1
0
Fork 0
knot-resolver/daemon/session.c
Daniel Baumann fbc604e215
Adding upstream version 5.7.5.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 13:56:17 +02:00

853 lines
23 KiB
C

/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
#include <libknot/packet/pkt.h>
#include "lib/defines.h"
#include "daemon/session.h"
#include "daemon/tls.h"
#include "daemon/http.h"
#include "daemon/worker.h"
#include "daemon/io.h"
#include "daemon/proxyv2.h"
#include "lib/generic/queue.h"
#define TLS_CHUNK_SIZE ((size_t)16 * 1024)
/* Initial max frame size: https://tools.ietf.org/html/rfc7540#section-6.5.2 */
#define HTTP_MAX_FRAME_SIZE 16384
/* Per-socket (TCP or UDP) persistent structure.
*
* In particular note that for UDP clients it's just one session (per socket)
* shared for all clients. For TCP/TLS it's also for the connection-specific socket,
* i.e one session per connection.
*
* LATER(optim.): the memory here is used a bit wastefully.
*/
struct session {
struct session_flags sflags; /**< miscellaneous flags. */
union kr_sockaddr peer; /**< address of peer; not for UDP clients (downstream) */
union kr_sockaddr sockname; /**< our local address; for UDP it may be a wildcard */
uv_handle_t *handle; /**< libuv handle for IO operations. */
uv_timer_t timeout; /**< libuv handle for timer. */
struct tls_ctx *tls_ctx; /**< server side tls-related data. */
struct tls_client_ctx *tls_client_ctx; /**< client side tls-related data. */
struct proxy_result *proxy; /**< PROXYv2 data for TCP. May be `NULL` if not proxied. */
#if ENABLE_DOH2
struct http_ctx *http_ctx; /**< server side http-related data. */
#endif
trie_t *tasks; /**< list of tasks associated with given session. */
queue_t(struct qr_task *) waiting; /**< list of tasks waiting for sending to upstream. */
uint8_t *wire_buf; /**< Buffer for DNS message, except for XDP. */
ssize_t wire_buf_size; /**< Buffer size. */
ssize_t wire_buf_start_idx; /**< Data start offset in wire_buf. */
ssize_t wire_buf_end_idx; /**< Data end offset in wire_buf. */
uint64_t last_activity; /**< Time of last IO activity (if any occurs).
* Otherwise session creation time. */
bool was_useful; /**< I.e. produced a DNS message at some point. */
};
static void on_session_close(uv_handle_t *handle)
{
struct session *session = handle->data;
kr_require(session->handle == handle);
io_free(handle);
}
static void on_session_timer_close(uv_handle_t *timer)
{
struct session *session = timer->data;
uv_handle_t *handle = session->handle;
kr_require(handle && handle->data == session);
kr_require(session->sflags.outgoing || handle->type == UV_TCP);
if (!uv_is_closing(handle)) {
uv_close(handle, on_session_close);
}
}
void session_free(struct session *session)
{
if (session) {
session_clear(session);
free(session);
}
}
void session_clear(struct session *session)
{
kr_require(session_is_empty(session));
if (session->handle && session->handle->type == UV_TCP) {
free(session->wire_buf);
}
free(session->proxy);
#if ENABLE_DOH2
http_free(session->http_ctx);
#endif
trie_clear(session->tasks);
trie_free(session->tasks);
queue_deinit(session->waiting);
tls_free(session->tls_ctx);
tls_client_ctx_free(session->tls_client_ctx);
memset(session, 0, sizeof(*session));
}
void session_close(struct session *session)
{
kr_require(session_is_empty(session));
if (session->sflags.closing) {
return;
}
uv_handle_t *handle = session->handle;
io_stop_read(handle);
session->sflags.closing = true;
if (!uv_is_closing((uv_handle_t *)&session->timeout)) {
uv_timer_stop(&session->timeout);
if (session->tls_client_ctx) {
tls_client_close(session->tls_client_ctx);
}
if (session->tls_ctx) {
tls_close(&session->tls_ctx->c);
}
session->timeout.data = session;
uv_close((uv_handle_t *)&session->timeout, on_session_timer_close);
}
}
int session_start_read(struct session *session)
{
return io_start_read(session->handle);
}
int session_stop_read(struct session *session)
{
return io_stop_read(session->handle);
}
int session_waitinglist_push(struct session *session, struct qr_task *task)
{
queue_push(session->waiting, task);
worker_task_ref(task);
return kr_ok();
}
struct qr_task *session_waitinglist_get(const struct session *session)
{
return (queue_len(session->waiting) > 0) ? (queue_head(session->waiting)) : NULL;
}
struct qr_task *session_waitinglist_pop(struct session *session, bool deref)
{
struct qr_task *t = session_waitinglist_get(session);
queue_pop(session->waiting);
if (deref) {
worker_task_unref(t);
}
return t;
}
int session_tasklist_add(struct session *session, struct qr_task *task)
{
trie_t *t = session->tasks;
uint16_t task_msg_id = 0;
const char *key = NULL;
size_t key_len = 0;
if (session->sflags.outgoing) {
knot_pkt_t *pktbuf = worker_task_get_pktbuf(task);
task_msg_id = knot_wire_get_id(pktbuf->wire);
key = (const char *)&task_msg_id;
key_len = sizeof(task_msg_id);
} else {
key = (const char *)&task;
key_len = sizeof(char *);
}
trie_val_t *v = trie_get_ins(t, key, key_len);
if (kr_fails_assert(v))
return kr_error(ENOMEM);
if (*v == NULL) {
*v = task;
worker_task_ref(task);
} else if (kr_fails_assert(*v == task)) {
return kr_error(EINVAL);
}
return kr_ok();
}
int session_tasklist_del(struct session *session, struct qr_task *task)
{
trie_t *t = session->tasks;
uint16_t task_msg_id = 0;
const char *key = NULL;
size_t key_len = 0;
trie_val_t val;
if (session->sflags.outgoing) {
knot_pkt_t *pktbuf = worker_task_get_pktbuf(task);
task_msg_id = knot_wire_get_id(pktbuf->wire);
key = (const char *)&task_msg_id;
key_len = sizeof(task_msg_id);
} else {
key = (const char *)&task;
key_len = sizeof(char *);
}
int ret = trie_del(t, key, key_len, &val);
if (ret == KNOT_EOK) {
if (kr_fails_assert(val == task)) // internal inconsistency in tasklist
return kr_error(EINVAL);
worker_task_unref(val);
}
return ret;
}
struct qr_task *session_tasklist_get_first(struct session *session)
{
trie_val_t *val = trie_get_first(session->tasks, NULL, NULL);
return val ? (struct qr_task *) *val : NULL;
}
struct qr_task *session_tasklist_del_first(struct session *session, bool deref)
{
trie_val_t val = NULL;
int res = trie_del_first(session->tasks, NULL, NULL, &val);
if (res != KNOT_EOK) {
val = NULL;
} else if (deref) {
worker_task_unref(val);
}
return (struct qr_task *)val;
}
struct qr_task* session_tasklist_del_msgid(const struct session *session, uint16_t msg_id)
{
if (kr_fails_assert(session->sflags.outgoing))
return NULL;
trie_t *t = session->tasks;
struct qr_task *ret = NULL;
const char *key = (const char *)&msg_id;
size_t key_len = sizeof(msg_id);
trie_val_t val;
int res = trie_del(t, key, key_len, &val);
if (res == KNOT_EOK) {
if (worker_task_numrefs(val) > 1) {
ret = val;
}
worker_task_unref(val);
}
return ret;
}
struct qr_task* session_tasklist_find_msgid(const struct session *session, uint16_t msg_id)
{
if (kr_fails_assert(session->sflags.outgoing))
return NULL;
trie_t *t = session->tasks;
struct qr_task *ret = NULL;
trie_val_t *val = trie_get_try(t, (char *)&msg_id, sizeof(msg_id));
if (val) {
ret = *val;
}
return ret;
}
struct session_flags *session_flags(struct session *session)
{
return &session->sflags;
}
struct sockaddr *session_get_peer(struct session *session)
{
return &session->peer.ip;
}
struct sockaddr *session_get_sockname(struct session *session)
{
return &session->sockname.ip;
}
struct tls_ctx *session_tls_get_server_ctx(const struct session *session)
{
return session->tls_ctx;
}
void session_tls_set_server_ctx(struct session *session, struct tls_ctx *ctx)
{
session->tls_ctx = ctx;
}
struct tls_client_ctx *session_tls_get_client_ctx(const struct session *session)
{
return session->tls_client_ctx;
}
void session_tls_set_client_ctx(struct session *session, struct tls_client_ctx *ctx)
{
session->tls_client_ctx = ctx;
}
struct tls_common_ctx *session_tls_get_common_ctx(const struct session *session)
{
struct tls_common_ctx *tls_ctx = session->sflags.outgoing ? &session->tls_client_ctx->c :
&session->tls_ctx->c;
return tls_ctx;
}
#if ENABLE_DOH2
struct http_ctx *session_http_get_server_ctx(const struct session *session)
{
return session->http_ctx;
}
void session_http_set_server_ctx(struct session *session, struct http_ctx *ctx)
{
session->http_ctx = ctx;
}
#endif
uv_handle_t *session_get_handle(struct session *session)
{
return session->handle;
}
struct session *session_get(uv_handle_t *h)
{
return h->data;
}
struct session *session_new(uv_handle_t *handle, bool has_tls, bool has_http)
{
if (!handle) {
return NULL;
}
struct session *session = calloc(1, sizeof(struct session));
if (!session) {
return NULL;
}
queue_init(session->waiting);
session->tasks = trie_create(NULL);
if (handle->type == UV_TCP) {
size_t wire_buffer_size = KNOT_WIRE_MAX_PKTSIZE;
if (has_tls) {
/* When decoding large packets,
* gnutls gives the application chunks of size 16 kb each. */
wire_buffer_size += TLS_CHUNK_SIZE;
session->sflags.has_tls = true;
}
#if ENABLE_DOH2
if (has_http) {
/* When decoding large packets,
* HTTP/2 frames can be up to 16 KB by default. */
wire_buffer_size += HTTP_MAX_FRAME_SIZE;
session->sflags.has_http = true;
}
#endif
uint8_t *wire_buf = malloc(wire_buffer_size);
if (!wire_buf) {
free(session);
return NULL;
}
session->wire_buf = wire_buf;
session->wire_buf_size = wire_buffer_size;
} else if (handle->type == UV_UDP) {
/* We use the singleton buffer from worker for all UDP (!)
* libuv documentation doesn't really guarantee this is OK,
* but the implementation for unix systems does not hold
* the buffer (both UDP and TCP) - always makes a NON-blocking
* syscall that fills the buffer and immediately calls
* the callback, whatever the result of the operation.
* We still need to keep in mind to only touch the buffer
* in this callback... */
kr_require(the_worker);
session->wire_buf = the_worker->wire_buf;
session->wire_buf_size = sizeof(the_worker->wire_buf);
} else {
kr_assert(handle->type == UV_POLL/*XDP*/);
/* - wire_buf* are left zeroed, as they make no sense
* - timer is unused but OK for simplicity (server-side sessions are few)
*/
}
uv_timer_init(handle->loop, &session->timeout);
session->handle = handle;
handle->data = session;
session->timeout.data = session;
session_touch(session);
return session;
}
size_t session_tasklist_get_len(const struct session *session)
{
return trie_weight(session->tasks);
}
size_t session_waitinglist_get_len(const struct session *session)
{
return queue_len(session->waiting);
}
bool session_tasklist_is_empty(const struct session *session)
{
return session_tasklist_get_len(session) == 0;
}
bool session_waitinglist_is_empty(const struct session *session)
{
return session_waitinglist_get_len(session) == 0;
}
bool session_is_empty(const struct session *session)
{
return session_tasklist_is_empty(session) &&
session_waitinglist_is_empty(session);
}
bool session_has_tls(const struct session *session)
{
return session->sflags.has_tls;
}
void session_set_has_tls(struct session *session, bool has_tls)
{
session->sflags.has_tls = has_tls;
}
void session_waitinglist_retry(struct session *session, bool increase_timeout_cnt)
{
while (!session_waitinglist_is_empty(session)) {
struct qr_task *task = session_waitinglist_pop(session, false);
if (increase_timeout_cnt) {
worker_task_timeout_inc(task);
}
worker_task_step(task, &session->peer.ip, NULL);
worker_task_unref(task);
}
}
void session_waitinglist_finalize(struct session *session, int status)
{
while (!session_waitinglist_is_empty(session)) {
struct qr_task *t = session_waitinglist_pop(session, false);
worker_task_finalize(t, status);
worker_task_unref(t);
}
}
struct proxy_result *session_proxy_create(struct session *session)
{
if (!kr_fails_assert(!session->proxy)) {
session->proxy = calloc(1, sizeof(struct proxy_result));
kr_require(session->proxy);
}
return session->proxy;
}
struct proxy_result *session_proxy_get(struct session *session)
{
return session->proxy;
}
void session_tasklist_finalize(struct session *session, int status)
{
while (session_tasklist_get_len(session) > 0) {
struct qr_task *t = session_tasklist_del_first(session, false);
kr_require(worker_task_numrefs(t) > 0);
worker_task_finalize(t, status);
worker_task_unref(t);
}
}
int session_tasklist_finalize_expired(struct session *session)
{
int ret = 0;
queue_t(struct qr_task *) q;
uint64_t now = kr_now();
trie_t *t = session->tasks;
trie_it_t *it;
queue_init(q);
for (it = trie_it_begin(t); !trie_it_finished(it); trie_it_next(it)) {
trie_val_t *v = trie_it_val(it);
struct qr_task *task = (struct qr_task *)*v;
if ((now - worker_task_creation_time(task)) >= KR_RESOLVE_TIME_LIMIT) {
struct kr_request *req = worker_task_request(task);
if (!kr_fails_assert(req))
kr_query_inform_timeout(req, req->current_query);
queue_push(q, task);
worker_task_ref(task);
}
}
trie_it_free(it);
struct qr_task *task = NULL;
uint16_t msg_id = 0;
char *key = (char *)&task;
int32_t keylen = sizeof(struct qr_task *);
if (session->sflags.outgoing) {
key = (char *)&msg_id;
keylen = sizeof(msg_id);
}
while (queue_len(q) > 0) {
task = queue_head(q);
if (session->sflags.outgoing) {
knot_pkt_t *pktbuf = worker_task_get_pktbuf(task);
msg_id = knot_wire_get_id(pktbuf->wire);
}
int res = trie_del(t, key, keylen, NULL);
if (!worker_task_finished(task)) {
/* task->pending_count must be zero,
* but there are can be followers,
* so run worker_task_subreq_finalize() to ensure retrying
* for all the followers. */
worker_task_subreq_finalize(task);
worker_task_finalize(task, KR_STATE_FAIL);
}
if (res == KNOT_EOK) {
worker_task_unref(task);
}
queue_pop(q);
worker_task_unref(task);
++ret;
}
queue_deinit(q);
return ret;
}
int session_timer_start(struct session *session, uv_timer_cb cb,
uint64_t timeout, uint64_t repeat)
{
uv_timer_t *timer = &session->timeout;
// Session might be closing and get here e.g. through a late on_send callback.
const bool is_closing = uv_is_closing((uv_handle_t *)timer);
if (is_closing || kr_fails_assert(is_closing == session->sflags.closing))
return kr_error(EINVAL);
if (kr_fails_assert(timer->data == session))
return kr_error(EINVAL);
int ret = uv_timer_start(timer, cb, timeout, repeat);
if (ret != 0) {
uv_timer_stop(timer);
return kr_error(ret);
}
return kr_ok();
}
int session_timer_restart(struct session *session)
{
kr_require(!uv_is_closing((uv_handle_t *)&session->timeout));
return uv_timer_again(&session->timeout);
}
int session_timer_stop(struct session *session)
{
return uv_timer_stop(&session->timeout);
}
ssize_t session_wirebuf_consume(struct session *session, const uint8_t *data, ssize_t len)
{
if (kr_fails_assert(data == &session->wire_buf[session->wire_buf_end_idx]))
return kr_error(EINVAL);
if (kr_fails_assert(len >= 0))
return kr_error(EINVAL);
if (kr_fails_assert(session->wire_buf_end_idx + len <= session->wire_buf_size))
return kr_error(EINVAL);
session->wire_buf_end_idx += len;
return len;
}
ssize_t session_wirebuf_trim(struct session *session, ssize_t len)
{
if (kr_fails_assert(len >= 0))
return kr_error(EINVAL);
if (kr_fails_assert(session->wire_buf_start_idx + len <= session->wire_buf_size))
return kr_error(EINVAL);
session->wire_buf_start_idx += len;
if (session->wire_buf_start_idx > session->wire_buf_end_idx)
session->wire_buf_end_idx = session->wire_buf_start_idx;
return len;
}
void session_tcp_penalize(struct session *s)
{
if (s->was_useful || !s->sflags.outgoing)
return;
/* We want to penalize the IP address, if a task is asking a query.
* It might not be the right task, but that doesn't matter so much
* for attributing the useless session to the IP address. */
struct qr_task *t = session_tasklist_get_first(s);
struct kr_query *qry = NULL;
if (t) {
struct kr_request *req = worker_task_request(t);
qry = array_tail(req->rplan.pending);
}
if (qry) /* We reuse the error for connection, as it's quite similar. */
qry->server_selection.error(qry, worker_task_get_transport(t),
KR_SELECTION_TCP_CONNECT_FAILED);
}
knot_pkt_t *session_produce_packet(struct session *session, knot_mm_t *mm)
{
session->sflags.wirebuf_error = false;
if (session->wire_buf_end_idx == 0) {
return NULL;
}
if (session->wire_buf_start_idx == session->wire_buf_end_idx) {
session->wire_buf_start_idx = 0;
session->wire_buf_end_idx = 0;
return NULL;
}
if (session->wire_buf_start_idx > session->wire_buf_end_idx) {
session->sflags.wirebuf_error = true;
session->wire_buf_start_idx = 0;
session->wire_buf_end_idx = 0;
return NULL;
}
const uv_handle_t *handle = session->handle;
uint8_t *msg_start = &session->wire_buf[session->wire_buf_start_idx];
ssize_t wirebuf_msg_data_size = session->wire_buf_end_idx - session->wire_buf_start_idx;
uint16_t msg_size = 0;
if (!handle) {
session->sflags.wirebuf_error = true;
return NULL;
} else if (handle->type == UV_TCP) {
if (wirebuf_msg_data_size < 2) {
return NULL;
}
msg_size = knot_wire_read_u16(msg_start);
if (msg_size >= session->wire_buf_size) {
session->sflags.wirebuf_error = true;
session_tcp_penalize(session);
return NULL;
}
if (msg_size + 2 > wirebuf_msg_data_size) {
return NULL;
}
if (msg_size == 0) {
session->sflags.wirebuf_error = true;
session_tcp_penalize(session);
return NULL;
}
msg_start += 2;
} else if (wirebuf_msg_data_size < UINT16_MAX) {
msg_size = wirebuf_msg_data_size;
} else {
session->sflags.wirebuf_error = true;
session_tcp_penalize(session);
return NULL;
}
session->was_useful = true;
knot_pkt_t *pkt = knot_pkt_new(msg_start, msg_size, mm);
session->sflags.wirebuf_error = (pkt == NULL);
return pkt;
}
int session_discard_packet(struct session *session, const knot_pkt_t *pkt)
{
uv_handle_t *handle = session->handle;
/* Pointer to data start in wire_buf */
uint8_t *wirebuf_data_start = &session->wire_buf[session->wire_buf_start_idx];
/* Number of data bytes in wire_buf */
size_t wirebuf_data_size = session->wire_buf_end_idx - session->wire_buf_start_idx;
/* Pointer to message start in wire_buf */
uint8_t *wirebuf_msg_start = wirebuf_data_start;
/* Number of message bytes in wire_buf.
* For UDP it is the same number as wirebuf_data_size. */
size_t wirebuf_msg_size = wirebuf_data_size;
/* Wire data from parsed packet. */
uint8_t *pkt_msg_start = pkt->wire;
/* Number of bytes in packet wire buffer. */
size_t pkt_msg_size = pkt->size;
if (knot_pkt_has_tsig(pkt)) {
pkt_msg_size += pkt->tsig_wire.len;
}
session->sflags.wirebuf_error = true;
if (!handle) {
return kr_error(EINVAL);
} else if (handle->type == UV_TCP) {
/* wire_buf contains TCP DNS message. */
if (kr_fails_assert(wirebuf_data_size >= 2)) {
/* TCP message length field isn't in buffer, must not happen. */
session->wire_buf_start_idx = 0;
session->wire_buf_end_idx = 0;
return kr_error(EINVAL);
}
wirebuf_msg_size = knot_wire_read_u16(wirebuf_msg_start);
wirebuf_msg_start += 2;
if (kr_fails_assert(wirebuf_msg_size + 2 <= wirebuf_data_size)) {
/* TCP message length field is greater then
* number of bytes in buffer, must not happen. */
session->wire_buf_start_idx = 0;
session->wire_buf_end_idx = 0;
return kr_error(EINVAL);
}
}
if (kr_fails_assert(wirebuf_msg_start == pkt_msg_start)) {
/* packet wirebuf must be located at the beginning
* of the session wirebuf, must not happen. */
session->wire_buf_start_idx = 0;
session->wire_buf_end_idx = 0;
return kr_error(EINVAL);
}
if (kr_fails_assert(wirebuf_msg_size >= pkt_msg_size)) {
/* Message length field is lesser then packet size,
* must not happen. */
session->wire_buf_start_idx = 0;
session->wire_buf_end_idx = 0;
return kr_error(EINVAL);
}
if (handle->type == UV_TCP) {
session->wire_buf_start_idx += wirebuf_msg_size + 2;
} else {
session->wire_buf_start_idx += pkt_msg_size;
}
session->sflags.wirebuf_error = false;
wirebuf_data_size = session->wire_buf_end_idx - session->wire_buf_start_idx;
if (wirebuf_data_size == 0) {
session_wirebuf_discard(session);
} else if (wirebuf_data_size < KNOT_WIRE_HEADER_SIZE) {
session_wirebuf_compress(session);
}
return kr_ok();
}
void session_wirebuf_discard(struct session *session)
{
session->wire_buf_start_idx = 0;
session->wire_buf_end_idx = 0;
}
void session_wirebuf_compress(struct session *session)
{
if (session->wire_buf_start_idx == 0) {
return;
}
uint8_t *wirebuf_data_start = &session->wire_buf[session->wire_buf_start_idx];
size_t wirebuf_data_size = session->wire_buf_end_idx - session->wire_buf_start_idx;
if (session->wire_buf_start_idx < wirebuf_data_size) {
memmove(session->wire_buf, wirebuf_data_start, wirebuf_data_size);
} else {
memcpy(session->wire_buf, wirebuf_data_start, wirebuf_data_size);
}
session->wire_buf_start_idx = 0;
session->wire_buf_end_idx = wirebuf_data_size;
}
bool session_wirebuf_error(struct session *session)
{
return session->sflags.wirebuf_error;
}
uint8_t *session_wirebuf_get_start(struct session *session)
{
return session->wire_buf;
}
size_t session_wirebuf_get_size(struct session *session)
{
return session->wire_buf_size;
}
uint8_t *session_wirebuf_get_free_start(struct session *session)
{
return &session->wire_buf[session->wire_buf_end_idx];
}
size_t session_wirebuf_get_free_size(struct session *session)
{
return session->wire_buf_size - session->wire_buf_end_idx;
}
void session_poison(struct session *session)
{
kr_asan_poison(session, sizeof(*session));
}
void session_unpoison(struct session *session)
{
kr_asan_unpoison(session, sizeof(*session));
}
int session_wirebuf_process(struct session *session, struct io_comm_data *comm)
{
int ret = 0;
if (session->wire_buf_start_idx == session->wire_buf_end_idx)
return ret;
size_t wirebuf_data_size = session->wire_buf_end_idx - session->wire_buf_start_idx;
uint32_t max_iterations = (wirebuf_data_size /
(KNOT_WIRE_HEADER_SIZE + KNOT_WIRE_QUESTION_MIN_SIZE)) + 1;
knot_pkt_t *pkt = NULL;
while (((pkt = session_produce_packet(session, &the_worker->pkt_pool)) != NULL) &&
(ret < max_iterations)) {
if (kr_fails_assert(!session_wirebuf_error(session)))
return -1;
int res = worker_submit(session, comm, NULL, NULL, pkt);
/* Errors from worker_submit() are intentionally *not* handled in order to
* ensure the entire wire buffer is processed. */
if (res == kr_ok())
ret += 1;
if (session_discard_packet(session, pkt) < 0) {
/* Packet data isn't stored in memory as expected.
* something went wrong, normally should not happen. */
break;
}
if (session->sflags.closing)
break; /* Submitting into a closing session could cause trouble. */
}
/* worker_submit() may cause the session to close (e.g. due to IO
* write error when the packet triggers an immediate answer). This is
* an error state, as well as any wirebuf error. */
if (session->sflags.closing || session_wirebuf_error(session))
ret = -1;
return ret;
}
void session_kill_ioreq(struct session *session, struct qr_task *task)
{
if (!session || session->sflags.closing)
return;
if (kr_fails_assert(session->sflags.outgoing && session->handle))
return;
session_tasklist_del(session, task);
if (session->handle->type == UV_UDP) {
session_close(session);
return;
}
}
/** Update timestamp */
void session_touch(struct session *session)
{
session->last_activity = kr_now();
}
uint64_t session_last_activity(struct session *session)
{
return session->last_activity;
}