1
0
Fork 0
knot-resolver/utils/cache_gc/db.c
Daniel Baumann fbc604e215
Adding upstream version 5.7.5.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 13:56:17 +02:00

282 lines
7.5 KiB
C

/* SPDX-License-Identifier: GPL-3.0-or-later */
#include "db.h"
#include "lib/cache/cdb_lmdb.h"
#include "lib/cache/impl.h"
#include <ctype.h>
#include <time.h>
#include <sys/stat.h>
#define MDB_FILE "/data.mdb"
int kr_gc_cache_open(const char *cache_path, struct kr_cache *kres_db,
knot_db_t ** libknot_db)
{
char cache_data[strlen(cache_path) + sizeof(MDB_FILE)];
(void)snprintf(cache_data, sizeof(cache_data), "%s" MDB_FILE, cache_path);
struct stat st = { 0 };
if (stat(cache_path, &st) || !(st.st_mode & S_IFDIR)
|| stat(cache_data, &st)) {
printf("Error: %s does not exist or is not a LMDB.\n", cache_path);
return -ENOENT;
}
struct kr_cdb_opts opts = { .path = cache_path, .maxsize = 0/*don't resize*/ };
int ret = kr_cache_open(kres_db, NULL, &opts, NULL);
if (ret || kres_db->db == NULL) {
printf("Error opening Resolver cache (%s).\n", kr_strerror(ret));
return -EINVAL;
}
*libknot_db = kr_cdb_pt2knot_db_t(kres_db->db);
if (*libknot_db == NULL) {
printf("Out of memory.\n");
return -ENOMEM;
}
return 0;
}
int kr_gc_cache_check_health(struct kr_cache *kres_db, knot_db_t ** libknot_db)
{
int ret = kr_cache_check_health(kres_db, 0);
if (ret == 0) {
return 0;
} else if (ret != 1) {
kr_gc_cache_close(kres_db, *libknot_db);
return ret;
}
/* Cache was reopen. */
free(*libknot_db);
*libknot_db = kr_cdb_pt2knot_db_t(kres_db->db);
if (*libknot_db == NULL) {
printf("Out of memory.\n");
return -ENOMEM;
}
return 0;
}
void kr_gc_cache_close(struct kr_cache *kres_db, knot_db_t * knot_db)
{
free(knot_db);
kr_cache_close(kres_db);
}
int kr_gc_key_consistent(knot_db_val_t key)
{
const uint8_t *kd = key.data;
ssize_t i;
/* CACHE_KEY_DEF */
if (key.len >= 2 && kd[0] == '\0') {
/* Beware: root zone is special and starts with
* a single \0 followed by type sign */
i = 1;
} else {
/* find the first double zero in the key */
for (i = 2; kd[i - 1] || kd[i - 2]; ++i) {
if (kr_fails_assert(i < key.len))
return kr_error(EINVAL);
}
}
// the next character can be used for classification
switch (kd[i]) {
case 'E':
(void)0; // C can't have a variable definition following a label
uint16_t type;
if (kr_fails_assert(i + 1 + sizeof(type) <= key.len))
return kr_error(EINVAL);
memcpy(&type, kd + i + 1, sizeof(type));
return type;
case '1':
return KNOT_RRTYPE_NSEC;
case '3':
return KNOT_RRTYPE_NSEC3;
case 'S': // the rtt_state entries are considered inconsistent, at least for now
return -1;
default:
kr_assert(!EINVAL);
return kr_error(EINVAL);
}
}
/// expects that key is consistent! CACHE_KEY_DEF
static uint8_t entry_labels(knot_db_val_t * key, uint16_t rrtype)
{
uint8_t lab = 0, *p = key->data;
while (*p != 0) {
while (*p++ != 0) {
if (p - (uint8_t *) key->data >= key->len) {
return 0;
}
}
lab++;
}
if (rrtype == KNOT_RRTYPE_NSEC3) {
// We don't know the number of labels so easily,
// but let's classify everything as directly
// below the zone apex (that's most common).
++lab;
}
return lab;
}
void debug_printbin(const char *str, unsigned int len)
{
putchar('"');
for (int idx = 0; idx < len; idx++) {
char c = str[idx];
if (isprint(c))
putchar(c);
else
printf("`%02hhx`", c);
}
putchar('"');
}
/** Return one entry_h reference from a cache DB value. NULL if not consistent/suitable. */
static const struct entry_h *val2entry(const knot_db_val_t val, uint16_t ktype)
{
if (ktype != KNOT_RRTYPE_NS)
return entry_h_consistent(val, ktype);
/* Otherwise we have a multi-purpose entry.
* Well, for now we simply choose the most suitable entry;
* the only realistic collision is DNAME in apex where we'll prefer NS. */
entry_list_t el;
if (entry_list_parse(val, el))
return NULL;
for (int i = ENTRY_APEX_NSECS_CNT; i < EL_LENGTH; ++i) {
if (el[i].len)
return entry_h_consistent(el[i], EL2RRTYPE(i));
}
/* Only NSEC* meta-data inside. */
return NULL;
}
int kr_gc_cache_iter(knot_db_t * knot_db, const kr_cache_gc_cfg_t *cfg,
kr_gc_iter_callback callback, void *ctx)
{
unsigned int counter_iter = 0;
unsigned int counter_gc_consistent = 0;
unsigned int counter_kr_consistent = 0;
knot_db_txn_t txn = { 0 };
knot_db_iter_t *it = NULL;
const knot_db_api_t *api = knot_db_lmdb_api();
gc_record_info_t info = { 0 };
int64_t now = time(NULL);
int ret = api->txn_begin(knot_db, &txn, KNOT_DB_RDONLY);
if (ret != KNOT_EOK) {
printf("Error starting DB transaction (%s).\n", knot_strerror(ret));
return ret;
}
it = api->iter_begin(&txn, KNOT_DB_NOOP); // _FIRST is split for easier debugging
if (it == NULL) {
printf("Error: failed to create an iterator.\n");
api->txn_abort(&txn);
return KNOT_ERROR;
}
it = api->iter_seek(it, NULL, KNOT_DB_FIRST);
if (it == NULL)
printf("Suspicious: completely empty LMDB at this moment?\n");
int txn_steps = 0;
while (it != NULL) {
knot_db_val_t key = { 0 }, val = { 0 };
ret = api->iter_key(it, &key);
if (ret == KNOT_EOK && key.len == 4 && memcmp("VERS", key.data, 4) == 0) {
/* skip DB metadata */
goto skip;
}
if (ret == KNOT_EOK) {
ret = api->iter_val(it, &val);
}
if (ret != KNOT_EOK) {
goto error;
}
info.entry_size = key.len + val.len;
info.valid = false;
const int entry_type = kr_gc_key_consistent(key);
const struct entry_h *entry = NULL;
if (entry_type >= 0) {
counter_gc_consistent++;
entry = val2entry(val, entry_type);
}
/* TODO: perhaps improve some details around here:
* - rtt_state entries are considered gc_inconsistent;
* therefore they'll be the first to get freed (see kr_gc_categorize())
* - xNAME have .rrtype NS
* - DNAME hidden on NS name will not be considered here
* - if zone has NSEC* meta-data but no NS, it will be seen
* here as kr_inconsistent */
if (entry != NULL) {
info.valid = true;
info.rrtype = entry_type;
info.expires_in = entry->time + entry->ttl - now;
info.no_labels = entry_labels(&key, entry_type);
}
counter_iter++;
counter_kr_consistent += info.valid;
if (VERBOSE_STATUS) {
if (!entry_type || !entry) { // don't log fully consistent entries
printf
("GC %sconsistent, KR %sconsistent, size %zu, key len %zu: ",
entry_type ? "" : "in", entry ? "" : "IN",
(key.len + val.len), key.len);
debug_printbin(key.data, key.len);
printf("\n");
}
}
ret = callback(&key, &info, ctx);
if (ret != KNOT_EOK) {
error:
printf("Error iterating database (%s).\n",
knot_strerror(ret));
api->iter_finish(it);
api->txn_abort(&txn);
return ret;
}
skip: // Advance to the next GC item.
if (++txn_steps < cfg->ro_txn_items || !cfg->ro_txn_items/*unlimited*/) {
it = api->iter_next(it);
} else {
/* The transaction has been too long; let's reopen it. */
txn_steps = 0;
uint8_t key_storage[key.len];
memcpy(key_storage, key.data, key.len);
key.data = key_storage;
api->iter_finish(it);
api->txn_abort(&txn);
ret = api->txn_begin(knot_db, &txn, KNOT_DB_RDONLY);
if (ret != KNOT_EOK) {
printf("Error restarting DB transaction (%s).\n",
knot_strerror(ret));
return ret;
}
it = api->iter_begin(&txn, KNOT_DB_NOOP);
if (it == NULL) {
printf("Error: failed to create an iterator.\n");
api->txn_abort(&txn);
return KNOT_ERROR;
}
it = api->iter_seek(it, &key, KNOT_DB_GEQ);
// NULL here means we'we reached the end
}
}
api->txn_abort(&txn);
kr_log_debug(CACHE, "iterated %u items, gc consistent %u, kr consistent %u\n",
counter_iter, counter_gc_consistent, counter_kr_consistent);
return KNOT_EOK;
}