255 lines
8.1 KiB
JavaScript
255 lines
8.1 KiB
JavaScript
// META: title=validation tests for WebNN API resample2d operation
|
|
// META: global=window
|
|
// META: variant=?cpu
|
|
// META: variant=?gpu
|
|
// META: variant=?npu
|
|
// META: script=../resources/utils_validation.js
|
|
|
|
'use strict';
|
|
|
|
const label = 'resample-2d';
|
|
const regrexp = new RegExp('\\[' + label + '\\]');
|
|
// Tests for resample2d(input, options)
|
|
const tests = [
|
|
{
|
|
name: '[resample2d] Test building resample2d with default options',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
output: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
},
|
|
{
|
|
name: '[resample2d] Test building resample2d with scales=[2.0, 2.0]',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {scales: [2.0, 2.0]},
|
|
output: {dataType: 'float32', shape: [1, 1, 4, 8]},
|
|
},
|
|
{
|
|
name: '[resample2d] Test building resample2d with scales=[0.5, 0.5]',
|
|
input: {dataType: 'float32', shape: [1, 1, 5, 5]},
|
|
options: {scales: [0.5, 0.5]},
|
|
output: {dataType: 'float32', shape: [1, 1, 2, 2]},
|
|
},
|
|
{
|
|
name:
|
|
'[resample2d] Test building resample2d with scales=[0.5, 0.5] and explicit axes=[2, 3]',
|
|
input: {dataType: 'float32', shape: [1, 1, 5, 5]},
|
|
options: {scales: [0.5, 0.5], axes: [2, 3]},
|
|
output: {dataType: 'float32', shape: [1, 1, 2, 2]},
|
|
},
|
|
{
|
|
name:
|
|
'[resample2d] Test building resample2d with scales=[1.0, 2.0] and axes=[0, 1]',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {scales: [1.0, 2.0], axes: [0, 1]},
|
|
output: {dataType: 'float32', shape: [1, 2, 2, 4]},
|
|
},
|
|
{
|
|
name:
|
|
'[resample2d] Test building resample2d with scales=[2.0, 2.0] and axes=[1, 2]',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {scales: [2.0, 2.0], axes: [1, 2]},
|
|
output: {dataType: 'float32', shape: [1, 2, 4, 4]},
|
|
},
|
|
{
|
|
name:
|
|
'[resample2d] Test building resample2d with sizes=[3, 6] ignored scales',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {scales: [2.0, 2.0], sizes: [3, 6]},
|
|
output: {dataType: 'float32', shape: [1, 1, 3, 6]},
|
|
},
|
|
{
|
|
name:
|
|
'[resample2d] Test building resample2d with non consecutive axes=[0,2]',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {
|
|
axes: [0, 2],
|
|
label: label,
|
|
},
|
|
output: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
},
|
|
{
|
|
name:
|
|
'[resample2d] Throw if the dataType of input is not float32 or float16',
|
|
input: {dataType: 'int32', shape: [2, 4]},
|
|
options: {label},
|
|
},
|
|
{
|
|
name: '[resample2d] Throw if the rank of input is not 4',
|
|
input: {dataType: 'float32', shape: [2, 4]},
|
|
options: {label},
|
|
},
|
|
{
|
|
name: '[resample2d] Throw if the length of scales is not 2',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {
|
|
scales: [1.0, 1.0, 2.0, 2.0],
|
|
label: label,
|
|
},
|
|
},
|
|
{
|
|
name: '[resample2d] Throw if any scale value is negative',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {
|
|
scales: [1.0, -2.0],
|
|
label: label,
|
|
},
|
|
},
|
|
{
|
|
name: '[resample2d] Throw if any scale value is 0',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {
|
|
scales: [0, 2.0],
|
|
label: label,
|
|
},
|
|
},
|
|
{
|
|
name: '[resample2d] Throw if the length of sizes is not 2',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {
|
|
sizes: [1, 1, 4, 6],
|
|
label: label,
|
|
},
|
|
},
|
|
{
|
|
name: '[resample2d] Throw if sizes[0] is not a valid dimension',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {
|
|
sizes: [0, 1],
|
|
label: label,
|
|
},
|
|
},
|
|
{
|
|
name: '[resample2d] Throw if sizes[1] is not a valid dimension',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {
|
|
sizes: [1, 0],
|
|
label: label,
|
|
},
|
|
},
|
|
{
|
|
name:
|
|
'[resample2d] Throw if any size value is out of \'unsigned long\' value range',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {sizes: [kMaxUnsignedLong + 1, kMaxUnsignedLong + 1]},
|
|
},
|
|
{
|
|
name:
|
|
'[resample2d] Throw if outputHeight being floor(scaleHeight*inputHeight) is too large',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
// The maximum dimension size is kMaxUnsignedLong (2 ** 32 - 1).
|
|
// Here scaleHeight=kMaxUnsignedLong and inputHeight=2,
|
|
// so outputHeight being kMaxUnsignedLong*2 > kMaxUnsignedLong .
|
|
options: {scales: /*[scaleHeight, scaleWidth]*/[kMaxUnsignedLong, 1]},
|
|
},
|
|
{
|
|
name: '[resample2d] Throw if scaleHeight is too small',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
// Here scaleHeight=0.02 and inputHeight=2,
|
|
// so outputHeight would be 0.
|
|
// Link to https://github.com/webmachinelearning/webnn/issues/391.
|
|
options: {
|
|
scales: /*[scaleHeight, scaleWidth]*/[0.02, 0.8],
|
|
label: label,
|
|
},
|
|
},
|
|
{
|
|
name:
|
|
'[resample2d] Throw if outputWidth being floor(scaleWidth*inputWidth) is too large',
|
|
input: {dataType: 'float32', shape: [1, 1, 4, 2]},
|
|
// The maximum dimension size is kMaxUnsignedLong (2 ** 32 - 1).
|
|
// Here scaleWidth=kMaxUnsignedLong and inputWidth=2,
|
|
// so outputWidth being kMaxUnsignedLong*2 > kMaxUnsignedLong .
|
|
options: {scales: /*[scaleHeight, scaleWidth]*/[1, kMaxUnsignedLong]},
|
|
},
|
|
{
|
|
name: '[resample2d] Throw if scaleWidth is too small',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
// Here scaleWidth=0.1 and inputWidth=4,
|
|
// so outputWidth would be 0.
|
|
// Link to https://github.com/webmachinelearning/webnn/issues/391.
|
|
options: {
|
|
scales: /*[scaleHeight, scaleWidth]*/[0.7, 0.1],
|
|
label: label,
|
|
},
|
|
},
|
|
{
|
|
name: '[resample2d] Throw if the length of axes is not 2',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {
|
|
axes: [0, 1, 2],
|
|
label: label,
|
|
},
|
|
},
|
|
{
|
|
name:
|
|
'[resample2d] Throw if any axis value is greater than or equal to the input rank',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {
|
|
axes: [3, 4],
|
|
label: label,
|
|
},
|
|
},
|
|
{
|
|
name: '[resample2d] Throw if the values of axes are same',
|
|
input: {dataType: 'float32', shape: [1, 1, 2, 4]},
|
|
options: {
|
|
axes: [0, 0],
|
|
label: label,
|
|
},
|
|
},
|
|
];
|
|
|
|
tests.forEach(
|
|
test => promise_test(async t => {
|
|
const builder = new MLGraphBuilder(context);
|
|
const input = builder.input('input', test.input);
|
|
const options = test.options ?? {};
|
|
if (test.output) {
|
|
const output = builder.resample2d(input, options);
|
|
assert_equals(output.dataType, test.output.dataType);
|
|
assert_array_equals(output.shape, test.output.shape);
|
|
} else {
|
|
const options = {...test.options};
|
|
if (options.label) {
|
|
assert_throws_with_label(
|
|
() => builder.resample2d(input, options), regrexp);
|
|
} else {
|
|
assert_throws_js(TypeError, () => builder.resample2d(input, options));
|
|
}
|
|
}
|
|
}, test.name));
|
|
|
|
validateInputFromAnotherBuilder(
|
|
'resample2d', {dataType: 'float32', shape: [2, 2, 2, 2]});
|
|
|
|
promise_test(async t => {
|
|
for (let dataType of allWebNNOperandDataTypes) {
|
|
if (!context.opSupportLimits().input.dataTypes.includes(dataType)) {
|
|
continue;
|
|
}
|
|
const builder = new MLGraphBuilder(context);
|
|
const shape = [1, 1, 2, 4];
|
|
const input = builder.input(`input`, {dataType, shape});
|
|
if (context.opSupportLimits().resample2d.input.dataTypes.includes(
|
|
dataType)) {
|
|
const output = builder.resample2d(input);
|
|
assert_equals(output.dataType, dataType);
|
|
assert_array_equals(output.shape, shape);
|
|
} else {
|
|
assert_throws_js(TypeError, () => builder.resample2d(input));
|
|
}
|
|
}
|
|
}, `[resample2d] Test resample2d with all of the data types.`);
|
|
|
|
promise_test(async t => {
|
|
const builder = new MLGraphBuilder(context);
|
|
|
|
const input = builder.input('input', {
|
|
dataType: 'float32',
|
|
shape: [1, 1, context.opSupportLimits().maxTensorByteLength / 4, 1]});
|
|
|
|
const options = {};
|
|
options.scales = [2.0, 2.0];
|
|
options.label = label;
|
|
assert_throws_with_label(
|
|
() => builder.resample2d(input, options), regrexp);
|
|
}, '[resample2d] throw if the output tensor byte length exceeds limit');
|