1
0
Fork 0
knot-resolver/lib/cache/nsec1.c
Daniel Baumann fbc604e215
Adding upstream version 5.7.5.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 13:56:17 +02:00

488 lines
16 KiB
C

/* Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
* SPDX-License-Identifier: GPL-3.0-or-later
*/
/** @file
* Implementation of NSEC (1) handling. Prototypes in ./impl.h
*/
#include "lib/cache/impl.h"
#include "lib/dnssec/nsec.h"
#include "lib/layer/iterate.h"
/** Reconstruct a name into a buffer (assuming length at least KNOT_DNAME_MAXLEN).
* \return kr_ok() or error code (<0). */
static int dname_wire_reconstruct(knot_dname_t *buf, const struct key *k,
knot_db_val_t kwz)
{
/* Reconstruct from key: first the ending, then zone name. */
int ret = knot_dname_lf2wire(buf, kwz.len, kwz.data);
if (kr_fails_assert(ret >= 0)) {
VERBOSE_MSG(NULL, "=> NSEC: LF2wire ret = %d\n", ret);
return ret;
}
/* The last written byte is the zero label for root -> overwrite. */
knot_dname_t *zone_start = buf + ret - 1;
if (kr_fails_assert(*zone_start == '\0'))
return kr_error(EFAULT);
ret = knot_dname_to_wire(zone_start, k->zname, KNOT_DNAME_MAXLEN - kwz.len);
if (kr_fails_assert(ret == k->zlf_len + 1))
return ret < 0 ? ret : kr_error(EILSEQ);
return kr_ok();
}
knot_db_val_t key_NSEC1(struct key *k, const knot_dname_t *name, bool add_wildcard)
{
/* we basically need dname_lf with two bytes added
* on a correct place within the name (the cut) */
int ret;
const bool ok = k && name
&& !(ret = kr_dname_lf(k->buf, name, add_wildcard));
if (kr_fails_assert(ok))
return (knot_db_val_t){ NULL, 0 };
uint8_t *begin = k->buf + 1 + k->zlf_len; /* one byte after zone's zero */
uint8_t *end = k->buf + 1 + k->buf[0]; /* we don't use the final zero in key,
* but move it anyway */
if (kr_fails_assert(end >= begin))
return (knot_db_val_t){ NULL, 0 };
int key_len;
if (end > begin) {
memmove(begin + 2, begin, end - begin);
key_len = k->buf[0] + 1;
} else {
key_len = k->buf[0] + 2;
}
/* CACHE_KEY_DEF: key == zone's dname_lf + '\0' + '1' + dname_lf
* of the name within the zone without the final 0. Iff the latter is empty,
* there's no zero to cut and thus the key_len difference.
*/
begin[0] = 0;
begin[1] = '1'; /* tag for NSEC1 */
k->type = KNOT_RRTYPE_NSEC;
/*
VERBOSE_MSG(NULL, "<> key_NSEC1; name: ");
kr_dname_print(name, add_wildcard ? "*." : "" , " ");
kr_log_debug(CACHE, "(zone name LF length: %d; total key length: %d)\n",
k->zlf_len, key_len);
*/
return (knot_db_val_t){ k->buf + 1, key_len };
}
/** Assuming that k1 < k4, find where k2 is. (Considers DNS wrap-around.)
*
* \return Intuition: position of k2 among kX.
* 0: k2 < k1; 1: k1 == k2; 2: k1 is a prefix of k2 < k4;
* 3: k1 < k2 < k4 (and not 2); 4: k2 == k4; 5: k2 > k4
* \note k1.data may be NULL, meaning assumption that k1 < k2 and not a prefix
* (i.e. return code will be > 2)
*/
static int kwz_between(knot_db_val_t k1, knot_db_val_t k2, knot_db_val_t k4)
{
kr_require(k2.data && k4.data);
/* CACHE_KEY_DEF; we need to beware of one key being a prefix of another */
int ret_maybe; /**< result, assuming we confirm k2 < k4 */
if (k1.data) {
const int cmp12 = memcmp(k1.data, k2.data, MIN(k1.len, k2.len));
if (cmp12 == 0 && k1.len == k2.len) /* iff k1 == k2 */
return 1;
if (cmp12 > 0 || (cmp12 == 0 && k1.len > k2.len)) /* iff k1 > k2 */
return 0;
ret_maybe = cmp12 == 0 ? 2 : 3;
} else {
ret_maybe = 3;
}
if (k4.len == 0) { /* wrap-around */
return k2.len > 0 ? ret_maybe : 4;
} else {
const int cmp24 = memcmp(k2.data, k4.data, MIN(k2.len, k4.len));
if (cmp24 == 0 && k2.len == k4.len) /* iff k2 == k4 */
return 4;
if (cmp24 > 0 || (cmp24 == 0 && k2.len > k4.len)) /* iff k2 > k4 */
return 5;
return ret_maybe;
}
}
/** NSEC1 range search.
*
* \param key Pass output of key_NSEC1(k, ...)
* \param value[out] The raw data of the NSEC cache record (optional; consistency checked).
* \param exact_match[out] Whether the key was matched exactly or just covered (optional).
* \param kwz_low[out] Output the low end of covering NSEC, pointing within DB (optional).
* \param kwz_high[in,out] Storage for the high end of covering NSEC (optional).
* It's only set if !exact_match.
* \param new_ttl[out] New TTL of the NSEC (optional).
* \return Error message or NULL.
* \note The function itself does *no* bitmap checks, e.g. RFC 6840 sec. 4.
*/
static const char * find_leq_NSEC1(struct kr_cache *cache, const struct kr_query *qry,
const knot_db_val_t key, const struct key *k, knot_db_val_t *value,
bool *exact_match, knot_db_val_t *kwz_low, knot_db_val_t *kwz_high,
uint32_t *new_ttl)
{
/* Do the cache operation. */
const size_t nwz_off = key_nwz_off(k);
if (kr_fails_assert(key.data && key.len >= nwz_off))
return "range search ERROR";
knot_db_val_t key_nsec = key;
knot_db_val_t val = { NULL, 0 };
int ret = cache_op(cache, read_leq, &key_nsec, &val);
if (ret < 0) {
if (kr_fails_assert(ret == kr_error(ENOENT))) {
return "range search ERROR";
} else {
return "range search miss";
}
}
if (value) {
*value = val;
}
/* Check consistency, TTL, rank. */
const bool is_exact = (ret == 0);
if (exact_match) {
*exact_match = is_exact;
}
const struct entry_h *eh = entry_h_consistent_NSEC(val);
if (!eh) {
/* This might be just finding something else than NSEC1 entry,
* in case we searched before the very first one in the zone. */
return "range search found inconsistent entry";
}
/* Passing just zone name instead of owner, as we don't
* have it reconstructed at this point. */
int32_t new_ttl_ = get_new_ttl(eh, qry, k->zname, KNOT_RRTYPE_NSEC,
qry->timestamp.tv_sec);
if (new_ttl_ < 0 || !kr_rank_test(eh->rank, KR_RANK_SECURE)) {
return "range search found stale or insecure entry";
/* TODO: remove the stale record *and* retry,
* in case we haven't run off. Perhaps start by in_zone check. */
}
if (new_ttl) {
*new_ttl = new_ttl_;
}
if (kwz_low) {
*kwz_low = (knot_db_val_t){
.data = (uint8_t *)key_nsec.data + nwz_off,
.len = key_nsec.len - nwz_off,
}; /* CACHE_KEY_DEF */
}
if (is_exact) {
/* Nothing else to do. */
return NULL;
}
/* The NSEC starts strictly before our target name;
* now check that it still belongs into that zone. */
const bool nsec_in_zone = key_nsec.len >= nwz_off
/* CACHE_KEY_DEF */
&& memcmp(key.data, key_nsec.data, nwz_off) == 0;
if (!nsec_in_zone) {
return "range search miss (!nsec_in_zone)";
}
/* We know it starts before sname, so let's check the other end.
* 1. construct the key for the next name - kwz_hi. */
/* it's *full* name ATM */
/* Technical complication: memcpy is safe for unaligned case (on non-x86) */
__typeof__(((knot_rdata_t *)NULL)->len) next_len;
const uint8_t *next_data;
{ /* next points to knot_rdata_t but possibly unaligned */
const uint8_t *next = eh->data + KR_CACHE_RR_COUNT_SIZE;
memcpy(&next_len, next + offsetof(knot_rdata_t, len), sizeof(next_len));
next_data = next + offsetof(knot_rdata_t, data);
}
if (kr_fails_assert(KR_CACHE_RR_COUNT_SIZE == 2 && get_uint16(eh->data) != 0)) {
return "ERROR"; /* TODO: more checks? */
}
/*
WITH_VERBOSE {
VERBOSE_MSG(qry, "=> NSEC: next name: ");
kr_dname_print(next, "", "\n");
}
*/
knot_dname_t ch_buf[KNOT_DNAME_MAXLEN];
knot_dname_t *chs = kwz_high ? kwz_high->data : ch_buf;
if (kr_fails_assert(chs))
return "EINVAL";
{
/* Lower-case chs; see also RFC 6840 5.1.
* LATER(optim.): we do lots of copying etc. */
knot_dname_t lower_buf[KNOT_DNAME_MAXLEN];
ret = knot_dname_to_wire(lower_buf, next_data,
MIN(next_len, KNOT_DNAME_MAXLEN));
if (ret < 0) { /* _ESPACE */
return "range search found record with incorrect contents";
}
knot_dname_to_lower(lower_buf);
ret = kr_dname_lf(chs, lower_buf, false);
}
if (kr_fails_assert(ret == 0))
return "ERROR";
knot_db_val_t kwz_hi = { /* skip the zone name */
.data = chs + 1 + k->zlf_len,
.len = chs[0] - k->zlf_len,
};
if (kr_fails_assert((ssize_t)(kwz_hi.len) >= 0))
return "ERROR";
/* 2. do the actual range check. */
const knot_db_val_t kwz_sname = {
.data = (void *)/*const-cast*/(k->buf + 1 + nwz_off),
.len = k->buf[0] - k->zlf_len,
};
if (kr_fails_assert((ssize_t)(kwz_sname.len) >= 0))
return "ERROR";
bool covers = /* we know for sure that the low end is before kwz_sname */
3 == kwz_between((knot_db_val_t){ NULL, 0 }, kwz_sname, kwz_hi);
if (!covers) {
return "range search miss (!covers)";
}
if (kwz_high) {
*kwz_high = kwz_hi;
}
return NULL;
}
int nsec1_encloser(struct key *k, struct answer *ans,
const int sname_labels, int *clencl_labels,
knot_db_val_t *cover_low_kwz, knot_db_val_t *cover_hi_kwz,
const struct kr_query *qry, struct kr_cache *cache)
{
static const int ESKIP = ABS(ENOENT);
/* Basic sanity check. */
const bool ok = k && ans && clencl_labels && cover_low_kwz && cover_hi_kwz
&& qry && cache;
if (kr_fails_assert(ok))
return kr_error(EINVAL);
/* Find a previous-or-equal name+NSEC in cache covering the QNAME,
* checking TTL etc. */
knot_db_val_t key = key_NSEC1(k, qry->sname, false);
knot_db_val_t val = { NULL, 0 };
bool exact_match;
uint32_t new_ttl;
const char *err = find_leq_NSEC1(cache, qry, key, k, &val,
&exact_match, cover_low_kwz, cover_hi_kwz, &new_ttl);
if (err) {
VERBOSE_MSG(qry, "=> NSEC sname: %s\n", err);
return ESKIP;
}
/* Get owner name of the record. */
const knot_dname_t *owner;
knot_dname_t owner_buf[KNOT_DNAME_MAXLEN];
if (exact_match) {
owner = qry->sname;
} else {
int ret = dname_wire_reconstruct(owner_buf, k, *cover_low_kwz);
if (unlikely(ret)) return ESKIP;
owner = owner_buf;
}
/* Basic checks OK -> materialize data. */
{
const struct entry_h *nsec_eh = val.data;
int ret = entry2answer(ans, AR_NSEC, nsec_eh, knot_db_val_bound(val),
owner, KNOT_RRTYPE_NSEC, new_ttl);
if (ret) return kr_error(ret);
}
/* Final checks, split for matching vs. covering our sname. */
const knot_rrset_t *nsec_rr = ans->rrsets[AR_NSEC].set.rr;
const uint8_t *bm = knot_nsec_bitmap(nsec_rr->rrs.rdata);
uint16_t bm_size = knot_nsec_bitmap_len(nsec_rr->rrs.rdata);
if (kr_fails_assert(bm))
return kr_error(EFAULT);
if (exact_match) {
if (kr_nsec_bitmap_nodata_check(bm, bm_size, qry->stype, nsec_rr->owner) != 0) {
VERBOSE_MSG(qry,
"=> NSEC sname: match but failed type check\n");
return ESKIP;
}
/* NODATA proven; just need to add SOA+RRSIG later */
VERBOSE_MSG(qry, "=> NSEC sname: match proved NODATA, new TTL %d\n",
new_ttl);
ans->rcode = PKT_NODATA;
return kr_ok();
} /* else */
/* Inexact match. First check if sname is delegated by that NSEC. */
const int nsec_matched = knot_dname_matched_labels(nsec_rr->owner, qry->sname);
const bool is_sub = nsec_matched == knot_dname_labels(nsec_rr->owner, NULL);
if (is_sub && kr_nsec_children_in_zone_check(bm, bm_size) != 0) {
VERBOSE_MSG(qry, "=> NSEC sname: covered but delegated (or error)\n");
return ESKIP;
}
/* NXDOMAIN proven *except* for wildcards. */
WITH_VERBOSE(qry) {
auto_free char *owner_str = kr_dname_text(nsec_rr->owner),
*next_str = kr_dname_text(knot_nsec_next(nsec_rr->rrs.rdata));
VERBOSE_MSG(qry, "=> NSEC sname: covered by: %s -> %s, new TTL %d\n",
owner_str, next_str, new_ttl);
}
/* Find label count of the closest encloser.
* Both endpoints in an NSEC do exist (though possibly in a child zone)
* and any prefixes of those names as well (empty non-terminals),
* but nothing else exists inside this "triangle".
*
* Note that we have to lower-case the next name for comparison,
* even though we have canonicalized NSEC already; see RFC 6840 5.1.
* LATER(optim.): it might be faster to use the LFs we already have.
*/
knot_dname_t next[KNOT_DNAME_MAXLEN];
int ret = knot_dname_to_wire(next, knot_nsec_next(nsec_rr->rrs.rdata), sizeof(next));
if (kr_fails_assert(ret >= 0))
return kr_error(ret);
knot_dname_to_lower(next);
*clencl_labels = MAX(
nsec_matched,
knot_dname_matched_labels(qry->sname, next)
);
/* Empty non-terminals don't need to have
* a matching NSEC record. */
if (sname_labels == *clencl_labels) {
ans->rcode = PKT_NODATA;
VERBOSE_MSG(qry,
"=> NSEC sname: empty non-terminal by the same RR\n");
} else {
ans->rcode = PKT_NXDOMAIN;
}
return kr_ok();
}
/** Verify non-existence after kwz_between() call. */
static bool nonexistence_ok(int cmp, const knot_rrset_t *rrs)
{
if (cmp == 3) {
return true;
}
if (cmp != 2) {
return false;
}
const uint8_t *bm = knot_nsec_bitmap(rrs->rrs.rdata);
uint16_t bm_size = knot_nsec_bitmap_len(rrs->rrs.rdata);
return kr_nsec_children_in_zone_check(bm, bm_size) != 0;
}
int nsec1_src_synth(struct key *k, struct answer *ans, const knot_dname_t *clencl_name,
knot_db_val_t cover_low_kwz, knot_db_val_t cover_hi_kwz,
const struct kr_query *qry, struct kr_cache *cache)
{
/* Construct key for the source of synthesis. */
knot_db_val_t key = key_NSEC1(k, clencl_name, true);
const size_t nwz_off = key_nwz_off(k);
if (kr_fails_assert(key.data && key.len >= nwz_off))
return kr_error(1);
/* Check if our sname-covering NSEC also covers/matches SS. */
knot_db_val_t kwz = {
.data = (uint8_t *)key.data + nwz_off,
.len = key.len - nwz_off,
};
if (kr_fails_assert((ssize_t)(kwz.len) >= 0))
return kr_error(EINVAL);
const int cmp = kwz_between(cover_low_kwz, kwz, cover_hi_kwz);
if (nonexistence_ok(cmp, ans->rrsets[AR_NSEC].set.rr)) {
VERBOSE_MSG(qry, "=> NSEC wildcard: covered by the same RR\n");
return AR_SOA;
}
const knot_rrset_t *nsec_rr = NULL; /**< the wildcard proof NSEC */
bool exact_match; /**< whether it matches the source of synthesis */
if (cmp == 1) {
exact_match = true;
nsec_rr = ans->rrsets[AR_NSEC].set.rr;
} else {
/* Try to find the NSEC for SS. */
knot_db_val_t val = { NULL, 0 };
knot_db_val_t wild_low_kwz = { NULL, 0 };
uint32_t new_ttl;
const char *err = find_leq_NSEC1(cache, qry, key, k, &val,
&exact_match, &wild_low_kwz, NULL, &new_ttl);
if (err) {
VERBOSE_MSG(qry, "=> NSEC wildcard: %s\n", err);
return kr_ok();
}
/* Materialize the record into answer (speculatively). */
knot_dname_t owner[KNOT_DNAME_MAXLEN];
int ret = dname_wire_reconstruct(owner, k, wild_low_kwz);
if (ret) return kr_error(ret);
const struct entry_h *nsec_eh = val.data;
ret = entry2answer(ans, AR_WILD, nsec_eh, knot_db_val_bound(val),
owner, KNOT_RRTYPE_NSEC, new_ttl);
if (ret) return kr_error(ret);
nsec_rr = ans->rrsets[AR_WILD].set.rr;
}
if (kr_fails_assert(nsec_rr))
return kr_error(EFAULT);
const uint8_t *bm = knot_nsec_bitmap(nsec_rr->rrs.rdata);
uint16_t bm_size = knot_nsec_bitmap_len(nsec_rr->rrs.rdata);
int ret;
struct answer_rrset * const arw = &ans->rrsets[AR_WILD];
if (kr_fails_assert(bm)) {
ret = kr_error(EFAULT);
goto clean_wild;
}
if (!exact_match) {
/* Finish verification that the source of synthesis doesn't exist. */
const int nsec_matched =
knot_dname_matched_labels(nsec_rr->owner, clencl_name);
/* we don't need to use the full source of synthesis ^ */
const bool is_sub =
nsec_matched == knot_dname_labels(nsec_rr->owner, NULL);
if (is_sub && kr_nsec_children_in_zone_check(bm, bm_size) != 0) {
VERBOSE_MSG(qry,
"=> NSEC wildcard: covered but delegated (or error)\n");
ret = kr_ok();
goto clean_wild;
}
/* We have a record proving wildcard non-existence. */
WITH_VERBOSE(qry) {
auto_free char *owner_str = kr_dname_text(nsec_rr->owner),
*next_str = kr_dname_text(knot_nsec_next(nsec_rr->rrs.rdata));
VERBOSE_MSG(qry, "=> NSEC wildcard: covered by: %s -> %s, new TTL %d\n",
owner_str, next_str, nsec_rr->ttl);
}
return AR_SOA;
}
/* The wildcard exists. Find if it's NODATA - check type bitmap. */
if (kr_nsec_bitmap_nodata_check(bm, bm_size, qry->stype, nsec_rr->owner) == 0) {
/* NODATA proven; just need to add SOA+RRSIG later */
WITH_VERBOSE(qry) {
const char *msg_start = "=> NSEC wildcard: match proved NODATA";
if (arw->set.rr) {
auto_free char *owner_str = kr_dname_text(nsec_rr->owner);
VERBOSE_MSG(qry, "%s: %s, new TTL %d\n",
msg_start, owner_str, nsec_rr->ttl);
} else {
/* don't repeat the RR if it's the same */
VERBOSE_MSG(qry, "%s, by the same RR\n", msg_start);
}
}
ans->rcode = PKT_NODATA;
return AR_SOA;
} /* else */
/* The data probably exists -> don't add this NSEC
* and (later) try to find the real wildcard data */
VERBOSE_MSG(qry, "=> NSEC wildcard: should exist (or error)\n");
ans->rcode = PKT_NOERROR;
ret = kr_ok();
clean_wild:
if (arw->set.rr) { /* we may have matched AR_NSEC */
knot_rrset_free(arw->set.rr, ans->mm);
arw->set.rr = NULL;
knot_rdataset_clear(&arw->sig_rds, ans->mm);
}
return ret;
}