1
0
Fork 0
firefox/toolkit/components/uniffi-bindgen-gecko-js/fixtures/generated/RustFutures.sys.mjs
Daniel Baumann 5e9a113729
Adding upstream version 140.0.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-25 09:37:52 +02:00

1565 lines
46 KiB
JavaScript

// This file was autogenerated by the `uniffi-bindgen-gecko-js` crate.
// Trust me, you don't want to mess with it!
import { UniFFITypeError } from "resource://gre/modules/UniFFI.sys.mjs";
// Objects intended to be used in the unit tests
export var UnitTestObjs = {};
let lazy = {};
ChromeUtils.defineLazyGetter(lazy, "decoder", () => new TextDecoder());
ChromeUtils.defineLazyGetter(lazy, "encoder", () => new TextEncoder());
// Write/Read data to/from an ArrayBuffer
class ArrayBufferDataStream {
constructor(arrayBuffer) {
this.dataView = new DataView(arrayBuffer);
this.pos = 0;
}
readUint8() {
let rv = this.dataView.getUint8(this.pos);
this.pos += 1;
return rv;
}
writeUint8(value) {
this.dataView.setUint8(this.pos, value);
this.pos += 1;
}
readUint16() {
let rv = this.dataView.getUint16(this.pos);
this.pos += 2;
return rv;
}
writeUint16(value) {
this.dataView.setUint16(this.pos, value);
this.pos += 2;
}
readUint32() {
let rv = this.dataView.getUint32(this.pos);
this.pos += 4;
return rv;
}
writeUint32(value) {
this.dataView.setUint32(this.pos, value);
this.pos += 4;
}
readUint64() {
let rv = this.dataView.getBigUint64(this.pos);
this.pos += 8;
return Number(rv);
}
writeUint64(value) {
this.dataView.setBigUint64(this.pos, BigInt(value));
this.pos += 8;
}
readInt8() {
let rv = this.dataView.getInt8(this.pos);
this.pos += 1;
return rv;
}
writeInt8(value) {
this.dataView.setInt8(this.pos, value);
this.pos += 1;
}
readInt16() {
let rv = this.dataView.getInt16(this.pos);
this.pos += 2;
return rv;
}
writeInt16(value) {
this.dataView.setInt16(this.pos, value);
this.pos += 2;
}
readInt32() {
let rv = this.dataView.getInt32(this.pos);
this.pos += 4;
return rv;
}
writeInt32(value) {
this.dataView.setInt32(this.pos, value);
this.pos += 4;
}
readInt64() {
let rv = this.dataView.getBigInt64(this.pos);
this.pos += 8;
return Number(rv);
}
writeInt64(value) {
this.dataView.setBigInt64(this.pos, BigInt(value));
this.pos += 8;
}
readFloat32() {
let rv = this.dataView.getFloat32(this.pos);
this.pos += 4;
return rv;
}
writeFloat32(value) {
this.dataView.setFloat32(this.pos, value);
this.pos += 4;
}
readFloat64() {
let rv = this.dataView.getFloat64(this.pos);
this.pos += 8;
return rv;
}
writeFloat64(value) {
this.dataView.setFloat64(this.pos, value);
this.pos += 8;
}
writeString(value) {
// Note: in order to efficiently write this data, we first write the
// string data, reserving 4 bytes for the size.
const dest = new Uint8Array(this.dataView.buffer, this.pos + 4);
const encodeResult = lazy.encoder.encodeInto(value, dest);
if (encodeResult.read != value.length) {
throw new UniFFIError(
"writeString: out of space when writing to ArrayBuffer. Did the computeSize() method returned the wrong result?"
);
}
const size = encodeResult.written;
// Next, go back and write the size before the string data
this.dataView.setUint32(this.pos, size);
// Finally, advance our position past both the size and string data
this.pos += size + 4;
}
readString() {
const size = this.readUint32();
const source = new Uint8Array(this.dataView.buffer, this.pos, size)
const value = lazy.decoder.decode(source);
this.pos += size;
return value;
}
readBytes() {
const size = this.readInt32();
const bytes = new Uint8Array(this.dataView.buffer, this.pos, size);
this.pos += size;
return bytes
}
writeBytes(value) {
this.writeUint32(value.length);
value.forEach((elt) => {
this.writeUint8(elt);
})
}
// Reads a FutureTester pointer from the data stream
// UniFFI Pointers are **always** 8 bytes long. That is enforced
// by the C++ and Rust Scaffolding code.
readPointerFutureTester() {
const pointerId = 13; // futures:FutureTester
const res = UniFFIScaffolding.readPointer(pointerId, this.dataView.buffer, this.pos);
this.pos += 8;
return res;
}
// Writes a FutureTester pointer into the data stream
// UniFFI Pointers are **always** 8 bytes long. That is enforced
// by the C++ and Rust Scaffolding code.
writePointerFutureTester(value) {
const pointerId = 13; // futures:FutureTester
UniFFIScaffolding.writePointer(pointerId, value, this.dataView.buffer, this.pos);
this.pos += 8;
}
// Reads a RustTask pointer from the data stream
// UniFFI Pointers are **always** 8 bytes long. That is enforced
// by the C++ and Rust Scaffolding code.
readPointerRustTask() {
const pointerId = 14; // futures:RustTask
const res = UniFFIScaffolding.readPointer(pointerId, this.dataView.buffer, this.pos);
this.pos += 8;
return res;
}
// Writes a RustTask pointer into the data stream
// UniFFI Pointers are **always** 8 bytes long. That is enforced
// by the C++ and Rust Scaffolding code.
writePointerRustTask(value) {
const pointerId = 14; // futures:RustTask
UniFFIScaffolding.writePointer(pointerId, value, this.dataView.buffer, this.pos);
this.pos += 8;
}
// Reads a Traveller pointer from the data stream
// UniFFI Pointers are **always** 8 bytes long. That is enforced
// by the C++ and Rust Scaffolding code.
readPointerTraveller() {
const pointerId = 15; // futures:Traveller
const res = UniFFIScaffolding.readPointer(pointerId, this.dataView.buffer, this.pos);
this.pos += 8;
return res;
}
// Writes a Traveller pointer into the data stream
// UniFFI Pointers are **always** 8 bytes long. That is enforced
// by the C++ and Rust Scaffolding code.
writePointerTraveller(value) {
const pointerId = 15; // futures:Traveller
UniFFIScaffolding.writePointer(pointerId, value, this.dataView.buffer, this.pos);
this.pos += 8;
}
// Reads a WorkerQueue pointer from the data stream
// UniFFI Pointers are **always** 8 bytes long. That is enforced
// by the C++ and Rust Scaffolding code.
readPointerWorkerQueue() {
const pointerId = 16; // futures:WorkerQueue
const res = UniFFIScaffolding.readPointer(pointerId, this.dataView.buffer, this.pos);
this.pos += 8;
return res;
}
// Writes a WorkerQueue pointer into the data stream
// UniFFI Pointers are **always** 8 bytes long. That is enforced
// by the C++ and Rust Scaffolding code.
writePointerWorkerQueue(value) {
const pointerId = 16; // futures:WorkerQueue
UniFFIScaffolding.writePointer(pointerId, value, this.dataView.buffer, this.pos);
this.pos += 8;
}
}
function handleRustResult(result, liftCallback, liftErrCallback) {
switch (result.code) {
case "success":
return liftCallback(result.data);
case "error":
throw liftErrCallback(result.data);
case "internal-error":
if (result.data) {
throw new UniFFIInternalError(FfiConverterString.lift(result.data));
} else {
throw new UniFFIInternalError("Unknown error");
}
default:
throw new UniFFIError(`Unexpected status code: ${result.code}`);
}
}
class UniFFIError {
constructor(message) {
this.message = message;
}
toString() {
return `UniFFIError: ${this.message}`
}
}
class UniFFIInternalError extends UniFFIError {}
// Base class for FFI converters
class FfiConverter {
// throw `UniFFITypeError` if a value to be converted has an invalid type
static checkType(value) {
if (value === undefined ) {
throw new UniFFITypeError(`undefined`);
}
if (value === null ) {
throw new UniFFITypeError(`null`);
}
}
}
// Base class for FFI converters that lift/lower by reading/writing to an ArrayBuffer
class FfiConverterArrayBuffer extends FfiConverter {
static lift(buf) {
return this.read(new ArrayBufferDataStream(buf));
}
static lower(value) {
const buf = new ArrayBuffer(this.computeSize(value));
const dataStream = new ArrayBufferDataStream(buf);
this.write(dataStream, value);
return buf;
}
/**
* Computes the size of the value.
*
* @param {*} _value
* @return {number}
*/
static computeSize(_value) {
throw new UniFFIInternalError("computeSize() should be declared in the derived class");
}
/**
* Reads the type from a data stream.
*
* @param {ArrayBufferDataStream} _dataStream
* @returns {any}
*/
static read(_dataStream) {
throw new UniFFIInternalError("read() should be declared in the derived class");
}
/**
* Writes the type to a data stream.
*
* @param {ArrayBufferDataStream} _dataStream
* @param {any} _value
*/
static write(_dataStream, _value) {
throw new UniFFIInternalError("write() should be declared in the derived class");
}
}
// Symbols that are used to ensure that Object constructors
// can only be used with a proper UniFFI pointer
const uniffiObjectPtr = Symbol("uniffiObjectPtr");
const constructUniffiObject = Symbol("constructUniffiObject");
UnitTestObjs.uniffiObjectPtr = uniffiObjectPtr;
// Export the FFIConverter object to make external types work.
export class FfiConverterU8 extends FfiConverter {
static checkType(value) {
super.checkType(value);
if (!Number.isInteger(value)) {
throw new UniFFITypeError(`${value} is not an integer`);
}
if (value < 0 || value > 256) {
throw new UniFFITypeError(`${value} exceeds the U8 bounds`);
}
}
static computeSize(_value) {
return 1;
}
static lift(value) {
return value;
}
static lower(value) {
return value;
}
static write(dataStream, value) {
dataStream.writeUint8(value)
}
static read(dataStream) {
return dataStream.readUint8()
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterI8 extends FfiConverter {
static checkType(value) {
super.checkType(value);
if (!Number.isInteger(value)) {
throw new UniFFITypeError(`${value} is not an integer`);
}
if (value < -128 || value > 127) {
throw new UniFFITypeError(`${value} exceeds the I8 bounds`);
}
}
static computeSize(_value) {
return 1;
}
static lift(value) {
return value;
}
static lower(value) {
return value;
}
static write(dataStream, value) {
dataStream.writeInt8(value)
}
static read(dataStream) {
return dataStream.readInt8()
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterU16 extends FfiConverter {
static checkType(value) {
super.checkType(value);
if (!Number.isInteger(value)) {
throw new UniFFITypeError(`${value} is not an integer`);
}
if (value < 0 || value > 65535) {
throw new UniFFITypeError(`${value} exceeds the U16 bounds`);
}
}
static computeSize(_value) {
return 2;
}
static lift(value) {
return value;
}
static lower(value) {
return value;
}
static write(dataStream, value) {
dataStream.writeUint16(value)
}
static read(dataStream) {
return dataStream.readUint16()
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterI16 extends FfiConverter {
static checkType(value) {
super.checkType(value);
if (!Number.isInteger(value)) {
throw new UniFFITypeError(`${value} is not an integer`);
}
if (value < -32768 || value > 32767) {
throw new UniFFITypeError(`${value} exceeds the I16 bounds`);
}
}
static computeSize(_value) {
return 2;
}
static lift(value) {
return value;
}
static lower(value) {
return value;
}
static write(dataStream, value) {
dataStream.writeInt16(value)
}
static read(dataStream) {
return dataStream.readInt16()
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterU32 extends FfiConverter {
static checkType(value) {
super.checkType(value);
if (!Number.isInteger(value)) {
throw new UniFFITypeError(`${value} is not an integer`);
}
if (value < 0 || value > 4294967295) {
throw new UniFFITypeError(`${value} exceeds the U32 bounds`);
}
}
static computeSize(_value) {
return 4;
}
static lift(value) {
return value;
}
static lower(value) {
return value;
}
static write(dataStream, value) {
dataStream.writeUint32(value)
}
static read(dataStream) {
return dataStream.readUint32()
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterI32 extends FfiConverter {
static checkType(value) {
super.checkType(value);
if (!Number.isInteger(value)) {
throw new UniFFITypeError(`${value} is not an integer`);
}
if (value < -2147483648 || value > 2147483647) {
throw new UniFFITypeError(`${value} exceeds the I32 bounds`);
}
}
static computeSize(_value) {
return 4;
}
static lift(value) {
return value;
}
static lower(value) {
return value;
}
static write(dataStream, value) {
dataStream.writeInt32(value)
}
static read(dataStream) {
return dataStream.readInt32()
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterU64 extends FfiConverter {
static checkType(value) {
super.checkType(value);
if (!Number.isSafeInteger(value)) {
throw new UniFFITypeError(`${value} exceeds the safe integer bounds`);
}
if (value < 0) {
throw new UniFFITypeError(`${value} exceeds the U64 bounds`);
}
}
static computeSize(_value) {
return 8;
}
static lift(value) {
return value;
}
static lower(value) {
return value;
}
static write(dataStream, value) {
dataStream.writeUint64(value)
}
static read(dataStream) {
return dataStream.readUint64()
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterI64 extends FfiConverter {
static checkType(value) {
super.checkType(value);
if (!Number.isSafeInteger(value)) {
throw new UniFFITypeError(`${value} exceeds the safe integer bounds`);
}
}
static computeSize(_value) {
return 8;
}
static lift(value) {
return value;
}
static lower(value) {
return value;
}
static write(dataStream, value) {
dataStream.writeInt64(value)
}
static read(dataStream) {
return dataStream.readInt64()
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterF32 extends FfiConverter {
static computeSize(_value) {
return 4;
}
static lift(value) {
return value;
}
static lower(value) {
return value;
}
static write(dataStream, value) {
dataStream.writeFloat32(value)
}
static read(dataStream) {
return dataStream.readFloat32()
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterF64 extends FfiConverter {
static computeSize(_value) {
return 8;
}
static lift(value) {
return value;
}
static lower(value) {
return value;
}
static write(dataStream, value) {
dataStream.writeFloat64(value)
}
static read(dataStream) {
return dataStream.readFloat64()
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterString extends FfiConverter {
static checkType(value) {
super.checkType(value);
if (typeof value !== "string") {
throw new UniFFITypeError(`${value} is not a string`);
}
}
static lift(buf) {
const utf8Arr = new Uint8Array(buf);
return lazy.decoder.decode(utf8Arr);
}
static lower(value) {
return lazy.encoder.encode(value).buffer;
}
static write(dataStream, value) {
dataStream.writeString(value);
}
static read(dataStream) {
return dataStream.readString();
}
static computeSize(value) {
return 4 + lazy.encoder.encode(value).length
}
}
/**
* FutureTester
*/
export class FutureTester {
// Use `init` to instantiate this class.
// DO NOT USE THIS CONSTRUCTOR DIRECTLY
constructor(opts) {
if (!Object.prototype.hasOwnProperty.call(opts, constructUniffiObject)) {
throw new UniFFIError("Attempting to construct an object using the JavaScript constructor directly" +
"Please use a UDL defined constructor, or the init function for the primary constructor")
}
if (!(opts[constructUniffiObject] instanceof UniFFIPointer)) {
throw new UniFFIError("Attempting to create a UniFFI object with a pointer that is not an instance of UniFFIPointer")
}
this[uniffiObjectPtr] = opts[constructUniffiObject];
}
/**
* init
* @returns {FutureTester}
*/
static init() {
const liftResult = (result) => FfiConverterTypeFutureTester.lift(result);
const liftError = null;
const functionCall = () => {
return UniFFIScaffolding.callSync(
149, // futures:uniffi_uniffi_fixture_futures_fn_constructor_futuretester_init
)
}
return handleRustResult(functionCall(), liftResult, liftError);}
/**
* Store a value in all futures created via `make_future()`, then wake up any wakers.
* This will cause the C++ code to poll the future and get a `Ready` result.
*
* Returns the number of futures completed
* @returns {number}
*/
completeFutures(value) {
const liftResult = (result) => FfiConverterU32.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterU8.checkType(value)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("value");
}
throw e;
}
return UniFFIScaffolding.callSync(
146, // futures:uniffi_uniffi_fixture_futures_fn_method_futuretester_complete_futures
FfiConverterTypeFutureTester.lower(this),
FfiConverterU8.lower(value),
)
}
return handleRustResult(functionCall(), liftResult, liftError);
}
/**
* Make a new future that can be manipulated with the other FutureTester methods
* @returns {Promise<number>}}
*/
makeFuture() {
const liftResult = (result) => FfiConverterU8.lift(result);
const liftError = null;
const functionCall = () => {
return UniFFIScaffolding.callAsync(
147, // futures:uniffi_uniffi_fixture_futures_fn_method_futuretester_make_future
FfiConverterTypeFutureTester.lower(this),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* Wake up the waker for all futures created via `make_future()`. This will cause the C++
* code to poll the future, but it will get another `Pending` result
*/
wakeFutures() {
const liftResult = (result) => undefined;
const liftError = null;
const functionCall = () => {
return UniFFIScaffolding.callSync(
148, // futures:uniffi_uniffi_fixture_futures_fn_method_futuretester_wake_futures
FfiConverterTypeFutureTester.lower(this),
)
}
return handleRustResult(functionCall(), liftResult, liftError);
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterTypeFutureTester extends FfiConverter {
static lift(value) {
const opts = {};
opts[constructUniffiObject] = value;
return new FutureTester(opts);
}
static lower(value) {
const ptr = value[uniffiObjectPtr];
if (!(ptr instanceof UniFFIPointer)) {
throw new UniFFITypeError("Object is not a 'FutureTester' instance");
}
return ptr;
}
static read(dataStream) {
return this.lift(dataStream.readPointerFutureTester());
}
static write(dataStream, value) {
dataStream.writePointerFutureTester(value[uniffiObjectPtr]);
}
static computeSize(value) {
return 8;
}
}
/**
* RustTask
*/
export class RustTask {
// Use `init` to instantiate this class.
// DO NOT USE THIS CONSTRUCTOR DIRECTLY
constructor(opts) {
if (!Object.prototype.hasOwnProperty.call(opts, constructUniffiObject)) {
throw new UniFFIError("Attempting to construct an object using the JavaScript constructor directly" +
"Please use a UDL defined constructor, or the init function for the primary constructor")
}
if (!(opts[constructUniffiObject] instanceof UniFFIPointer)) {
throw new UniFFIError("Attempting to create a UniFFI object with a pointer that is not an instance of UniFFIPointer")
}
this[uniffiObjectPtr] = opts[constructUniffiObject];
}
/**
* run
*/
run() {
const liftResult = (result) => undefined;
const liftError = null;
const functionCall = () => {
return UniFFIScaffolding.callSync(
150, // futures:uniffi_uniffi_fixture_futures_fn_method_rusttask_run
FfiConverterTypeRustTask.lower(this),
)
}
return handleRustResult(functionCall(), liftResult, liftError);
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterTypeRustTask extends FfiConverter {
static lift(value) {
const opts = {};
opts[constructUniffiObject] = value;
return new RustTask(opts);
}
static lower(value) {
const ptr = value[uniffiObjectPtr];
if (!(ptr instanceof UniFFIPointer)) {
throw new UniFFITypeError("Object is not a 'RustTask' instance");
}
return ptr;
}
static read(dataStream) {
return this.lift(dataStream.readPointerRustTask());
}
static write(dataStream, value) {
dataStream.writePointerRustTask(value[uniffiObjectPtr]);
}
static computeSize(value) {
return 8;
}
}
/**
* Traveller
*/
export class Traveller {
// Use `init` to instantiate this class.
// DO NOT USE THIS CONSTRUCTOR DIRECTLY
constructor(opts) {
if (!Object.prototype.hasOwnProperty.call(opts, constructUniffiObject)) {
throw new UniFFIError("Attempting to construct an object using the JavaScript constructor directly" +
"Please use a UDL defined constructor, or the init function for the primary constructor")
}
if (!(opts[constructUniffiObject] instanceof UniFFIPointer)) {
throw new UniFFIError("Attempting to create a UniFFI object with a pointer that is not an instance of UniFFIPointer")
}
this[uniffiObjectPtr] = opts[constructUniffiObject];
}
/**
* init
* @returns {Traveller}
*/
static init(name) {
const liftResult = (result) => FfiConverterTypeTraveller.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterString.checkType(name)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("name");
}
throw e;
}
return UniFFIScaffolding.callSync(
152, // futures:uniffi_uniffi_fixture_futures_fn_constructor_traveller_new
FfiConverterString.lower(name),
)
}
return handleRustResult(functionCall(), liftResult, liftError);}
/**
* name
* @returns {string}
*/
name() {
const liftResult = (result) => FfiConverterString.lift(result);
const liftError = null;
const functionCall = () => {
return UniFFIScaffolding.callSync(
151, // futures:uniffi_uniffi_fixture_futures_fn_method_traveller_name
FfiConverterTypeTraveller.lower(this),
)
}
return handleRustResult(functionCall(), liftResult, liftError);
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterTypeTraveller extends FfiConverter {
static lift(value) {
const opts = {};
opts[constructUniffiObject] = value;
return new Traveller(opts);
}
static lower(value) {
const ptr = value[uniffiObjectPtr];
if (!(ptr instanceof UniFFIPointer)) {
throw new UniFFITypeError("Object is not a 'Traveller' instance");
}
return ptr;
}
static read(dataStream) {
return this.lift(dataStream.readPointerTraveller());
}
static write(dataStream, value) {
dataStream.writePointerTraveller(value[uniffiObjectPtr]);
}
static computeSize(value) {
return 8;
}
}
/**
* Worker queue scheduler trait
*
* This is a trait that the foreign code implements to schedule Rust tasks in a worker queue. On
* Swift/Kotlin, we can implement this trait using a DispatchQueue/CoroutineContext.
*
* On JS we can't implement it directly, since JS is single-threaded and we don't want to start up
* a web worker. Instead, we implement the trait in Rust using `moz_task`.
*/
export class WorkerQueue {
// Use `init` to instantiate this class.
// DO NOT USE THIS CONSTRUCTOR DIRECTLY
constructor(opts) {
if (!Object.prototype.hasOwnProperty.call(opts, constructUniffiObject)) {
throw new UniFFIError("Attempting to construct an object using the JavaScript constructor directly" +
"Please use a UDL defined constructor, or the init function for the primary constructor")
}
if (!(opts[constructUniffiObject] instanceof UniFFIPointer)) {
throw new UniFFIError("Attempting to create a UniFFI object with a pointer that is not an instance of UniFFIPointer")
}
this[uniffiObjectPtr] = opts[constructUniffiObject];
}
/**
* addTask
*/
addTask(task) {
const liftResult = (result) => undefined;
const liftError = null;
const functionCall = () => {
try {
FfiConverterTypeRustTask.checkType(task)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("task");
}
throw e;
}
return UniFFIScaffolding.callSync(
153, // futures:uniffi_uniffi_fixture_futures_fn_method_workerqueue_add_task
FfiConverterTypeWorkerQueue.lower(this),
FfiConverterTypeRustTask.lower(task),
)
}
return handleRustResult(functionCall(), liftResult, liftError);
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterTypeWorkerQueue extends FfiConverter {
static lift(value) {
const opts = {};
opts[constructUniffiObject] = value;
return new WorkerQueue(opts);
}
static lower(value) {
const ptr = value[uniffiObjectPtr];
if (!(ptr instanceof UniFFIPointer)) {
throw new UniFFITypeError("Object is not a 'WorkerQueue' instance");
}
return ptr;
}
static read(dataStream) {
return this.lift(dataStream.readPointerWorkerQueue());
}
static write(dataStream, value) {
dataStream.writePointerWorkerQueue(value[uniffiObjectPtr]);
}
static computeSize(value) {
return 8;
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterSequenceu32 extends FfiConverterArrayBuffer {
static read(dataStream) {
const len = dataStream.readInt32();
const arr = [];
for (let i = 0; i < len; i++) {
arr.push(FfiConverterU32.read(dataStream));
}
return arr;
}
static write(dataStream, value) {
dataStream.writeInt32(value.length);
value.forEach((innerValue) => {
FfiConverterU32.write(dataStream, innerValue);
})
}
static computeSize(value) {
// The size of the length
let size = 4;
for (const innerValue of value) {
size += FfiConverterU32.computeSize(innerValue);
}
return size;
}
static checkType(value) {
if (!Array.isArray(value)) {
throw new UniFFITypeError(`${value} is not an array`);
}
value.forEach((innerValue, idx) => {
try {
FfiConverterU32.checkType(innerValue);
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart(`[${idx}]`);
}
throw e;
}
})
}
}
// Export the FFIConverter object to make external types work.
export class FfiConverterMapStringString extends FfiConverterArrayBuffer {
static read(dataStream) {
const len = dataStream.readInt32();
const map = new Map();
for (let i = 0; i < len; i++) {
const key = FfiConverterString.read(dataStream);
const value = FfiConverterString.read(dataStream);
map.set(key, value);
}
return map;
}
static write(dataStream, map) {
dataStream.writeInt32(map.size);
for (const [key, value] of map) {
FfiConverterString.write(dataStream, key);
FfiConverterString.write(dataStream, value);
}
}
static computeSize(map) {
// The size of the length
let size = 4;
for (const [key, value] of map) {
size += FfiConverterString.computeSize(key);
size += FfiConverterString.computeSize(value);
}
return size;
}
static checkType(map) {
for (const [key, value] of map) {
try {
FfiConverterString.checkType(key);
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("(key)");
}
throw e;
}
try {
FfiConverterString.checkType(value);
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart(`[${key}]`);
}
throw e;
}
}
}
}
/**
* Function to test the global worker queue
*
* This is how Rust components can wrap synchronous tasks to present an async interface.
* @returns {Promise<number>}}
*/
export function expensiveComputation() {
const liftResult = (result) => FfiConverterU32.lift(result);
const liftError = null;
const functionCall = () => {
return UniFFIScaffolding.callAsync(
129, // futures:uniffi_uniffi_fixture_futures_fn_func_expensive_computation
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* Initialize the global worker for JS.
*
* All code above here is generalized task code that works for JS, Kotlin, and Swift.
*
* This function and the GeckoWorkerQueue struct are Gecko-specific.
*/
export function initializeGeckoGlobalWorkerQueue() {
const liftResult = (result) => undefined;
const liftError = null;
const functionCall = () => {
return UniFFIScaffolding.callSync(
130, // futures:uniffi_uniffi_fixture_futures_fn_func_initialize_gecko_global_worker_queue
)
}
return handleRustResult(functionCall(), liftResult, liftError);
}
/**
* Initialize the global worker queue. The Rust code will use this schedule sync tasks in the
* background in order to present an async interface.
*/
export function initializeGlobalWorkerQueue(workerQueue) {
const liftResult = (result) => undefined;
const liftError = null;
const functionCall = () => {
try {
FfiConverterTypeWorkerQueue.checkType(workerQueue)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("workerQueue");
}
throw e;
}
return UniFFIScaffolding.callSync(
131, // futures:uniffi_uniffi_fixture_futures_fn_func_initialize_global_worker_queue
FfiConverterTypeWorkerQueue.lower(workerQueue),
)
}
return handleRustResult(functionCall(), liftResult, liftError);
}
/**
* roundtripF32
* @returns {Promise<number>}}
*/
export function roundtripF32(v) {
const liftResult = (result) => FfiConverterF32.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterF32.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
132, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_f32
FfiConverterF32.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripF64
* @returns {Promise<number>}}
*/
export function roundtripF64(v) {
const liftResult = (result) => FfiConverterF64.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterF64.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
133, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_f64
FfiConverterF64.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripI16
* @returns {Promise<number>}}
*/
export function roundtripI16(v) {
const liftResult = (result) => FfiConverterI16.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterI16.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
134, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_i16
FfiConverterI16.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripI32
* @returns {Promise<number>}}
*/
export function roundtripI32(v) {
const liftResult = (result) => FfiConverterI32.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterI32.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
135, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_i32
FfiConverterI32.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripI64
* @returns {Promise<number>}}
*/
export function roundtripI64(v) {
const liftResult = (result) => FfiConverterI64.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterI64.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
136, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_i64
FfiConverterI64.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripI8
* @returns {Promise<number>}}
*/
export function roundtripI8(v) {
const liftResult = (result) => FfiConverterI8.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterI8.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
137, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_i8
FfiConverterI8.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripMap
* @returns {Promise<object>}}
*/
export function roundtripMap(v) {
const liftResult = (result) => FfiConverterMapStringString.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterMapStringString.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
138, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_map
FfiConverterMapStringString.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripObj
* @returns {Promise<Traveller>}}
*/
export function roundtripObj(v) {
const liftResult = (result) => FfiConverterTypeTraveller.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterTypeTraveller.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
139, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_obj
FfiConverterTypeTraveller.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripString
* @returns {Promise<string>}}
*/
export function roundtripString(v) {
const liftResult = (result) => FfiConverterString.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterString.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
140, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_string
FfiConverterString.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripU16
* @returns {Promise<number>}}
*/
export function roundtripU16(v) {
const liftResult = (result) => FfiConverterU16.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterU16.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
141, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_u16
FfiConverterU16.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripU32
* @returns {Promise<number>}}
*/
export function roundtripU32(v) {
const liftResult = (result) => FfiConverterU32.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterU32.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
142, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_u32
FfiConverterU32.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripU64
* @returns {Promise<number>}}
*/
export function roundtripU64(v) {
const liftResult = (result) => FfiConverterU64.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterU64.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
143, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_u64
FfiConverterU64.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripU8
* @returns {Promise<number>}}
*/
export function roundtripU8(v) {
const liftResult = (result) => FfiConverterU8.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterU8.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
144, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_u8
FfiConverterU8.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}
/**
* roundtripVec
* @returns {Promise<Array.<number>>}}
*/
export function roundtripVec(v) {
const liftResult = (result) => FfiConverterSequenceu32.lift(result);
const liftError = null;
const functionCall = () => {
try {
FfiConverterSequenceu32.checkType(v)
} catch (e) {
if (e instanceof UniFFITypeError) {
e.addItemDescriptionPart("v");
}
throw e;
}
return UniFFIScaffolding.callAsync(
145, // futures:uniffi_uniffi_fixture_futures_fn_func_roundtrip_vec
FfiConverterSequenceu32.lower(v),
)
}
try {
return functionCall().then((result) => handleRustResult(result, liftResult, liftError));
} catch (error) {
return Promise.reject(error)
}
}