1
0
Fork 0
inkscape/share/extensions/funcplot.py
Daniel Baumann 02d935e272
Adding upstream version 1.4.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 23:40:13 +02:00

300 lines
10 KiB
Python
Executable file

#!/usr/bin/env python3
# coding=utf-8
#
# Copyright (C) 2007 Tavmjong Bah, tavmjong@free.fr
# Copyright (C) 2006 Georg Wiora, xorx@quarkbox.de
# Copyright (C) 2006 Johan Engelen, johan@shouraizou.nl
# Copyright (C) 2005 Aaron Spike, aaron@ekips.org
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# Changes:
# * This program is a modified version of wavy.py by Aaron Spike.
# * 22-Dec-2006: Wiora : Added axis and isotropic scaling
# * 21-Jun-2007: Tavmjong: Added polar coordinates
#
from math import cos, pi, sin
import inkex
from inkex import ClipPath, Rectangle
from inkex.utils import math_eval
from inkex.localization import inkex_gettext as _
def drawfunction(
xstart,
xend,
ybottom,
ytop,
samples,
width,
height,
left,
bottom,
fx="sin(x)",
fpx="cos(x)",
fponum=True,
times2pi=False,
polar=False,
isoscale=True,
drawaxis=True,
endpts=False,
):
if times2pi:
xstart = 2 * pi * xstart
xend = 2 * pi * xend
# coords and scales based on the source rect
if xstart == xend:
inkex.errormsg(
_(
"x-interval cannot be zero. Please modify 'Start X value' "
"or 'End X value'"
)
)
return []
scalex = width / (xend - xstart)
xoff = left
coordx = lambda x: (x - xstart) * scalex + xoff # convert x-value to coordinate
if polar: # Set scale so that left side of rectangle is -1, right side is +1.
# (We can't use xscale for both range and scale.)
centerx = left + width / 2.0
polar_scalex = width / 2.0
coordx = lambda x: x * polar_scalex + centerx # convert x-value to coordinate
if ytop == ybottom:
inkex.errormsg(
_(
"y-interval cannot be zero. Please modify 'Y value of rectangle's top' "
"or 'Y value of rectangle's bottom'"
)
)
return []
scaley = height / (ytop - ybottom)
yoff = bottom
coordy = lambda y: (ybottom - y) * scaley + yoff # convert y-value to coordinate
# Check for isotropic scaling and use smaller of the two scales, correct ranges
if isoscale and not polar:
if scaley < scalex:
# compute zero location
xzero = coordx(0)
# set scale
scalex = scaley
# correct x-offset
xstart = (left - xzero) / scalex
xend = (left + width - xzero) / scalex
else:
# compute zero location
yzero = coordy(0)
# set scale
scaley = scalex
# correct x-offset
ybottom = (yzero - bottom) / scaley
ytop = (bottom + height - yzero) / scaley
f = math_eval(fx)
fp = math_eval(fpx)
if f is None or (fp is None and not (fponum)):
raise inkex.AbortExtension(_("Invalid function specification"))
# step is the distance between nodes on x
step = (xend - xstart) / (samples - 1)
third = step / 3.0
ds = step * 0.001 # Step used in calculating derivatives
a = [] # path array
# add axis
if drawaxis:
# check for visibility of x-axis
if ybottom <= 0 <= ytop:
# xaxis
a.append(["M", [left, coordy(0)]])
a.append(["l", [width, 0]])
# check for visibility of y-axis
if xstart <= 0 <= xend:
# xaxis
a.append(["M", [coordx(0), bottom]])
a.append(["l", [0, -height]])
# initialize function and derivative for 0;
# they are carried over from one iteration to the next, to avoid extra function calculations.
x0 = xstart
y0 = f(xstart)
if polar:
xp0 = y0 * cos(x0)
yp0 = y0 * sin(x0)
x0 = xp0
y0 = yp0
if (
fponum or polar
): # numerical derivative, using 0.001*step as the small differential
x1 = xstart + ds # Second point AFTER first point (Good for first point)
y1 = f(x1)
if polar:
xp1 = y1 * cos(x1)
yp1 = y1 * sin(x1)
x1 = xp1
y1 = yp1
dx0 = (x1 - x0) / ds
dy0 = (y1 - y0) / ds
else: # derivative given by the user
dx0 = 1 # Only works for rectangular coordinates
dy0 = fp(xstart)
# Start curve
if endpts:
a.append(["M", [left, coordy(0)]])
a.append(["L", [coordx(x0), coordy(y0)]])
else:
a.append(["M", [coordx(x0), coordy(y0)]]) # initial moveto
for i in range(int(samples - 1)):
x1 = (i + 1) * step + xstart
x2 = x1 - ds # Second point BEFORE first point (Good for last point)
y1 = f(x1)
y2 = f(x2)
if polar:
xp1 = y1 * cos(x1)
yp1 = y1 * sin(x1)
xp2 = y2 * cos(x2)
yp2 = y2 * sin(x2)
x1 = xp1
y1 = yp1
x2 = xp2
y2 = yp2
if fponum or polar: # numerical derivative
dx1 = (x1 - x2) / ds
dy1 = (y1 - y2) / ds
else: # derivative given by the user
dx1 = 1 # Only works for rectangular coordinates
dy1 = fp(x1)
# create curve
a.append(
[
"C",
[
coordx(x0 + (dx0 * third)),
coordy(y0 + (dy0 * third)),
coordx(x1 - (dx1 * third)),
coordy(y1 - (dy1 * third)),
coordx(x1),
coordy(y1),
],
]
)
x0 = x1 # Next segment's start is this segments end
y0 = y1
dx0 = dx1 # Assume the function is smooth everywhere, so carry over the derivative too
dy0 = dy1
if endpts:
a.append(["L", [left + width, coordy(0)]])
return a
class FuncPlot(inkex.EffectExtension):
def add_arguments(self, pars):
pars.add_argument("--tab")
pars.add_argument("--xstart", type=float, default=0.0, help="Start x-value")
pars.add_argument("--xend", type=float, default=1.0, help="End x-value")
pars.add_argument(
"--times2pi", type=inkex.Boolean, default=False, help="* x-range by 2*pi"
)
pars.add_argument(
"--polar", type=inkex.Boolean, default=False, help="Use polar coords"
)
pars.add_argument(
"--ybottom", type=float, default=0.0, help="y-value of rect's bottom"
)
pars.add_argument(
"--ytop", type=float, default=1.0, help="y-value of rectangle's top"
)
pars.add_argument("--samples", type=int, default=8, help="Samples")
pars.add_argument("--fofx", default="sin(x)", help="f(x) for plotting")
pars.add_argument(
"--fponum", type=inkex.Boolean, default=True, help="Numerical 1st deriv"
)
pars.add_argument("--fpofx", default="cos(x)", help="f'(x) for plotting")
pars.add_argument(
"--clip", type=inkex.Boolean, default=False, help="Clip with source rect"
)
pars.add_argument(
"--remove", type=inkex.Boolean, default=True, help="Remove source rect"
)
pars.add_argument(
"--isoscale", type=inkex.Boolean, default=True, help="Isotropic scaling"
)
pars.add_argument(
"--drawaxis", type=inkex.Boolean, default=False, help="Draw axis"
)
pars.add_argument(
"--endpts", type=inkex.Boolean, default=False, help="Add end points"
)
def effect(self):
newpath = None
for node in self.svg.selection.values():
if isinstance(node, Rectangle):
# create new path with basic dimensions of selected rectangle
newpath = inkex.PathElement()
x = float(node.get("x"))
y = float(node.get("y"))
w = float(node.get("width"))
h = float(node.get("height"))
# copy attributes of rect
newpath.style = node.style
newpath.transform = node.transform
# top and bottom were exchanged
newpath.path = drawfunction(
self.options.xstart,
self.options.xend,
self.options.ybottom,
self.options.ytop,
self.options.samples,
w,
h,
x,
y + h,
self.options.fofx,
self.options.fpofx,
self.options.fponum,
self.options.times2pi,
self.options.polar,
self.options.isoscale,
self.options.drawaxis,
self.options.endpts,
)
newpath.set("title", self.options.fofx)
# add path into SVG structure
node.getparent().append(newpath)
# option whether to clip the path with rect or not.
if self.options.clip:
clip = self.svg.defs.add(ClipPath())
clip.set_random_id()
clip.append(node.copy())
newpath.set("clip-path", clip.get_id(as_url=2))
# option whether to remove the rectangle or not.
if self.options.remove:
node.getparent().remove(node)
if newpath is None:
raise inkex.AbortExtension(_("Please select a rectangle"))
if __name__ == "__main__":
FuncPlot().run()