89 lines
3.1 KiB
JavaScript
89 lines
3.1 KiB
JavaScript
// META: title=validation tests for WebNN API prelu operation
|
|
// META: global=window
|
|
// META: variant=?cpu
|
|
// META: variant=?gpu
|
|
// META: variant=?npu
|
|
// META: script=../resources/utils_validation.js
|
|
|
|
'use strict';
|
|
|
|
validateTwoInputsFromMultipleBuilders('prelu');
|
|
|
|
const tests = [
|
|
{
|
|
name:
|
|
'[prelu] Test slope\'s shape = [3, 2, 5] which is the same as input\'s shape.',
|
|
input: {dataType: 'float32', shape: [3, 2, 5]},
|
|
slope: {dataType: 'float32', shape: [3, 2, 5]},
|
|
output: {dataType: 'float32', shape: [3, 2, 5]},
|
|
},
|
|
{
|
|
name:
|
|
'[prelu] Test slope\'s shape = [5] which is unidirectionally broadcastable to input\'s shape.',
|
|
input: {dataType: 'float32', shape: [3, 2, 5]},
|
|
slope: {dataType: 'float32', shape: [5]},
|
|
output: {dataType: 'float32', shape: [3, 2, 5]},
|
|
},
|
|
{
|
|
name:
|
|
'[prelu] Test slope\'s shape = [] which is unidirectionally broadcastable to input\'s shape.',
|
|
input: {dataType: 'float32', shape: [3, 2, 5]},
|
|
slope: {dataType: 'float32', shape: []},
|
|
output: {dataType: 'float32', shape: [3, 2, 5]},
|
|
},
|
|
{
|
|
name:
|
|
'[prelu] Test slope\'s shape = [2, 5] which is unidirectionally broadcastable to input\'s shape.',
|
|
input: {dataType: 'float32', shape: [3, 2, 5]},
|
|
slope: {dataType: 'float32', shape: [2, 5]},
|
|
output: {dataType: 'float32', shape: [3, 2, 5]},
|
|
},
|
|
{
|
|
name:
|
|
'[prelu] Throw if the shape of slope is not broadcastable to the shape of input.',
|
|
input: {dataType: 'float32', shape: [3, 2, 5]},
|
|
slope: {dataType: 'float32', shape: [2]},
|
|
},
|
|
{
|
|
name:
|
|
'[prelu] Throw if the data type of slope does not match the data type of input.',
|
|
input: {dataType: 'float32', shape: [3, 2, 5]},
|
|
slope: {dataType: 'int32', shape: [3, 2, 5]},
|
|
},
|
|
];
|
|
|
|
tests.forEach(
|
|
test => promise_test(async t => {
|
|
const builder = new MLGraphBuilder(context);
|
|
const input = builder.input('input', test.input);
|
|
const slope = builder.input('input', test.slope);
|
|
if (test.output) {
|
|
const output = builder.prelu(input, slope);
|
|
assert_equals(output.dataType, test.output.dataType);
|
|
assert_array_equals(output.shape, test.output.shape);
|
|
} else {
|
|
const label = 'prelu_123';
|
|
const options = {label};
|
|
const regrexp = new RegExp('\\[' + label + '\\]');
|
|
assert_throws_with_label(
|
|
() => builder.prelu(input, slope, options), regrexp);
|
|
}
|
|
}, test.name));
|
|
|
|
promise_test(async t => {
|
|
for (let dataType of allWebNNOperandDataTypes) {
|
|
if (!context.opSupportLimits().input.dataTypes.includes(dataType)) {
|
|
continue;
|
|
}
|
|
const builder = new MLGraphBuilder(context);
|
|
const shape = [1];
|
|
const input = builder.input(`input`, {dataType, shape});
|
|
if (context.opSupportLimits().prelu.input.dataTypes.includes(dataType)) {
|
|
const output = builder.prelu(input, input);
|
|
assert_equals(output.dataType, dataType);
|
|
assert_array_equals(output.shape, shape);
|
|
} else {
|
|
assert_throws_js(TypeError, () => builder.prelu(input, input));
|
|
}
|
|
}
|
|
}, `[prelu] Test prelu with all of the data types.`);
|