Invert(_) => {
|
||
// -(1 / -10) == -(-0.1) == 0.1
|
||
wrap_self_in_negate(self)
|
||
},
|
||
CalcNode::Sum(ref mut children) => {
|
||
for child in children.iter_mut() {
|
||
child.negate();
|
||
}
|
||
},
|
||
CalcNode::Product(_) => {
|
||
// -(2 * 3 / 4) == -(1.5)
|
||
wrap_self_in_negate(self);
|
||
},
|
||
CalcNode::MinMax(ref mut children, ref mut op) => {
|
||
for child in children.iter_mut() {
|
||
child.negate();
|
||
}
|
||
|
||
// Negating min-max means the operation is swapped.
|
||
*op = match *op {
|
||
MinMaxOp::Min => MinMaxOp::Max,
|
||
MinMaxOp::Max => MinMaxOp::Min,
|
||
};
|
||
},
|
||
CalcNode::Clamp {
|
||
ref mut min,
|
||
ref mut center,
|
||
ref mut max,
|
||
} => {
|
||
if min.lte(max, PositivePercentageBasis::Unknown) {
|
||
min.negate();
|
||
center.negate();
|
||
max.negate();
|
||
|
||
mem::swap(min, max);
|
||
} else {
|
||
wrap_self_in_negate(self);
|
||
}
|
||
},
|
||
CalcNode::Round {
|
||
ref mut strategy,
|
||
ref mut value,
|
||
ref mut step,
|
||
} => {
|
||
match *strategy {
|
||
RoundingStrategy::Nearest => {
|
||
// Nearest is tricky because we'd have to swap the
|
||
// behavior at the half-way point from using the upper
|
||
// to lower bound.
|
||
// Simpler to just wrap self in a negate node.
|
||
wrap_self_in_negate(self);
|
||
return;
|
||
},
|
||
RoundingStrategy::Up => *strategy = RoundingStrategy::Down,
|
||
RoundingStrategy::Down => *strategy = RoundingStrategy::Up,
|
||
RoundingStrategy::ToZero => (),
|
||
}
|
||
value.negate();
|
||
step.negate();
|
||
},
|
||
CalcNode::ModRem {
|
||
ref mut dividend,
|
||
ref mut divisor,
|
||
..
|
||
} => {
|
||
dividend.negate();
|
||
divisor.negate();
|
||
},
|
||
CalcNode::Hypot(ref mut children) => {
|
||
for child in children.iter_mut() {
|
||
child.negate();
|
||
}
|
||
},
|
||
CalcNode::Abs(_) => {
|
||
wrap_self_in_negate(self);
|
||
},
|
||
CalcNode::Sign(ref mut child) => {
|
||
child.negate();
|
||
},
|
||
CalcNode::Anchor(_) | CalcNode::AnchorSize(_) => {
|
||
wrap_self_in_negate(self);
|
||
},
|
||
}
|
||
}
|
||
|
||
fn sort_key(&self) -> SortKey {
|
||
match *self {
|
||
Self::Leaf(ref l) => l.sort_key(),
|
||
Self::Anchor(..) | Self::AnchorSize(..) => SortKey::Px,
|
||
_ => SortKey::Other,
|
||
}
|
||
}
|
||
|
||
/// Returns the leaf if we can (if simplification has allowed it).
|
||
pub fn as_leaf(&self) -> Option<&L> {
|
||
match *self {
|
||
Self::Leaf(ref l) => Some(l),
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
/// Tries to merge one node into another using the sum, that is, perform `x` + `y`.
|
||
pub fn try_sum_in_place(&mut self, other: &Self) -> Result<(), ()> {
|
||
match (self, other) {
|
||
(&mut CalcNode::Leaf(ref mut one), &CalcNode::Leaf(ref other)) => {
|
||
one.try_sum_in_place(other)
|
||
},
|
||
_ => Err(()),
|
||
}
|
||
}
|
||
|
||
/// Tries to merge one node into another using the product, that is, perform `x` * `y`.
|
||
pub fn try_product_in_place(&mut self, other: &mut Self) -> bool {
|
||
if let Ok(resolved) = other.resolve() {
|
||
if let Some(number) = resolved.as_number() {
|
||
if number == 1.0 {
|
||
return true;
|
||
}
|
||
|
||
if self.is_product_distributive() {
|
||
if self.map(|v| v * number).is_err() {
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if let Ok(resolved) = self.resolve() {
|
||
if let Some(number) = resolved.as_number() {
|
||
if number == 1.0 {
|
||
std::mem::swap(self, other);
|
||
return true;
|
||
}
|
||
|
||
if other.is_product_distributive() {
|
||
if other.map(|v| v * number).is_err() {
|
||
return false;
|
||
}
|
||
std::mem::swap(self, other);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
false
|
||
}
|
||
|
||
/// Tries to apply a generic arithmetic operator
|
||
fn try_op<O>(&self, other: &Self, op: O) -> Result<Self, ()>
|
||
where
|
||
O: Fn(f32, f32) -> f32,
|
||
{
|
||
match (self, other) {
|
||
(&CalcNode::Leaf(ref one), &CalcNode::Leaf(ref other)) => {
|
||
Ok(CalcNode::Leaf(one.try_op(other, op)?))
|
||
},
|
||
_ => Err(()),
|
||
}
|
||
}
|
||
|
||
/// Map the value of this node with the given operation.
|
||
pub fn map(&mut self, mut op: impl FnMut(f32) -> f32) -> Result<(), ()> {
|
||
fn map_internal<L: CalcNodeLeaf>(
|
||
node: &mut CalcNode<L>,
|
||
op: &mut impl FnMut(f32) -> f32,
|
||
) -> Result<(), ()> {
|
||
match node {
|
||
CalcNode::Leaf(l) => l.map(op),
|
||
CalcNode::Negate(v) | CalcNode::Invert(v) => map_internal(v, op),
|
||
CalcNode::Sum(children) | CalcNode::Product(children) => {
|
||
for node in &mut **children {
|
||
map_internal(node, op)?;
|
||
}
|
||
Ok(())
|
||
},
|
||
CalcNode::MinMax(children, _) => {
|
||
for node in &mut **children {
|
||
map_internal(node, op)?;
|
||
}
|
||
Ok(())
|
||
},
|
||
CalcNode::Clamp { min, center, max } => {
|
||
map_internal(min, op)?;
|
||
map_internal(center, op)?;
|
||
map_internal(max, op)
|
||
},
|
||
CalcNode::Round { value, step, .. } => {
|
||
map_internal(value, op)?;
|
||
map_internal(step, op)
|
||
},
|
||
CalcNode::ModRem {
|
||
dividend, divisor, ..
|
||
} => {
|
||
map_internal(dividend, op)?;
|
||
map_internal(divisor, op)
|
||
},
|
||
CalcNode::Hypot(children) => {
|
||
for node in &mut **children {
|
||
map_internal(node, op)?;
|
||
}
|
||
Ok(())
|
||
},
|
||
CalcNode::Abs(child) | CalcNode::Sign(child) => map_internal(child, op),
|
||
// It is invalid to treat inner `CalcNode`s here - `anchor(--foo 50%) / 2` != `anchor(--foo 25%)`.
|
||
// Same applies to fallback, as we don't know if it will be used. Similar reasoning applies to `anchor-size()`.
|
||
CalcNode::Anchor(_) | CalcNode::AnchorSize(_) => Err(())
|
||
}
|
||
}
|
||
|
||
map_internal(self, &mut op)
|
||
}
|
||
|
||
/// Convert this `CalcNode` into a `CalcNode` with a different leaf kind.
|
||
pub fn map_leaves<O, F>(&self, mut map: F) -> CalcNode<O>
|
||
where
|
||
O: CalcNodeLeaf,
|
||
F: FnMut(&L) -> O,
|
||
{
|
||
self.map_leaves_internal(&mut map)
|
||
}
|
||
|
||
fn map_leaves_internal<O, F>(&self, map: &mut F) -> CalcNode<O>
|
||
where
|
||
O: CalcNodeLeaf,
|
||
F: FnMut(&L) -> O,
|
||
{
|
||
fn map_children<L, O, F>(
|
||
children: &[CalcNode<L>],
|
||
map: &mut F,
|
||
) -> crate::OwnedSlice<CalcNode<O>>
|
||
where
|
||
L: CalcNodeLeaf,
|
||
O: CalcNodeLeaf,
|
||
F: FnMut(&L) -> O,
|
||
{
|
||
children
|
||
.iter()
|
||
.map(|c| c.map_leaves_internal(map))
|
||
.collect()
|
||
}
|
||
|
||
match *self {
|
||
Self::Leaf(ref l) => CalcNode::Leaf(map(l)),
|
||
Self::Negate(ref c) => CalcNode::Negate(Box::new(c.map_leaves_internal(map))),
|
||
Self::Invert(ref c) => CalcNode::Invert(Box::new(c.map_leaves_internal(map))),
|
||
Self::Sum(ref c) => CalcNode::Sum(map_children(c, map)),
|
||
Self::Product(ref c) => CalcNode::Product(map_children(c, map)),
|
||
Self::MinMax(ref c, op) => CalcNode::MinMax(map_children(c, map), op),
|
||
Self::Clamp {
|
||
ref min,
|
||
ref center,
|
||
ref max,
|
||
} => {
|
||
let min = Box::new(min.map_leaves_internal(map));
|
||
let center = Box::new(center.map_leaves_internal(map));
|
||
let max = Box::new(max.map_leaves_internal(map));
|
||
CalcNode::Clamp { min, center, max }
|
||
},
|
||
Self::Round {
|
||
strategy,
|
||
ref value,
|
||
ref step,
|
||
} => {
|
||
let value = Box::new(value.map_leaves_internal(map));
|
||
let step = Box::new(step.map_leaves_internal(map));
|
||
CalcNode::Round {
|
||
strategy,
|
||
value,
|
||
step,
|
||
}
|
||
},
|
||
Self::ModRem {
|
||
ref dividend,
|
||
ref divisor,
|
||
op,
|
||
} => {
|
||
let dividend = Box::new(dividend.map_leaves_internal(map));
|
||
let divisor = Box::new(divisor.map_leaves_internal(map));
|
||
CalcNode::ModRem {
|
||
dividend,
|
||
divisor,
|
||
op,
|
||
}
|
||
},
|
||
Self::Hypot(ref c) => CalcNode::Hypot(map_children(c, map)),
|
||
Self::Abs(ref c) => CalcNode::Abs(Box::new(c.map_leaves_internal(map))),
|
||
Self::Sign(ref c) => CalcNode::Sign(Box::new(c.map_leaves_internal(map))),
|
||
Self::Anchor(ref f) => CalcNode::Anchor(Box::new(
|
||
GenericAnchorFunction {
|
||
target_element: f.target_element.clone(),
|
||
side: match &f.side {
|
||
AnchorSide::Keyword(k) => AnchorSide::Keyword(*k),
|
||
AnchorSide::Percentage(p) => AnchorSide::Percentage(Box::new(p.map_leaves_internal(map))),
|
||
},
|
||
fallback: f.fallback.as_ref().map(|fb| Box::new(fb.map_leaves_internal(map))).into(),
|
||
}
|
||
)),
|
||
Self::AnchorSize(ref f) => CalcNode::AnchorSize(Box::new(
|
||
GenericAnchorSizeFunction {
|
||
target_element: f.target_element.clone(),
|
||
size: f.size,
|
||
fallback: f.fallback.as_ref().map(|fb| Box::new(fb.map_leaves_internal(map))).into(),
|
||
}
|
||
)),
|
||
}
|
||
}
|
||
|
||
/// Resolve this node into a value.
|
||
pub fn resolve(&self) -> Result<L, ()> {
|
||
self.resolve_map(|l| Ok(l.clone()))
|
||
}
|
||
|
||
/// Resolve this node into a value, given a function that maps the leaf values.
|
||
pub fn resolve_map<F>(&self, mut leaf_to_output_fn: F) -> Result<L, ()>
|
||
where
|
||
F: FnMut(&L) -> Result<L, ()>,
|
||
{
|
||
self.resolve_internal(&mut leaf_to_output_fn)
|
||
}
|
||
|
||
fn resolve_internal<F>(&self, leaf_to_output_fn: &mut F) -> Result<L, ()>
|
||
where
|
||
F: FnMut(&L) -> Result<L, ()>,
|
||
{
|
||
match self {
|
||
Self::Leaf(l) => leaf_to_output_fn(l),
|
||
Self::Negate(child) => {
|
||
let mut result = child.resolve_internal(leaf_to_output_fn)?;
|
||
result.map(|v| v.neg())?;
|
||
Ok(result)
|
||
},
|
||
Self::Invert(child) => {
|
||
let mut result = child.resolve_internal(leaf_to_output_fn)?;
|
||
result.map(|v| 1.0 / v)?;
|
||
Ok(result)
|
||
},
|
||
Self::Sum(children) => {
|
||
let mut result = children[0].resolve_internal(leaf_to_output_fn)?;
|
||
|
||
for child in children.iter().skip(1) {
|
||
let right = child.resolve_internal(leaf_to_output_fn)?;
|
||
// try_op will make sure we only sum leaves with the same type.
|
||
result = result.try_op(&right, |left, right| left + right)?;
|
||
}
|
||
|
||
Ok(result)
|
||
},
|
||
Self::Product(children) => {
|
||
let mut result = children[0].resolve_internal(leaf_to_output_fn)?;
|
||
|
||
for child in children.iter().skip(1) {
|
||
let right = child.resolve_internal(leaf_to_output_fn)?;
|
||
// Mutliply only allowed when either side is a number.
|
||
match result.as_number() {
|
||
Some(left) => {
|
||
// Left side is a number, so we use the right node as the result.
|
||
result = right;
|
||
result.map(|v| v * left)?;
|
||
},
|
||
None => {
|
||
// Left side is not a number, so check if the right side is.
|
||
match right.as_number() {
|
||
Some(right) => {
|
||
result.map(|v| v * right)?;
|
||
},
|
||
None => {
|
||
// Multiplying with both sides having units.
|
||
return Err(());
|
||
},
|
||
}
|
||
},
|
||
}
|
||
}
|
||
|
||
Ok(result)
|
||
},
|
||
Self::MinMax(children, op) => {
|
||
let mut result = children[0].resolve_internal(leaf_to_output_fn)?;
|
||
|
||
if result.is_nan()? {
|
||
return Ok(result);
|
||
}
|
||
|
||
for child in children.iter().skip(1) {
|
||
let candidate = child.resolve_internal(leaf_to_output_fn)?;
|
||
|
||
// Leaf types must match for each child.
|
||
if !result.is_same_unit_as(&candidate) {
|
||
return Err(());
|
||
}
|
||
|
||
if candidate.is_nan()? {
|
||
result = candidate;
|
||
break;
|
||
}
|
||
|
||
let candidate_wins = match op {
|
||
MinMaxOp::Min => candidate.lt(&result, PositivePercentageBasis::Yes),
|
||
MinMaxOp::Max => candidate.gt(&result, PositivePercentageBasis::Yes),
|
||
};
|
||
|
||
if candidate_wins {
|
||
result = candidate;
|
||
}
|
||
}
|
||
|
||
Ok(result)
|
||
},
|
||
Self::Clamp { min, center, max } => {
|
||
let min = min.resolve_internal(leaf_to_output_fn)?;
|
||
let center = center.resolve_internal(leaf_to_output_fn)?;
|
||
let max = max.resolve_internal(leaf_to_output_fn)?;
|
||
|
||
if !min.is_same_unit_as(¢er) || !max.is_same_unit_as(¢er) {
|
||
return Err(());
|
||
}
|
||
|
||
if min.is_nan()? {
|
||
return Ok(min);
|
||
}
|
||
|
||
if center.is_nan()? {
|
||
return Ok(center);
|
||
}
|
||
|
||
if max.is_nan()? {
|
||
return Ok(max);
|
||
}
|
||
|
||
let mut result = center;
|
||
if result.gt(&max, PositivePercentageBasis::Yes) {
|
||
result = max;
|
||
}
|
||
if result.lt(&min, PositivePercentageBasis::Yes) {
|
||
result = min
|
||
}
|
||
|
||
Ok(result)
|
||
},
|
||
Self::Round {
|
||
strategy,
|
||
value,
|
||
step,
|
||
} => {
|
||
let mut value = value.resolve_internal(leaf_to_output_fn)?;
|
||
let step = step.resolve_internal(leaf_to_output_fn)?;
|
||
|
||
if !value.is_same_unit_as(&step) {
|
||
return Err(());
|
||
}
|
||
|
||
let Some(step) = step.unitless_value() else {
|
||
return Err(());
|
||
};
|
||
let step = step.abs();
|
||
|
||
value.map(|value| {
|
||
// TODO(emilio): Seems like at least a few of these
|
||
// special-cases could be removed if we do the math in a
|
||
// particular order.
|
||
if step.is_zero() {
|
||
return f32::NAN;
|
||
}
|
||
|
||
if value.is_infinite() {
|
||
if step.is_infinite() {
|
||
return f32::NAN;
|
||
}
|
||
return value;
|
||
}
|
||
|
||
if step.is_infinite() {
|
||
match strategy {
|
||
RoundingStrategy::Nearest | RoundingStrategy::ToZero => {
|
||
return if value.is_sign_negative() { -0.0 } else { 0.0 }
|
||
},
|
||
RoundingStrategy::Up => {
|
||
return if !value.is_sign_negative() && !value.is_zero() {
|
||
f32::INFINITY
|
||
} else if !value.is_sign_negative() && value.is_zero() {
|
||
value
|
||
} else {
|
||
-0.0
|
||
}
|
||
},
|
||
RoundingStrategy::Down => {
|
||
return if value.is_sign_negative() && !value.is_zero() {
|
||
-f32::INFINITY
|
||
} else if value.is_sign_negative() && value.is_zero() {
|
||
value
|
||
} else {
|
||
0.0
|
||
}
|
||
},
|
||
}
|
||
}
|
||
|
||
let div = value / step;
|
||
let lower_bound = div.floor() * step;
|
||
let upper_bound = div.ceil() * step;
|
||
|
||
match strategy {
|
||
RoundingStrategy::Nearest => {
|
||
// In case of a tie, use the upper bound
|
||
if value - lower_bound < upper_bound - value {
|
||
lower_bound
|
||
} else {
|
||
upper_bound
|
||
}
|
||
},
|
||
RoundingStrategy::Up => upper_bound,
|
||
RoundingStrategy::Down => lower_bound,
|
||
RoundingStrategy::ToZero => {
|
||
// In case of a tie, use the upper bound
|
||
if lower_bound.abs() < upper_bound.abs() {
|
||
lower_bound
|
||
} else {
|
||
upper_bound
|
||
}
|
||
},
|
||
}
|
||
})?;
|
||
|
||
Ok(value)
|
||
},
|
||
Self::ModRem {
|
||
dividend,
|
||
divisor,
|
||
op,
|
||
} => {
|
||
let mut dividend = dividend.resolve_internal(leaf_to_output_fn)?;
|
||
let divisor = divisor.resolve_internal(leaf_to_output_fn)?;
|
||
|
||
if !dividend.is_same_unit_as(&divisor) {
|
||
return Err(());
|
||
}
|
||
|
||
let Some(divisor) = divisor.unitless_value() else {
|
||
return Err(());
|
||
};
|
||
dividend.map(|dividend| op.apply(dividend, divisor))?;
|
||
Ok(dividend)
|
||
},
|
||
Self::Hypot(children) => {
|
||
let mut result = children[0].resolve_internal(leaf_to_output_fn)?;
|
||
result.map(|v| v.powi(2))?;
|
||
|
||
for child in children.iter().skip(1) {
|
||
let child_value = child.resolve_internal(leaf_to_output_fn)?;
|
||
|
||
if !result.is_same_unit_as(&child_value) {
|
||
return Err(());
|
||
}
|
||
|
||
let Some(child_value) = child_value.unitless_value() else {
|
||
return Err(());
|
||
};
|
||
result.map(|v| v + child_value.powi(2))?;
|
||
}
|
||
|
||
result.map(|v| v.sqrt())?;
|
||
Ok(result)
|
||
},
|
||
Self::Abs(ref c) => {
|
||
let mut result = c.resolve_internal(leaf_to_output_fn)?;
|
||
|
||
result.map(|v| v.abs())?;
|
||
|
||
Ok(result)
|
||
},
|
||
Self::Sign(ref c) => {
|
||
let result = c.resolve_internal(leaf_to_output_fn)?;
|
||
Ok(L::sign_from(&result)?)
|
||
},
|
||
Self::Anchor(_) | Self::AnchorSize(_) => Err(()),
|
||
}
|
||
}
|
||
|
||
/// Mutate nodes within this calc node tree using given the mapping function.
|
||
pub fn map_node<F>(&mut self, mut mapping_fn: F) -> Result<(), ()>
|
||
where
|
||
F: FnMut(&CalcNode<L>) -> Result<Option<CalcNode<L>>, ()>,
|
||
{
|
||
self.map_node_internal(&mut mapping_fn)
|
||
}
|
||
|
||
fn map_node_internal<F>(&mut self, mapping_fn: &mut F) -> Result<(), ()>
|
||
where
|
||
F: FnMut(&CalcNode<L>) -> Result<Option<CalcNode<L>>, ()>,
|
||
{
|
||
if let Some(node) = mapping_fn(self)? {
|
||
*self = node;
|
||
// Assume that any sub-nodes don't need to be mutated.
|
||
return Ok(());
|
||
}
|
||
match self {
|
||
Self::Leaf(_) | Self::Anchor(_) | Self::AnchorSize(_) => (),
|
||
Self::Negate(child) | Self::Invert(child) | Self::Abs(child) | Self::Sign(child) => {
|
||
child.map_node_internal(mapping_fn)?;
|
||
},
|
||
Self::Sum(children) | Self::Product(children) | Self::Hypot(children) | Self::MinMax(children, _) => {
|
||
for child in children.iter_mut() {
|
||
child.map_node_internal(mapping_fn)?;
|
||
}
|
||
},
|
||
Self::Clamp { min, center, max } => {
|
||
min.map_node_internal(mapping_fn)?;
|
||
center.map_node_internal(mapping_fn)?;
|
||
max.map_node_internal(mapping_fn)?;
|
||
},
|
||
Self::Round { value, step, .. } => {
|
||
value.map_node_internal(mapping_fn)?;
|
||
step.map_node_internal(mapping_fn)?;
|
||
},
|
||
Self::ModRem {
|
||
dividend, divisor, ..
|
||
} => {
|
||
dividend.map_node_internal(mapping_fn)?;
|
||
divisor.map_node_internal(mapping_fn)?;
|
||
},
|
||
};
|
||
Ok(())
|
||
}
|
||
|
||
fn is_negative_leaf(&self) -> Result<bool, ()> {
|
||
Ok(match *self {
|
||
Self::Leaf(ref l) => l.is_negative()?,
|
||
_ => false,
|
||
})
|
||
}
|
||
|
||
fn is_zero_leaf(&self) -> Result<bool, ()> {
|
||
Ok(match *self {
|
||
Self::Leaf(ref l) => l.is_zero()?,
|
||
_ => false,
|
||
})
|
||
}
|
||
|
||
fn is_infinite_leaf(&self) -> Result<bool, ()> {
|
||
Ok(match *self {
|
||
Self::Leaf(ref l) => l.is_infinite()?,
|
||
_ => false,
|
||
})
|
||
}
|
||
|
||
fn is_nan_leaf(&self) -> Result<bool, ()> {
|
||
Ok(match *self {
|
||
Self::Leaf(ref l) => l.is_nan()?,
|
||
_ => false,
|
||
})
|
||
}
|
||
|
||
/// Visits all the nodes in this calculation tree recursively, starting by
|
||
/// the leaves and bubbling all the way up.
|
||
///
|
||
/// This is useful for simplification, but can also be used for validation
|
||
/// and such.
|
||
pub fn visit_depth_first(&mut self, mut f: impl FnMut(&mut Self)) {
|
||
self.visit_depth_first_internal(&mut f)
|
||
}
|
||
|
||
fn visit_depth_first_internal(&mut self, f: &mut impl FnMut(&mut Self)) {
|
||
match *self {
|
||
Self::Clamp {
|
||
ref mut min,
|
||
ref mut center,
|
||
ref mut max,
|
||
} => {
|
||
min.visit_depth_first_internal(f);
|
||
center.visit_depth_first_internal(f);
|
||
max.visit_depth_first_internal(f);
|
||
},
|
||
Self::Round {
|
||
ref mut value,
|
||
ref mut step,
|
||
..
|
||
} => {
|
||
value.visit_depth_first_internal(f);
|
||
step.visit_depth_first_internal(f);
|
||
},
|
||
Self::ModRem {
|
||
ref mut dividend,
|
||
ref mut divisor,
|
||
..
|
||
} => {
|
||
dividend.visit_depth_first_internal(f);
|
||
divisor.visit_depth_first_internal(f);
|
||
},
|
||
Self::Sum(ref mut children) |
|
||
Self::Product(ref mut children) |
|
||
Self::MinMax(ref mut children, _) |
|
||
Self::Hypot(ref mut children) => {
|
||
for child in &mut **children {
|
||
child.visit_depth_first_internal(f);
|
||
}
|
||
},
|
||
Self::Negate(ref mut value) | Self::Invert(ref mut value) => {
|
||
value.visit_depth_first_internal(f);
|
||
},
|
||
Self::Abs(ref mut value) | Self::Sign(ref mut value) => {
|
||
value.visit_depth_first_internal(f);
|
||
},
|
||
Self::Leaf(..) | Self::Anchor(..) | Self::AnchorSize(..) => {},
|
||
}
|
||
f(self);
|
||
}
|
||
|
||
/// This function simplifies and sorts the calculation of the specified node. It simplifies
|
||
/// directly nested nodes while assuming that all nodes below it have already been simplified.
|
||
/// It is recommended to use this function in combination with `visit_depth_first()`.
|
||
///
|
||
/// This function is necessary only if the node needs to be preserved after parsing,
|
||
/// specifically for `<length-percentage>` cases where the calculation contains percentages or
|
||
/// relative units. Otherwise, the node can be evaluated using `resolve()`, which will
|
||
/// automatically provide a simplified value.
|
||
///
|
||
/// <https://drafts.csswg.org/css-values-4/#calc-simplification>
|
||
pub fn simplify_and_sort_direct_children(&mut self) {
|
||
macro_rules! replace_self_with {
|
||
($slot:expr) => {{
|
||
let result = mem::replace($slot, Self::dummy());
|
||
*self = result;
|
||
}};
|
||
}
|
||
|
||
macro_rules! value_or_stop {
|
||
($op:expr) => {{
|
||
match $op {
|
||
Ok(value) => value,
|
||
Err(_) => return,
|
||
}
|
||
}};
|
||
}
|
||
|
||
match *self {
|
||
Self::Clamp {
|
||
ref mut min,
|
||
ref mut center,
|
||
ref mut max,
|
||
} => {
|
||
// NOTE: clamp() is max(min, min(center, max))
|
||
let min_cmp_center = match min.compare(¢er, PositivePercentageBasis::Unknown) {
|
||
Some(o) => o,
|
||
None => return,
|
||
};
|
||
|
||
// So if we can prove that min is more than center, then we won,
|
||
// as that's what we should always return.
|
||
if matches!(min_cmp_center, cmp::Ordering::Greater) {
|
||
replace_self_with!(&mut **min);
|
||
return;
|
||
}
|
||
|
||
// Otherwise try with max.
|
||
let max_cmp_center = match max.compare(¢er, PositivePercentageBasis::Unknown) {
|
||
Some(o) => o,
|
||
None => return,
|
||
};
|
||
|
||
if matches!(max_cmp_center, cmp::Ordering::Less) {
|
||
// max is less than center, so we need to return effectively
|
||
// `max(min, max)`.
|
||
let max_cmp_min = match max.compare(&min, PositivePercentageBasis::Unknown) {
|
||
Some(o) => o,
|
||
None => return,
|
||
};
|
||
|
||
if matches!(max_cmp_min, cmp::Ordering::Less) {
|
||
replace_self_with!(&mut **min);
|
||
return;
|
||
}
|
||
|
||
replace_self_with!(&mut **max);
|
||
return;
|
||
}
|
||
|
||
// Otherwise we're the center node.
|
||
replace_self_with!(&mut **center);
|
||
},
|
||
Self::Round {
|
||
strategy,
|
||
ref mut value,
|
||
ref mut step,
|
||
} => {
|
||
if value_or_stop!(step.is_zero_leaf()) {
|
||
value_or_stop!(value.coerce_to_value(f32::NAN));
|
||
replace_self_with!(&mut **value);
|
||
return;
|
||
}
|
||
|
||
if value_or_stop!(value.is_infinite_leaf()) &&
|
||
value_or_stop!(step.is_infinite_leaf())
|
||
{
|
||
value_or_stop!(value.coerce_to_value(f32::NAN));
|
||
replace_self_with!(&mut **value);
|
||
return;
|
||
}
|
||
|
||
if value_or_stop!(value.is_infinite_leaf()) {
|
||
replace_self_with!(&mut **value);
|
||
return;
|
||
}
|
||
|
||
if value_or_stop!(step.is_infinite_leaf()) {
|
||
match strategy {
|
||
RoundingStrategy::Nearest | RoundingStrategy::ToZero => {
|
||
value_or_stop!(value.coerce_to_value(0.0));
|
||
replace_self_with!(&mut **value);
|
||
return;
|
||
},
|
||
RoundingStrategy::Up => {
|
||
if !value_or_stop!(value.is_negative_leaf()) &&
|
||
!value_or_stop!(value.is_zero_leaf())
|
||
{
|
||
value_or_stop!(value.coerce_to_value(f32::INFINITY));
|
||
replace_self_with!(&mut **value);
|
||
return;
|
||
} else if !value_or_stop!(value.is_negative_leaf()) &&
|
||
value_or_stop!(value.is_zero_leaf())
|
||
{
|
||
replace_self_with!(&mut **value);
|
||
return;
|
||
} else {
|
||
value_or_stop!(value.coerce_to_value(0.0));
|
||
replace_self_with!(&mut **value);
|
||
return;
|
||
}
|
||
},
|
||
RoundingStrategy::Down => {
|
||
if value_or_stop!(value.is_negative_leaf()) &&
|
||
!value_or_stop!(value.is_zero_leaf())
|
||
{
|
||
value_or_stop!(value.coerce_to_value(f32::INFINITY));
|
||
replace_self_with!(&mut **value);
|
||
return;
|
||
} else if value_or_stop!(value.is_negative_leaf()) &&
|
||
value_or_stop!(value.is_zero_leaf())
|
||
{
|
||
replace_self_with!(&mut **value);
|
||
return;
|
||
} else {
|
||
value_or_stop!(value.coerce_to_value(0.0));
|
||
replace_self_with!(&mut **value);
|
||
return;
|
||
}
|
||
},
|
||
}
|
||
}
|
||
|
||
if value_or_stop!(step.is_negative_leaf()) {
|
||
step.negate();
|
||
}
|
||
|
||
let remainder = value_or_stop!(value.try_op(step, Rem::rem));
|
||
if value_or_stop!(remainder.is_zero_leaf()) {
|
||
replace_self_with!(&mut **value);
|
||
return;
|
||
}
|
||
|
||
let (mut lower_bound, mut upper_bound) = if value_or_stop!(value.is_negative_leaf())
|
||
{
|
||
let upper_bound = value_or_stop!(value.try_op(&remainder, Sub::sub));
|
||
let lower_bound = value_or_stop!(upper_bound.try_op(&step, Sub::sub));
|
||
|
||
(lower_bound, upper_bound)
|
||
} else {
|
||
let lower_bound = value_or_stop!(value.try_op(&remainder, Sub::sub));
|
||
let upper_bound = value_or_stop!(lower_bound.try_op(&step, Add::add));
|
||
|
||
(lower_bound, upper_bound)
|
||
};
|
||
|
||
match strategy {
|
||
RoundingStrategy::Nearest => {
|
||
let lower_diff = value_or_stop!(value.try_op(&lower_bound, Sub::sub));
|
||
let upper_diff = value_or_stop!(upper_bound.try_op(value, Sub::sub));
|
||
// In case of a tie, use the upper bound
|
||
if lower_diff.lt(&upper_diff, PositivePercentageBasis::Unknown) {
|
||
replace_self_with!(&mut lower_bound);
|
||
} else {
|
||
replace_self_with!(&mut upper_bound);
|
||
}
|
||
},
|
||
RoundingStrategy::Up => {
|
||
replace_self_with!(&mut upper_bound);
|
||
},
|
||
RoundingStrategy::Down => {
|
||
replace_self_with!(&mut lower_bound);
|
||
},
|
||
RoundingStrategy::ToZero => {
|
||
let mut lower_diff = lower_bound.clone();
|
||
let mut upper_diff = upper_bound.clone();
|
||
|
||
if value_or_stop!(lower_diff.is_negative_leaf()) {
|
||
lower_diff.negate();
|
||
}
|
||
|
||
if value_or_stop!(upper_diff.is_negative_leaf()) {
|
||
upper_diff.negate();
|
||
}
|
||
|
||
// In case of a tie, use the upper bound
|
||
if lower_diff.lt(&upper_diff, PositivePercentageBasis::Unknown) {
|
||
replace_self_with!(&mut lower_bound);
|
||
} else {
|
||
replace_self_with!(&mut upper_bound);
|
||
}
|
||
},
|
||
};
|
||
},
|
||
Self::ModRem {
|
||
ref dividend,
|
||
ref divisor,
|
||
op,
|
||
} => {
|
||
let mut result = value_or_stop!(dividend.try_op(divisor, |a, b| op.apply(a, b)));
|
||
replace_self_with!(&mut result);
|
||
},
|
||
Self::MinMax(ref mut children, op) => {
|
||
let winning_order = match op {
|
||
MinMaxOp::Min => cmp::Ordering::Less,
|
||
MinMaxOp::Max => cmp::Ordering::Greater,
|
||
};
|
||
|
||
if value_or_stop!(children[0].is_nan_leaf()) {
|
||
replace_self_with!(&mut children[0]);
|
||
return;
|
||
}
|
||
|
||
let mut result = 0;
|
||
for i in 1..children.len() {
|
||
if value_or_stop!(children[i].is_nan_leaf()) {
|
||
replace_self_with!(&mut children[i]);
|
||
return;
|
||
}
|
||
let o = match children[i]
|
||
.compare(&children[result], PositivePercentageBasis::Unknown)
|
||
{
|
||
// We can't compare all the children, so we can't
|
||
// know which one will actually win. Bail out and
|
||
// keep ourselves as a min / max function.
|
||
//
|
||
// TODO: Maybe we could simplify compatible children,
|
||
// see https://github.com/w3c/csswg-drafts/issues/4756
|
||
None => return,
|
||
Some(o) => o,
|
||
};
|
||
|
||
if o == winning_order {
|
||
result = i;
|
||
}
|
||
}
|
||
|
||
replace_self_with!(&mut children[result]);
|
||
},
|
||
Self::Sum(ref mut children_slot) => {
|
||
let mut sums_to_merge = SmallVec::<[_; 3]>::new();
|
||
let mut extra_kids = 0;
|
||
for (i, child) in children_slot.iter().enumerate() {
|
||
if let Self::Sum(ref children) = *child {
|
||
extra_kids += children.len();
|
||
sums_to_merge.push(i);
|
||
}
|
||
}
|
||
|
||
// If we only have one kid, we've already simplified it, and it
|
||
// doesn't really matter whether it's a sum already or not, so
|
||
// lift it up and continue.
|
||
if children_slot.len() == 1 {
|
||
replace_self_with!(&mut children_slot[0]);
|
||
return;
|
||
}
|
||
|
||
let mut children = mem::take(children_slot).into_vec();
|
||
|
||
if !sums_to_merge.is_empty() {
|
||
children.reserve(extra_kids - sums_to_merge.len());
|
||
// Merge all our nested sums, in reverse order so that the
|
||
// list indices are not invalidated.
|
||
for i in sums_to_merge.drain(..).rev() {
|
||
let kid_children = match children.swap_remove(i) {
|
||
Self::Sum(c) => c,
|
||
_ => unreachable!(),
|
||
};
|
||
|
||
// This would be nicer with
|
||
// https://github.com/rust-lang/rust/issues/59878 fixed.
|
||
children.extend(kid_children.into_vec());
|
||
}
|
||
}
|
||
|
||
debug_assert!(children.len() >= 2, "Should still have multiple kids!");
|
||
|
||
// Sort by spec order.
|
||
children.sort_unstable_by_key(|c| c.sort_key());
|
||
|
||
// NOTE: if the function returns true, by the docs of dedup_by,
|
||
// a is removed.
|
||
children.dedup_by(|a, b| b.try_sum_in_place(a).is_ok());
|
||
|
||
if children.len() == 1 {
|
||
// If only one children remains, lift it up, and carry on.
|
||
replace_self_with!(&mut children[0]);
|
||
} else {
|
||
// Else put our simplified children back.
|
||
*children_slot = children.into_boxed_slice().into();
|
||
}
|
||
},
|
||
Self::Product(ref mut children_slot) => {
|
||
let mut products_to_merge = SmallVec::<[_; 3]>::new();
|
||
let mut extra_kids = 0;
|
||
for (i, child) in children_slot.iter().enumerate() {
|
||
if let Self::Product(ref children) = *child {
|
||
extra_kids += children.len();
|
||
products_to_merge.push(i);
|
||
}
|
||
}
|
||
|
||
// If we only have one kid, we've already simplified it, and it
|
||
// doesn't really matter whether it's a product already or not,
|
||
// so lift it up and continue.
|
||
if children_slot.len() == 1 {
|
||
replace_self_with!(&mut children_slot[0]);
|
||
return;
|
||
}
|
||
|
||
let mut children = mem::take(children_slot).into_vec();
|
||
|
||
if !products_to_merge.is_empty() {
|
||
children.reserve(extra_kids - products_to_merge.len());
|
||
// Merge all our nested sums, in reverse order so that the
|
||
// list indices are not invalidated.
|
||
for i in products_to_merge.drain(..).rev() {
|
||
let kid_children = match children.swap_remove(i) {
|
||
Self::Product(c) => c,
|
||
_ => unreachable!(),
|
||
};
|
||
|
||
// This would be nicer with
|
||
// https://github.com/rust-lang/rust/issues/59878 fixed.
|
||
children.extend(kid_children.into_vec());
|
||
}
|
||
}
|
||
|
||
debug_assert!(children.len() >= 2, "Should still have multiple kids!");
|
||
|
||
// Sort by spec order.
|
||
children.sort_unstable_by_key(|c| c.sort_key());
|
||
|
||
// NOTE: if the function returns true, by the docs of dedup_by,
|
||
// a is removed.
|
||
children.dedup_by(|right, left| left.try_product_in_place(right));
|
||
|
||
if children.len() == 1 {
|
||
// If only one children remains, lift it up, and carry on.
|
||
replace_self_with!(&mut children[0]);
|
||
} else {
|
||
// Else put our simplified children back.
|
||
*children_slot = children.into_boxed_slice().into();
|
||
}
|
||
},
|
||
Self::Hypot(ref children) => {
|
||
let mut result = value_or_stop!(children[0].try_op(&children[0], Mul::mul));
|
||
|
||
for child in children.iter().skip(1) {
|
||
let square = value_or_stop!(child.try_op(&child, Mul::mul));
|
||
result = value_or_stop!(result.try_op(&square, Add::add));
|
||
}
|
||
|
||
result = value_or_stop!(result.try_op(&result, |a, _| a.sqrt()));
|
||
|
||
replace_self_with!(&mut result);
|
||
},
|
||
Self::Abs(ref mut child) => {
|
||
if let CalcNode::Leaf(leaf) = child.as_mut() {
|
||
value_or_stop!(leaf.map(|v| v.abs()));
|
||
replace_self_with!(&mut **child);
|
||
}
|
||
},
|
||
Self::Sign(ref mut child) => {
|
||
if let CalcNode::Leaf(leaf) = child.as_mut() {
|
||
let mut result = Self::Leaf(value_or_stop!(L::sign_from(leaf)));
|
||
replace_self_with!(&mut result);
|
||
}
|
||
},
|
||
Self::Negate(ref mut child) => {
|
||
// Step 6.
|
||
match &mut **child {
|
||
CalcNode::Leaf(_) => {
|
||
// 1. If root’s child is a numeric value, return an equivalent numeric value, but
|
||
// with the value negated (0 - value).
|
||
child.negate();
|
||
replace_self_with!(&mut **child);
|
||
},
|
||
CalcNode::Negate(value) => {
|
||
// 2. If root’s child is a Negate node, return the child’s child.
|
||
replace_self_with!(&mut **value);
|
||
},
|
||
_ => {
|
||
// 3. Return root.
|
||
},
|
||
}
|
||
},
|
||
Self::Invert(ref mut child) => {
|
||
// Step 7.
|
||
match &mut **child {
|
||
CalcNode::Leaf(leaf) => {
|
||
// 1. If root’s child is a number (not a percentage or dimension) return the
|
||
// reciprocal of the child’s value.
|
||
if leaf.unit().is_empty() {
|
||
value_or_stop!(child.map(|v| 1.0 / v));
|
||
replace_self_with!(&mut **child);
|
||
}
|
||
},
|
||
CalcNode::Invert(value) => {
|
||
// 2. If root’s child is an Invert node, return the child’s child.
|
||
replace_self_with!(&mut **value);
|
||
},
|
||
_ => {
|
||
// 3. Return root.
|
||
},
|
||
}
|
||
},
|
||
Self::Leaf(ref mut l) => {
|
||
l.simplify();
|
||
},
|
||
Self::Anchor(ref mut f) => {
|
||
if let AnchorSide::Percentage(ref mut n) = f.side {
|
||
n.simplify_and_sort();
|
||
}
|
||
if let Some(fallback) = f.fallback.as_mut() {
|
||
fallback.simplify_and_sort();
|
||
}
|
||
},
|
||
Self::AnchorSize(ref mut f) => {
|
||
if let Some(fallback) = f.fallback.as_mut() {
|
||
fallback.simplify_and_sort();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Simplifies and sorts the kids in the whole calculation subtree.
|
||
pub fn simplify_and_sort(&mut self) {
|
||
self.visit_depth_first(|node| node.simplify_and_sort_direct_children())
|
||
}
|
||
|
||
fn to_css_impl<W>(&self, dest: &mut CssWriter<W>, level: ArgumentLevel) -> fmt::Result
|
||
where
|
||
W: Write,
|
||
{
|
||
let write_closing_paren = match *self {
|
||
Self::MinMax(_, op) => {
|
||
dest.write_str(match op {
|
||
MinMaxOp::Max => "max(",
|
||
MinMaxOp::Min => "min(",
|
||
})?;
|
||
true
|
||
},
|
||
Self::Clamp { .. } => {
|
||
dest.write_str("clamp(")?;
|
||
true
|
||
},
|
||
Self::Round { strategy, .. } => {
|
||
match strategy {
|
||
RoundingStrategy::Nearest => dest.write_str("round("),
|
||
RoundingStrategy::Up => dest.write_str("round(up, "),
|
||
RoundingStrategy::Down => dest.write_str("round(down, "),
|
||
RoundingStrategy::ToZero => dest.write_str("round(to-zero, "),
|
||
}?;
|
||
|
||
true
|
||
},
|
||
Self::ModRem { op, .. } => {
|
||
dest.write_str(match op {
|
||
ModRemOp::Mod => "mod(",
|
||
ModRemOp::Rem => "rem(",
|
||
})?;
|
||
|
||
true
|
||
},
|
||
Self::Hypot(_) => {
|
||
dest.write_str("hypot(")?;
|
||
true
|
||
},
|
||
Self::Abs(_) => {
|
||
dest.write_str("abs(")?;
|
||
true
|
||
},
|
||
Self::Sign(_) => {
|
||
dest.write_str("sign(")?;
|
||
true
|
||
},
|
||
Self::Negate(_) => {
|
||
// We never generate a [`Negate`] node as the root of a calculation, only inside
|
||
// [`Sum`] nodes as a child. Because negate nodes are handled by the [`Sum`] node
|
||
// directly (see below), this node will never be serialized.
|
||
debug_assert!(
|
||
false,
|
||
"We never serialize Negate nodes as they are handled inside Sum nodes."
|
||
);
|
||
dest.write_str("(-1 * ")?;
|
||
true
|
||
},
|
||
Self::Invert(_) => {
|
||
if matches!(level, ArgumentLevel::CalculationRoot) {
|
||
dest.write_str("calc")?;
|
||
}
|
||
dest.write_str("(1 / ")?;
|
||
true
|
||
},
|
||
Self::Sum(_) | Self::Product(_) => match level {
|
||
ArgumentLevel::CalculationRoot => {
|
||
dest.write_str("calc(")?;
|
||
true
|
||
},
|
||
ArgumentLevel::ArgumentRoot => false,
|
||
ArgumentLevel::Nested => {
|
||
dest.write_str("(")?;
|
||
true
|
||
},
|
||
},
|
||
Self::Leaf(_) | Self::Anchor(_) | Self::AnchorSize(_) => match level {
|
||
ArgumentLevel::CalculationRoot => {
|
||
dest.write_str("calc(")?;
|
||
true
|
||
},
|
||
ArgumentLevel::ArgumentRoot | ArgumentLevel::Nested => false,
|
||
},
|
||
};
|
||
|
||
match *self {
|
||
Self::MinMax(ref children, _) | Self::Hypot(ref children) => {
|
||
let mut first = true;
|
||
for child in &**children {
|
||
if !first {
|
||
dest.write_str(", ")?;
|
||
}
|
||
first = false;
|
||
child.to_css_impl(dest, ArgumentLevel::ArgumentRoot)?;
|
||
}
|
||
},
|
||
Self::Negate(ref value) | Self::Invert(ref value) => {
|
||
value.to_css_impl(dest, ArgumentLevel::Nested)?
|
||
},
|
||
Self::Sum(ref children) => {
|
||
let mut first = true;
|
||
for child in &**children {
|
||
if !first {
|
||
match child {
|
||
Self::Leaf(l) => {
|
||
if let Ok(true) = l.is_negative() {
|
||
dest.write_str(" - ")?;
|
||
let mut negated = l.clone();
|
||
// We can unwrap here, because we already
|
||
// checked if the value inside is negative.
|
||
negated.map(std::ops::Neg::neg).unwrap();
|
||
negated.to_css(dest)?;
|
||
} else {
|
||
dest.write_str(" + ")?;
|
||
l.to_css(dest)?;
|
||
}
|
||
},
|
||
Self::Negate(n) => {
|
||
dest.write_str(" - ")?;
|
||
n.to_css_impl(dest, ArgumentLevel::Nested)?;
|
||
},
|
||
_ => {
|
||
dest.write_str(" + ")?;
|
||
child.to_css_impl(dest, ArgumentLevel::Nested)?;
|
||
},
|
||
}
|
||
} else {
|
||
first = false;
|
||
child.to_css_impl(dest, ArgumentLevel::Nested)?;
|
||
}
|
||
}
|
||
},
|
||
Self::Product(ref children) => {
|
||
let mut first = true;
|
||
for child in &**children {
|
||
if !first {
|
||
match child {
|
||
Self::Invert(n) => {
|
||
dest.write_str(" / ")?;
|
||
n.to_css_impl(dest, ArgumentLevel::Nested)?;
|
||
},
|
||
_ => {
|
||
dest.write_str(" * ")?;
|
||
child.to_css_impl(dest, ArgumentLevel::Nested)?;
|
||
},
|
||
}
|
||
} else {
|
||
first = false;
|
||
child.to_css_impl(dest, ArgumentLevel::Nested)?;
|
||
}
|
||
}
|
||
},
|
||
Self::Clamp {
|
||
ref min,
|
||
ref center,
|
||
ref max,
|
||
} => {
|
||
min.to_css_impl(dest, ArgumentLevel::ArgumentRoot)?;
|
||
dest.write_str(", ")?;
|
||
center.to_css_impl(dest, ArgumentLevel::ArgumentRoot)?;
|
||
dest.write_str(", ")?;
|
||
max.to_css_impl(dest, ArgumentLevel::ArgumentRoot)?;
|
||
},
|
||
Self::Round {
|
||
ref value,
|
||
ref step,
|
||
..
|
||
} => {
|
||
value.to_css_impl(dest, ArgumentLevel::ArgumentRoot)?;
|
||
dest.write_str(", ")?;
|
||
step.to_css_impl(dest, ArgumentLevel::ArgumentRoot)?;
|
||
},
|
||
Self::ModRem {
|
||
ref dividend,
|
||
ref divisor,
|
||
..
|
||
} => {
|
||
dividend.to_css_impl(dest, ArgumentLevel::ArgumentRoot)?;
|
||
dest.write_str(", ")?;
|
||
divisor.to_css_impl(dest, ArgumentLevel::ArgumentRoot)?;
|
||
},
|
||
Self::Abs(ref v) | Self::Sign(ref v) => {
|
||
v.to_css_impl(dest, ArgumentLevel::ArgumentRoot)?
|
||
},
|
||
Self::Leaf(ref l) => l.to_css(dest)?,
|
||
Self::Anchor(ref f) => f.to_css(dest)?,
|
||
Self::AnchorSize(ref f) => f.to_css(dest)?,
|
||
}
|
||
|
||
if write_closing_paren {
|
||
dest.write_char(')')?;
|
||
}
|
||
Ok(())
|
||
}
|
||
|
||
fn compare(
|
||
&self,
|
||
other: &Self,
|
||
basis_positive: PositivePercentageBasis,
|
||
) -> Option<cmp::Ordering> {
|
||
match (self, other) {
|
||
(&CalcNode::Leaf(ref one), &CalcNode::Leaf(ref other)) => {
|
||
one.compare(other, basis_positive)
|
||
},
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
compare_helpers!();
|
||
}
|
||
|
||
impl<L: CalcNodeLeaf> ToCss for CalcNode<L> {
|
||
/// <https://drafts.csswg.org/css-values/#calc-serialize>
|
||
fn to_css<W>(&self, dest: &mut CssWriter<W>) -> fmt::Result
|
||
where
|
||
W: Write,
|
||
{
|
||
self.to_css_impl(dest, ArgumentLevel::CalculationRoot)
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod tests {
|
||
use super::*;
|
||
|
||
#[test]
|
||
fn can_sum_with_checks() {
|
||
assert!(CalcUnits::LENGTH.can_sum_with(CalcUnits::LENGTH));
|
||
assert!(CalcUnits::LENGTH.can_sum_with(CalcUnits::PERCENTAGE));
|
||
assert!(CalcUnits::LENGTH.can_sum_with(CalcUnits::LENGTH_PERCENTAGE));
|
||
|
||
assert!(CalcUnits::PERCENTAGE.can_sum_with(CalcUnits::LENGTH));
|
||
assert!(CalcUnits::PERCENTAGE.can_sum_with(CalcUnits::PERCENTAGE));
|
||
assert!(CalcUnits::PERCENTAGE.can_sum_with(CalcUnits::LENGTH_PERCENTAGE));
|
||
|
||
assert!(CalcUnits::LENGTH_PERCENTAGE.can_sum_with(CalcUnits::LENGTH));
|
||
assert!(CalcUnits::LENGTH_PERCENTAGE.can_sum_with(CalcUnits::PERCENTAGE));
|
||
assert!(CalcUnits::LENGTH_PERCENTAGE.can_sum_with(CalcUnits::LENGTH_PERCENTAGE));
|
||
|
||
assert!(!CalcUnits::ANGLE.can_sum_with(CalcUnits::TIME));
|
||
assert!(CalcUnits::ANGLE.can_sum_with(CalcUnits::ANGLE));
|
||
|
||
assert!(!(CalcUnits::ANGLE | CalcUnits::TIME).can_sum_with(CalcUnits::ANGLE));
|
||
assert!(!CalcUnits::ANGLE.can_sum_with(CalcUnits::ANGLE | CalcUnits::TIME));
|
||
assert!(
|
||
!(CalcUnits::ANGLE | CalcUnits::TIME).can_sum_with(CalcUnits::ANGLE | CalcUnits::TIME)
|
||
);
|
||
}
|
||
}
|