1
0
Fork 0
firefox/third_party/rust/serde_json/src/lexical/num.rs
Daniel Baumann 5e9a113729
Adding upstream version 140.0.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-25 09:37:52 +02:00

421 lines
11 KiB
Rust
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Adapted from https://github.com/Alexhuszagh/rust-lexical.
//! Utilities for Rust numbers.
use core::ops;
/// Precalculated values of radix**i for i in range [0, arr.len()-1].
/// Each value can be **exactly** represented as that type.
const F32_POW10: [f32; 11] = [
1.0,
10.0,
100.0,
1000.0,
10000.0,
100000.0,
1000000.0,
10000000.0,
100000000.0,
1000000000.0,
10000000000.0,
];
/// Precalculated values of radix**i for i in range [0, arr.len()-1].
/// Each value can be **exactly** represented as that type.
const F64_POW10: [f64; 23] = [
1.0,
10.0,
100.0,
1000.0,
10000.0,
100000.0,
1000000.0,
10000000.0,
100000000.0,
1000000000.0,
10000000000.0,
100000000000.0,
1000000000000.0,
10000000000000.0,
100000000000000.0,
1000000000000000.0,
10000000000000000.0,
100000000000000000.0,
1000000000000000000.0,
10000000000000000000.0,
100000000000000000000.0,
1000000000000000000000.0,
10000000000000000000000.0,
];
/// Type that can be converted to primitive with `as`.
pub trait AsPrimitive: Sized + Copy + PartialOrd {
fn as_u32(self) -> u32;
fn as_u64(self) -> u64;
fn as_u128(self) -> u128;
fn as_usize(self) -> usize;
fn as_f32(self) -> f32;
fn as_f64(self) -> f64;
}
macro_rules! as_primitive_impl {
($($ty:ident)*) => {
$(
impl AsPrimitive for $ty {
#[inline]
fn as_u32(self) -> u32 {
self as u32
}
#[inline]
fn as_u64(self) -> u64 {
self as u64
}
#[inline]
fn as_u128(self) -> u128 {
self as u128
}
#[inline]
fn as_usize(self) -> usize {
self as usize
}
#[inline]
fn as_f32(self) -> f32 {
self as f32
}
#[inline]
fn as_f64(self) -> f64 {
self as f64
}
}
)*
};
}
as_primitive_impl! { u32 u64 u128 usize f32 f64 }
/// An interface for casting between machine scalars.
pub trait AsCast: AsPrimitive {
/// Creates a number from another value that can be converted into
/// a primitive via the `AsPrimitive` trait.
fn as_cast<N: AsPrimitive>(n: N) -> Self;
}
macro_rules! as_cast_impl {
($ty:ident, $method:ident) => {
impl AsCast for $ty {
#[inline]
fn as_cast<N: AsPrimitive>(n: N) -> Self {
n.$method()
}
}
};
}
as_cast_impl!(u32, as_u32);
as_cast_impl!(u64, as_u64);
as_cast_impl!(u128, as_u128);
as_cast_impl!(usize, as_usize);
as_cast_impl!(f32, as_f32);
as_cast_impl!(f64, as_f64);
/// Numerical type trait.
pub trait Number: AsCast + ops::Add<Output = Self> {}
macro_rules! number_impl {
($($ty:ident)*) => {
$(
impl Number for $ty {}
)*
};
}
number_impl! { u32 u64 u128 usize f32 f64 }
/// Defines a trait that supports integral operations.
pub trait Integer: Number + ops::BitAnd<Output = Self> + ops::Shr<i32, Output = Self> {
const ZERO: Self;
}
macro_rules! integer_impl {
($($ty:tt)*) => {
$(
impl Integer for $ty {
const ZERO: Self = 0;
}
)*
};
}
integer_impl! { u32 u64 u128 usize }
/// Type trait for the mantissa type.
pub trait Mantissa: Integer {
/// Mask to extract the high bits from the integer.
const HIMASK: Self;
/// Mask to extract the low bits from the integer.
const LOMASK: Self;
/// Full size of the integer, in bits.
const FULL: i32;
/// Half size of the integer, in bits.
const HALF: i32 = Self::FULL / 2;
}
impl Mantissa for u64 {
const HIMASK: u64 = 0xFFFFFFFF00000000;
const LOMASK: u64 = 0x00000000FFFFFFFF;
const FULL: i32 = 64;
}
/// Get exact exponent limit for radix.
pub trait Float: Number {
/// Unsigned type of the same size.
type Unsigned: Integer;
/// Literal zero.
const ZERO: Self;
/// Maximum number of digits that can contribute in the mantissa.
///
/// We can exactly represent a float in radix `b` from radix 2 if
/// `b` is divisible by 2. This function calculates the exact number of
/// digits required to exactly represent that float.
///
/// According to the "Handbook of Floating Point Arithmetic",
/// for IEEE754, with emin being the min exponent, p2 being the
/// precision, and b being the radix, the number of digits follows as:
///
/// `emin + p2 + ⌊(emin + 1) log(2, b) log(1 2^(p2), b)⌋`
///
/// For f32, this follows as:
/// emin = -126
/// p2 = 24
///
/// For f64, this follows as:
/// emin = -1022
/// p2 = 53
///
/// In Python:
/// `-emin + p2 + math.floor((emin+1)*math.log(2, b) - math.log(1-2**(-p2), b))`
///
/// This was used to calculate the maximum number of digits for [2, 36].
const MAX_DIGITS: usize;
// MASKS
/// Bitmask for the exponent, including the hidden bit.
const EXPONENT_MASK: Self::Unsigned;
/// Bitmask for the hidden bit in exponent, which is an implicit 1 in the fraction.
const HIDDEN_BIT_MASK: Self::Unsigned;
/// Bitmask for the mantissa (fraction), excluding the hidden bit.
const MANTISSA_MASK: Self::Unsigned;
// PROPERTIES
/// Positive infinity as bits.
const INFINITY_BITS: Self::Unsigned;
/// Size of the significand (mantissa) without hidden bit.
const MANTISSA_SIZE: i32;
/// Bias of the exponent
const EXPONENT_BIAS: i32;
/// Exponent portion of a denormal float.
const DENORMAL_EXPONENT: i32;
/// Maximum exponent value in float.
const MAX_EXPONENT: i32;
// ROUNDING
/// Default number of bits to shift (or 64 - mantissa size - 1).
const DEFAULT_SHIFT: i32;
/// Mask to determine if a full-carry occurred (1 in bit above hidden bit).
const CARRY_MASK: u64;
/// Get min and max exponent limits (exact) from radix.
fn exponent_limit() -> (i32, i32);
/// Get the number of digits that can be shifted from exponent to mantissa.
fn mantissa_limit() -> i32;
// Re-exported methods from std.
fn pow10(self, n: i32) -> Self;
fn from_bits(u: Self::Unsigned) -> Self;
fn to_bits(self) -> Self::Unsigned;
fn is_sign_positive(self) -> bool;
/// Returns true if the float is a denormal.
#[inline]
fn is_denormal(self) -> bool {
self.to_bits() & Self::EXPONENT_MASK == Self::Unsigned::ZERO
}
/// Returns true if the float is a NaN or Infinite.
#[inline]
fn is_special(self) -> bool {
self.to_bits() & Self::EXPONENT_MASK == Self::EXPONENT_MASK
}
/// Returns true if the float is infinite.
#[inline]
fn is_inf(self) -> bool {
self.is_special() && (self.to_bits() & Self::MANTISSA_MASK) == Self::Unsigned::ZERO
}
/// Get exponent component from the float.
#[inline]
fn exponent(self) -> i32 {
if self.is_denormal() {
return Self::DENORMAL_EXPONENT;
}
let bits = self.to_bits();
let biased_e = ((bits & Self::EXPONENT_MASK) >> Self::MANTISSA_SIZE).as_u32();
biased_e as i32 - Self::EXPONENT_BIAS
}
/// Get mantissa (significand) component from float.
#[inline]
fn mantissa(self) -> Self::Unsigned {
let bits = self.to_bits();
let s = bits & Self::MANTISSA_MASK;
if !self.is_denormal() {
s + Self::HIDDEN_BIT_MASK
} else {
s
}
}
/// Get next greater float for a positive float.
/// Value must be >= 0.0 and < INFINITY.
#[inline]
fn next_positive(self) -> Self {
debug_assert!(self.is_sign_positive() && !self.is_inf());
Self::from_bits(self.to_bits() + Self::Unsigned::as_cast(1u32))
}
/// Round a positive number to even.
#[inline]
fn round_positive_even(self) -> Self {
if self.mantissa() & Self::Unsigned::as_cast(1u32) == Self::Unsigned::as_cast(1u32) {
self.next_positive()
} else {
self
}
}
}
impl Float for f32 {
type Unsigned = u32;
const ZERO: f32 = 0.0;
const MAX_DIGITS: usize = 114;
const EXPONENT_MASK: u32 = 0x7F800000;
const HIDDEN_BIT_MASK: u32 = 0x00800000;
const MANTISSA_MASK: u32 = 0x007FFFFF;
const INFINITY_BITS: u32 = 0x7F800000;
const MANTISSA_SIZE: i32 = 23;
const EXPONENT_BIAS: i32 = 127 + Self::MANTISSA_SIZE;
const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
const MAX_EXPONENT: i32 = 0xFF - Self::EXPONENT_BIAS;
const DEFAULT_SHIFT: i32 = u64::FULL - f32::MANTISSA_SIZE - 1;
const CARRY_MASK: u64 = 0x1000000;
#[inline]
fn exponent_limit() -> (i32, i32) {
(-10, 10)
}
#[inline]
fn mantissa_limit() -> i32 {
7
}
#[inline]
fn pow10(self, n: i32) -> f32 {
// Check the exponent is within bounds in debug builds.
debug_assert!({
let (min, max) = Self::exponent_limit();
n >= min && n <= max
});
if n > 0 {
self * F32_POW10[n as usize]
} else {
self / F32_POW10[-n as usize]
}
}
#[inline]
fn from_bits(u: u32) -> f32 {
f32::from_bits(u)
}
#[inline]
fn to_bits(self) -> u32 {
f32::to_bits(self)
}
#[inline]
fn is_sign_positive(self) -> bool {
f32::is_sign_positive(self)
}
}
impl Float for f64 {
type Unsigned = u64;
const ZERO: f64 = 0.0;
const MAX_DIGITS: usize = 769;
const EXPONENT_MASK: u64 = 0x7FF0000000000000;
const HIDDEN_BIT_MASK: u64 = 0x0010000000000000;
const MANTISSA_MASK: u64 = 0x000FFFFFFFFFFFFF;
const INFINITY_BITS: u64 = 0x7FF0000000000000;
const MANTISSA_SIZE: i32 = 52;
const EXPONENT_BIAS: i32 = 1023 + Self::MANTISSA_SIZE;
const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
const MAX_EXPONENT: i32 = 0x7FF - Self::EXPONENT_BIAS;
const DEFAULT_SHIFT: i32 = u64::FULL - f64::MANTISSA_SIZE - 1;
const CARRY_MASK: u64 = 0x20000000000000;
#[inline]
fn exponent_limit() -> (i32, i32) {
(-22, 22)
}
#[inline]
fn mantissa_limit() -> i32 {
15
}
#[inline]
fn pow10(self, n: i32) -> f64 {
// Check the exponent is within bounds in debug builds.
debug_assert!({
let (min, max) = Self::exponent_limit();
n >= min && n <= max
});
if n > 0 {
self * F64_POW10[n as usize]
} else {
self / F64_POW10[-n as usize]
}
}
#[inline]
fn from_bits(u: u64) -> f64 {
f64::from_bits(u)
}
#[inline]
fn to_bits(self) -> u64 {
f64::to_bits(self)
}
#[inline]
fn is_sign_positive(self) -> bool {
f64::is_sign_positive(self)
}
}