1
0
Fork 0
inkscape/share/extensions/jitternodes.py
Daniel Baumann 02d935e272
Adding upstream version 1.4.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 23:40:13 +02:00

107 lines
4 KiB
Python
Executable file

#!/usr/bin/env python3
# coding=utf-8
#
# Copyright (C) 2012 Juan Pablo Carbajal ajuanpi-dev@gmail.com
# Copyright (C) 2005 Aaron Spike, aaron@ekips.org
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
import math
import random
import inkex
class JitterNodes(inkex.EffectExtension):
"""Jiggle nodes around"""
def add_arguments(self, pars):
pars.add_argument("--tab")
pars.add_argument("--radiusx", type=float, default=10.0, help="Randum radius X")
pars.add_argument("--radiusy", type=float, default=10.0, help="Randum radius Y")
pars.add_argument(
"--ctrl", type=inkex.Boolean, default=False, help="Randomize ctrl points"
)
pars.add_argument(
"--end", type=inkex.Boolean, default=True, help="Randomize nodes"
)
pars.add_argument(
"--dist",
type=self.arg_method("dist"),
default=self.dist_uniform,
help="Distribution of displacement",
)
def effect(self):
for node in self.svg.selection.filter(inkex.PathElement):
path = node.path.to_superpath()
for subpath in path:
closed = subpath[0] == subpath[-1]
for index, csp in enumerate(subpath):
if closed and index == len(subpath) - 1:
subpath[index] = subpath[0]
break
if self.options.end:
delta = self.randomize([0, 0])
csp[0][0] += delta[0]
csp[0][1] += delta[1]
csp[1][0] += delta[0]
csp[1][1] += delta[1]
csp[2][0] += delta[0]
csp[2][1] += delta[1]
if self.options.ctrl:
csp[0] = self.randomize(csp[0])
csp[2] = self.randomize(csp[2])
node.path = path
def randomize(self, pos):
"""Randomise the given position [x, y] as set in the options"""
delta = self.options.dist(self.options.radiusx, self.options.radiusy)
return [pos[0] + delta[0], pos[1] + delta[1]]
@staticmethod
def dist_gaussian(x, y):
"""Gaussian distribution"""
return random.gauss(0.0, x), random.gauss(0.0, y)
@staticmethod
def dist_pareto(x, y):
"""Pareto distribution"""
# sign is used to fake a double sided pareto distribution.
# for parameter value between 1 and 2 the distribution has infinite variance
# I truncate the distribution to a high value and then normalize it.
# The idea is to get spiky distributions, any distribution with long-tails is
# good (ideal would be Levy distribution).
sign = random.uniform(-1.0, 1.0)
return x * math.copysign(
min(random.paretovariate(1.0), 20.0) / 20.0, sign
), y * math.copysign(min(random.paretovariate(1.0), 20.0) / 20.0, sign)
@staticmethod
def dist_lognorm(x, y):
"""Log Norm distribution"""
sign = random.uniform(-1.0, 1.0)
return x * math.copysign(
random.lognormvariate(0.0, 1.0) / 3.5, sign
), y * math.copysign(random.lognormvariate(0.0, 1.0) / 3.5, sign)
@staticmethod
def dist_uniform(x, y):
"""Uniform distribution"""
return random.uniform(-x, x), random.uniform(-y, y)
if __name__ == "__main__":
JitterNodes().run()