99 lines
3.4 KiB
JavaScript
99 lines
3.4 KiB
JavaScript
// META: title=validation tests for WebNN API element-wise binary operations
|
|
// META: global=window
|
|
// META: variant=?op=add&device=cpu
|
|
// META: variant=?op=add&device=gpu
|
|
// META: variant=?op=add&device=npu
|
|
// META: variant=?op=sub&device=cpu
|
|
// META: variant=?op=sub&device=gpu
|
|
// META: variant=?op=sub&device=npu
|
|
// META: variant=?op=mul&device=cpu
|
|
// META: variant=?op=mul&device=gpu
|
|
// META: variant=?op=mul&device=npu
|
|
// META: variant=?op=div&device=cpu
|
|
// META: variant=?op=div&device=gpu
|
|
// META: variant=?op=div&device=npu
|
|
// META: variant=?op=max&device=cpu
|
|
// META: variant=?op=max&device=gpu
|
|
// META: variant=?op=max&device=npu
|
|
// META: variant=?op=min&device=cpu
|
|
// META: variant=?op=min&device=gpu
|
|
// META: variant=?op=min&device=npu
|
|
// META: variant=?op=pow&device=cpu
|
|
// META: variant=?op=pow&device=gpu
|
|
// META: variant=?op=pow&device=npu
|
|
// META: script=../resources/utils_validation.js
|
|
|
|
'use strict';
|
|
|
|
const queryParams = new URLSearchParams(window.location.search);
|
|
const operatorName = queryParams.get('op');
|
|
|
|
const label = 'elementwise_binary_op';
|
|
const regrexp = new RegExp('\\[' + label + '\\]');
|
|
const tests = [
|
|
{
|
|
name: '[binary] Test bidirectionally broadcastable dimensions.',
|
|
// Both inputs have axes of length one which are expanded
|
|
// during broadcasting.
|
|
a: {dataType: 'float32', shape: [8, 1, 6, 1]},
|
|
b: {dataType: 'float32', shape: [7, 1, 5]},
|
|
output: {dataType: 'float32', shape: [8, 7, 6, 5]}
|
|
},
|
|
{
|
|
name: '[binary] Test unidirectionally broadcastable dimensions.',
|
|
// Input a has a single axis of length one which is
|
|
// expanded during broadcasting.
|
|
a: {dataType: 'float32', shape: [4, 2, 1]},
|
|
b: {dataType: 'float32', shape: [4]},
|
|
output: {dataType: 'float32', shape: [4, 2, 4]}
|
|
},
|
|
{
|
|
name: '[binary] Test scalar broadcasting.',
|
|
a: {dataType: 'float32', shape: [4, 2, 4]},
|
|
b: {dataType: 'float32', shape: []},
|
|
output: {dataType: 'float32', shape: [4, 2, 4]}
|
|
},
|
|
{
|
|
name: '[binary] Throw if the input shapes are not broadcastable.',
|
|
a: {dataType: 'float32', shape: [4, 2]},
|
|
b: {dataType: 'float32', shape: [4]},
|
|
},
|
|
{
|
|
name: '[binary] Throw if the input types don\'t match.',
|
|
a: {dataType: 'float32', shape: [4, 2]},
|
|
b: {dataType: 'int32', shape: [1]},
|
|
},
|
|
];
|
|
|
|
tests.forEach(test => {
|
|
promise_test(async t => {
|
|
const builder = new MLGraphBuilder(context);
|
|
if (!context.opSupportLimits().input.dataTypes.includes(
|
|
test.a.dataType)) {
|
|
assert_throws_js(TypeError, () => builder.input('a', test.a));
|
|
return;
|
|
}
|
|
if (!context.opSupportLimits().input.dataTypes.includes(
|
|
test.b.dataType)) {
|
|
assert_throws_js(TypeError, () => builder.input('b', test.b));
|
|
return;
|
|
}
|
|
const a = builder.input('a', test.a);
|
|
const b = builder.input('b', test.b);
|
|
|
|
if (test.output) {
|
|
const output = builder[operatorName](a, b);
|
|
assert_equals(output.dataType, test.output.dataType);
|
|
assert_array_equals(output.shape, test.output.shape);
|
|
} else {
|
|
const options = {label};
|
|
assert_throws_with_label(
|
|
() => builder[operatorName](a, b, options), regrexp);
|
|
}
|
|
}, test.name.replace('[binary]', `[${operatorName}]`));
|
|
});
|
|
|
|
validateTwoInputsOfSameDataType(operatorName, label);
|
|
validateTwoInputsBroadcastable(operatorName, label);
|
|
validateTwoInputsFromMultipleBuilders(operatorName);
|
|
validateTwoBroadcastableInputsTensorLimit(operatorName, label);
|