1
0
Fork 0
knot-resolver/contrib/ccan/json/json.c
Daniel Baumann fbc604e215
Adding upstream version 5.7.5.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 13:56:17 +02:00

1362 lines
28 KiB
C

/* SPDX-License-Identifier: MIT
* Source: https://ccodearchive.net/info/json.html
* Copyright (C) 2011 Joseph A. Adams (joeyadams3.14159@gmail.com) */
#include "json.h"
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define out_of_memory() do { \
fprintf(stderr, "Out of memory.\n"); \
exit(EXIT_FAILURE); \
} while (0)
/* Sadly, strdup is not portable. */
static char *json_strdup(const char *str)
{
char *ret = (char*) malloc(strlen(str) + 1);
if (ret == NULL)
out_of_memory();
strcpy(ret, str);
return ret;
}
/* String buffer */
typedef struct
{
char *cur;
char *end;
char *start;
} SB;
static void sb_init(SB *sb)
{
sb->start = (char*) malloc(17);
if (sb->start == NULL)
out_of_memory();
sb->cur = sb->start;
sb->end = sb->start + 16;
}
/* sb and need may be evaluated multiple times. */
#define sb_need(sb, need) do { \
if ((sb)->end - (sb)->cur < (need)) \
sb_grow(sb, need); \
} while (0)
static void sb_grow(SB *sb, int need)
{
size_t length = sb->cur - sb->start;
size_t alloc = sb->end - sb->start;
do {
alloc *= 2;
} while (alloc < length + need);
sb->start = (char*) realloc(sb->start, alloc + 1);
if (sb->start == NULL)
out_of_memory();
sb->cur = sb->start + length;
sb->end = sb->start + alloc;
}
static void sb_put(SB *sb, const char *bytes, int count)
{
sb_need(sb, count);
memcpy(sb->cur, bytes, count);
sb->cur += count;
}
#define sb_putc(sb, c) do { \
if ((sb)->cur >= (sb)->end) \
sb_grow(sb, 1); \
*(sb)->cur++ = (c); \
} while (0)
static void sb_puts(SB *sb, const char *str)
{
sb_put(sb, str, strlen(str));
}
static char *sb_finish(SB *sb)
{
*sb->cur = 0;
assert(sb->start <= sb->cur && strlen(sb->start) == (size_t)(sb->cur - sb->start));
return sb->start;
}
static void sb_free(SB *sb)
{
free(sb->start);
}
/*
* Unicode helper functions
*
* These are taken from the ccan/charset module and customized a bit.
* Putting them here means the compiler can (choose to) inline them,
* and it keeps ccan/json from having a dependency.
*/
/*
* Type for Unicode codepoints.
* We need our own because wchar_t might be 16 bits.
*/
typedef uint32_t uchar_t;
/*
* Validate a single UTF-8 character starting at @s.
* The string must be null-terminated.
*
* If it's valid, return its length (1 thru 4).
* If it's invalid or clipped, return 0.
*
* This function implements the syntax given in RFC3629, which is
* the same as that given in The Unicode Standard, Version 6.0.
*
* It has the following properties:
*
* * All codepoints U+0000..U+10FFFF may be encoded,
* except for U+D800..U+DFFF, which are reserved
* for UTF-16 surrogate pair encoding.
* * UTF-8 byte sequences longer than 4 bytes are not permitted,
* as they exceed the range of Unicode.
* * The sixty-six Unicode "non-characters" are permitted
* (namely, U+FDD0..U+FDEF, U+xxFFFE, and U+xxFFFF).
*/
static int utf8_validate_cz(const char *s)
{
unsigned char c = *s++;
if (c <= 0x7F) { /* 00..7F */
return 1;
} else if (c <= 0xC1) { /* 80..C1 */
/* Disallow overlong 2-byte sequence. */
return 0;
} else if (c <= 0xDF) { /* C2..DF */
/* Make sure subsequent byte is in the range 0x80..0xBF. */
if (((unsigned char)*s++ & 0xC0) != 0x80)
return 0;
return 2;
} else if (c <= 0xEF) { /* E0..EF */
/* Disallow overlong 3-byte sequence. */
if (c == 0xE0 && (unsigned char)*s < 0xA0)
return 0;
/* Disallow U+D800..U+DFFF. */
if (c == 0xED && (unsigned char)*s > 0x9F)
return 0;
/* Make sure subsequent bytes are in the range 0x80..0xBF. */
if (((unsigned char)*s++ & 0xC0) != 0x80)
return 0;
if (((unsigned char)*s++ & 0xC0) != 0x80)
return 0;
return 3;
} else if (c <= 0xF4) { /* F0..F4 */
/* Disallow overlong 4-byte sequence. */
if (c == 0xF0 && (unsigned char)*s < 0x90)
return 0;
/* Disallow codepoints beyond U+10FFFF. */
if (c == 0xF4 && (unsigned char)*s > 0x8F)
return 0;
/* Make sure subsequent bytes are in the range 0x80..0xBF. */
if (((unsigned char)*s++ & 0xC0) != 0x80)
return 0;
if (((unsigned char)*s++ & 0xC0) != 0x80)
return 0;
if (((unsigned char)*s++ & 0xC0) != 0x80)
return 0;
return 4;
} else { /* F5..FF */
return 0;
}
}
/* Validate a null-terminated UTF-8 string. */
static bool utf8_validate(const char *s)
{
int len;
for (; *s != 0; s += len) {
len = utf8_validate_cz(s);
if (len == 0)
return false;
}
return true;
}
/*
* Read a single UTF-8 character starting at @s,
* returning the length, in bytes, of the character read.
*
* This function assumes input is valid UTF-8,
* and that there are enough characters in front of @s.
*/
static int utf8_read_char(const char *s, uchar_t *out)
{
const unsigned char *c = (const unsigned char*) s;
assert(utf8_validate_cz(s));
if (c[0] <= 0x7F) {
/* 00..7F */
*out = c[0];
return 1;
} else if (c[0] <= 0xDF) {
/* C2..DF (unless input is invalid) */
*out = ((uchar_t)c[0] & 0x1F) << 6 |
((uchar_t)c[1] & 0x3F);
return 2;
} else if (c[0] <= 0xEF) {
/* E0..EF */
*out = ((uchar_t)c[0] & 0xF) << 12 |
((uchar_t)c[1] & 0x3F) << 6 |
((uchar_t)c[2] & 0x3F);
return 3;
} else {
/* F0..F4 (unless input is invalid) */
*out = ((uchar_t)c[0] & 0x7) << 18 |
((uchar_t)c[1] & 0x3F) << 12 |
((uchar_t)c[2] & 0x3F) << 6 |
((uchar_t)c[3] & 0x3F);
return 4;
}
}
/*
* Write a single UTF-8 character to @s,
* returning the length, in bytes, of the character written.
*
* @unicode must be U+0000..U+10FFFF, but not U+D800..U+DFFF.
*
* This function will write up to 4 bytes to @out.
*/
static int utf8_write_char(uchar_t unicode, char *out)
{
unsigned char *o = (unsigned char*) out;
assert(unicode <= 0x10FFFF && !(unicode >= 0xD800 && unicode <= 0xDFFF));
if (unicode <= 0x7F) {
/* U+0000..U+007F */
*o++ = unicode;
return 1;
} else if (unicode <= 0x7FF) {
/* U+0080..U+07FF */
*o++ = 0xC0 | unicode >> 6;
*o++ = 0x80 | (unicode & 0x3F);
return 2;
} else if (unicode <= 0xFFFF) {
/* U+0800..U+FFFF */
*o++ = 0xE0 | unicode >> 12;
*o++ = 0x80 | (unicode >> 6 & 0x3F);
*o++ = 0x80 | (unicode & 0x3F);
return 3;
} else {
/* U+10000..U+10FFFF */
*o++ = 0xF0 | unicode >> 18;
*o++ = 0x80 | (unicode >> 12 & 0x3F);
*o++ = 0x80 | (unicode >> 6 & 0x3F);
*o++ = 0x80 | (unicode & 0x3F);
return 4;
}
}
/*
* Compute the Unicode codepoint of a UTF-16 surrogate pair.
*
* @uc should be 0xD800..0xDBFF, and @lc should be 0xDC00..0xDFFF.
* If they aren't, this function returns false.
*/
static bool from_surrogate_pair(uint16_t uc, uint16_t lc, uchar_t *unicode)
{
if (uc >= 0xD800 && uc <= 0xDBFF && lc >= 0xDC00 && lc <= 0xDFFF) {
*unicode = 0x10000 + ((((uchar_t)uc & 0x3FF) << 10) | (lc & 0x3FF));
return true;
} else {
return false;
}
}
/*
* Construct a UTF-16 surrogate pair given a Unicode codepoint.
*
* @unicode must be U+10000..U+10FFFF.
*/
static void to_surrogate_pair(uchar_t unicode, uint16_t *uc, uint16_t *lc)
{
uchar_t n;
assert(unicode >= 0x10000 && unicode <= 0x10FFFF);
n = unicode - 0x10000;
*uc = ((n >> 10) & 0x3FF) | 0xD800;
*lc = (n & 0x3FF) | 0xDC00;
}
#define is_space(c) ((c) == '\t' || (c) == '\n' || (c) == '\r' || (c) == ' ')
#define is_digit(c) ((c) >= '0' && (c) <= '9')
static bool parse_value (const char **sp, JsonNode **out);
static bool parse_string (const char **sp, char **out);
static bool parse_number (const char **sp, double *out);
static bool parse_array (const char **sp, JsonNode **out);
static bool parse_object (const char **sp, JsonNode **out);
static bool parse_hex16 (const char **sp, uint16_t *out);
static bool expect_literal (const char **sp, const char *str);
static void skip_space (const char **sp);
static void emit_value (SB *out, const JsonNode *node);
static void emit_value_indented (SB *out, const JsonNode *node, const char *space, int indent_level);
static void emit_string (SB *out, const char *str);
static void emit_number (SB *out, double num);
static void emit_array (SB *out, const JsonNode *array);
static void emit_array_indented (SB *out, const JsonNode *array, const char *space, int indent_level);
static void emit_object (SB *out, const JsonNode *object);
static void emit_object_indented (SB *out, const JsonNode *object, const char *space, int indent_level);
static int write_hex16(char *out, uint16_t val);
static JsonNode *mknode(JsonTag tag);
static void append_node(JsonNode *parent, JsonNode *child);
static void prepend_node(JsonNode *parent, JsonNode *child);
static void append_member(JsonNode *object, char *key, JsonNode *value);
/* Assertion-friendly validity checks */
static bool tag_is_valid(unsigned int tag);
static bool number_is_valid(const char *num);
JsonNode *json_decode(const char *json)
{
const char *s = json;
JsonNode *ret;
skip_space(&s);
if (!parse_value(&s, &ret))
return NULL;
skip_space(&s);
if (*s != 0) {
json_delete(ret);
return NULL;
}
return ret;
}
char *json_encode(const JsonNode *node)
{
return json_stringify(node, NULL);
}
char *json_encode_string(const char *str)
{
SB sb;
sb_init(&sb);
emit_string(&sb, str);
return sb_finish(&sb);
}
char *json_stringify(const JsonNode *node, const char *space)
{
SB sb;
sb_init(&sb);
if (space != NULL)
emit_value_indented(&sb, node, space, 0);
else
emit_value(&sb, node);
return sb_finish(&sb);
}
void json_delete(JsonNode *node)
{
if (node != NULL) {
json_remove_from_parent(node);
switch (node->tag) {
case JSON_STRING:
free(node->string_);
break;
case JSON_ARRAY:
case JSON_OBJECT:
{
JsonNode *child, *next;
for (child = node->children.head; child != NULL; child = next) {
next = child->next;
json_delete(child);
}
break;
}
default:;
}
free(node);
}
}
bool json_validate(const char *json)
{
const char *s = json;
skip_space(&s);
if (!parse_value(&s, NULL))
return false;
skip_space(&s);
if (*s != 0)
return false;
return true;
}
JsonNode *json_find_element(JsonNode *array, int index)
{
JsonNode *element;
int i = 0;
if (array == NULL || array->tag != JSON_ARRAY)
return NULL;
json_foreach(element, array) {
if (i == index)
return element;
i++;
}
return NULL;
}
JsonNode *json_find_member(JsonNode *object, const char *name)
{
JsonNode *member;
if (object == NULL || object->tag != JSON_OBJECT)
return NULL;
json_foreach(member, object)
if (strcmp(member->key, name) == 0)
return member;
return NULL;
}
JsonNode *json_first_child(const JsonNode *node)
{
if (node != NULL && (node->tag == JSON_ARRAY || node->tag == JSON_OBJECT))
return node->children.head;
return NULL;
}
static JsonNode *mknode(JsonTag tag)
{
JsonNode *ret = (JsonNode*) calloc(1, sizeof(JsonNode));
if (ret == NULL)
out_of_memory();
ret->tag = tag;
return ret;
}
JsonNode *json_mknull(void)
{
return mknode(JSON_NULL);
}
JsonNode *json_mkbool(bool b)
{
JsonNode *ret = mknode(JSON_BOOL);
ret->bool_ = b;
return ret;
}
static JsonNode *mkstring(char *s)
{
JsonNode *ret = mknode(JSON_STRING);
ret->string_ = s;
return ret;
}
JsonNode *json_mkstring(const char *s)
{
return mkstring(json_strdup(s));
}
JsonNode *json_mknumber(double n)
{
JsonNode *node = mknode(JSON_NUMBER);
node->number_ = n;
return node;
}
JsonNode *json_mkarray(void)
{
return mknode(JSON_ARRAY);
}
JsonNode *json_mkobject(void)
{
return mknode(JSON_OBJECT);
}
static void append_node(JsonNode *parent, JsonNode *child)
{
child->parent = parent;
child->prev = parent->children.tail;
child->next = NULL;
if (parent->children.tail != NULL)
parent->children.tail->next = child;
else
parent->children.head = child;
parent->children.tail = child;
}
static void prepend_node(JsonNode *parent, JsonNode *child)
{
child->parent = parent;
child->prev = NULL;
child->next = parent->children.head;
if (parent->children.head != NULL)
parent->children.head->prev = child;
else
parent->children.tail = child;
parent->children.head = child;
}
static void append_member(JsonNode *object, char *key, JsonNode *value)
{
value->key = key;
append_node(object, value);
}
void json_append_element(JsonNode *array, JsonNode *element)
{
assert(array->tag == JSON_ARRAY);
assert(element->parent == NULL);
append_node(array, element);
}
void json_prepend_element(JsonNode *array, JsonNode *element)
{
assert(array->tag == JSON_ARRAY);
assert(element->parent == NULL);
prepend_node(array, element);
}
void json_append_member(JsonNode *object, const char *key, JsonNode *value)
{
assert(object->tag == JSON_OBJECT);
assert(value->parent == NULL);
append_member(object, json_strdup(key), value);
}
void json_prepend_member(JsonNode *object, const char *key, JsonNode *value)
{
assert(object->tag == JSON_OBJECT);
assert(value->parent == NULL);
value->key = json_strdup(key);
prepend_node(object, value);
}
void json_remove_from_parent(JsonNode *node)
{
JsonNode *parent = node->parent;
if (parent != NULL) {
if (node->prev != NULL)
node->prev->next = node->next;
else
parent->children.head = node->next;
if (node->next != NULL)
node->next->prev = node->prev;
else
parent->children.tail = node->prev;
free(node->key);
node->parent = NULL;
node->prev = node->next = NULL;
node->key = NULL;
}
}
static bool parse_value(const char **sp, JsonNode **out)
{
const char *s = *sp;
switch (*s) {
case 'n':
if (expect_literal(&s, "null")) {
if (out)
*out = json_mknull();
*sp = s;
return true;
}
return false;
case 'f':
if (expect_literal(&s, "false")) {
if (out)
*out = json_mkbool(false);
*sp = s;
return true;
}
return false;
case 't':
if (expect_literal(&s, "true")) {
if (out)
*out = json_mkbool(true);
*sp = s;
return true;
}
return false;
case '"': {
char *str;
if (parse_string(&s, out ? &str : NULL)) {
if (out)
*out = mkstring(str);
*sp = s;
return true;
}
return false;
}
case '[':
if (parse_array(&s, out)) {
*sp = s;
return true;
}
return false;
case '{':
if (parse_object(&s, out)) {
*sp = s;
return true;
}
return false;
default: {
double num;
if (parse_number(&s, out ? &num : NULL)) {
if (out)
*out = json_mknumber(num);
*sp = s;
return true;
}
return false;
}
}
}
static bool parse_array(const char **sp, JsonNode **out)
{
const char *s = *sp;
JsonNode *ret = out ? json_mkarray() : NULL;
JsonNode *element;
if (*s++ != '[')
goto failure;
skip_space(&s);
if (*s == ']') {
s++;
goto success;
}
for (;;) {
if (!parse_value(&s, out ? &element : NULL))
goto failure;
skip_space(&s);
if (out)
json_append_element(ret, element);
if (*s == ']') {
s++;
goto success;
}
if (*s++ != ',')
goto failure;
skip_space(&s);
}
success:
*sp = s;
if (out)
*out = ret;
return true;
failure:
json_delete(ret);
return false;
}
static bool parse_object(const char **sp, JsonNode **out)
{
const char *s = *sp;
JsonNode *ret = out ? json_mkobject() : NULL;
char *key;
JsonNode *value;
if (*s++ != '{')
goto failure;
skip_space(&s);
if (*s == '}') {
s++;
goto success;
}
for (;;) {
if (!parse_string(&s, out ? &key : NULL))
goto failure;
skip_space(&s);
if (*s++ != ':')
goto failure_free_key;
skip_space(&s);
if (!parse_value(&s, out ? &value : NULL))
goto failure_free_key;
skip_space(&s);
if (out)
append_member(ret, key, value);
if (*s == '}') {
s++;
goto success;
}
if (*s++ != ',')
goto failure;
skip_space(&s);
}
success:
*sp = s;
if (out)
*out = ret;
return true;
failure_free_key:
if (out)
free(key);
failure:
json_delete(ret);
return false;
}
bool parse_string(const char **sp, char **out)
{
const char *s = *sp;
SB sb = { NULL, NULL, NULL };
char throwaway_buffer[4];
/* enough space for a UTF-8 character */
char *b;
if (*s++ != '"')
return false;
if (out) {
sb_init(&sb);
sb_need(&sb, 4);
b = sb.cur;
} else {
b = throwaway_buffer;
}
while (*s != '"') {
unsigned char c = *s++;
/* Parse next character, and write it to b. */
if (c == '\\') {
c = *s++;
switch (c) {
case '"':
case '\\':
case '/':
*b++ = c;
break;
case 'b':
*b++ = '\b';
break;
case 'f':
*b++ = '\f';
break;
case 'n':
*b++ = '\n';
break;
case 'r':
*b++ = '\r';
break;
case 't':
*b++ = '\t';
break;
case 'u':
{
uint16_t uc, lc;
uchar_t unicode;
if (!parse_hex16(&s, &uc))
goto failed;
if (uc >= 0xD800 && uc <= 0xDFFF) {
/* Handle UTF-16 surrogate pair. */
if (*s++ != '\\' || *s++ != 'u' || !parse_hex16(&s, &lc))
goto failed; /* Incomplete surrogate pair. */
if (!from_surrogate_pair(uc, lc, &unicode))
goto failed; /* Invalid surrogate pair. */
} else if (uc == 0) {
/* Disallow "\u0000". */
goto failed;
} else {
unicode = uc;
}
b += utf8_write_char(unicode, b);
break;
}
default:
/* Invalid escape */
goto failed;
}
} else if (c <= 0x1F) {
/* Control characters are not allowed in string literals. */
goto failed;
} else {
/* Validate and echo a UTF-8 character. */
int len;
s--;
len = utf8_validate_cz(s);
if (len == 0)
goto failed; /* Invalid UTF-8 character. */
while (len--)
*b++ = *s++;
}
/*
* Update sb to know about the new bytes,
* and set up b to write another character.
*/
if (out) {
sb.cur = b;
sb_need(&sb, 4);
b = sb.cur;
} else {
b = throwaway_buffer;
}
}
s++;
if (out)
*out = sb_finish(&sb);
*sp = s;
return true;
failed:
if (out)
sb_free(&sb);
return false;
}
/*
* The JSON spec says that a number shall follow this precise pattern
* (spaces and quotes added for readability):
* '-'? (0 | [1-9][0-9]*) ('.' [0-9]+)? ([Ee] [+-]? [0-9]+)?
*
* However, some JSON parsers are more liberal. For instance, PHP accepts
* '.5' and '1.'. JSON.parse accepts '+3'.
*
* This function takes the strict approach.
*/
bool parse_number(const char **sp, double *out)
{
const char *s = *sp;
/* '-'? */
if (*s == '-')
s++;
/* (0 | [1-9][0-9]*) */
if (*s == '0') {
s++;
} else {
if (!is_digit(*s))
return false;
do {
s++;
} while (is_digit(*s));
}
/* ('.' [0-9]+)? */
if (*s == '.') {
s++;
if (!is_digit(*s))
return false;
do {
s++;
} while (is_digit(*s));
}
/* ([Ee] [+-]? [0-9]+)? */
if (*s == 'E' || *s == 'e') {
s++;
if (*s == '+' || *s == '-')
s++;
if (!is_digit(*s))
return false;
do {
s++;
} while (is_digit(*s));
}
if (out)
*out = strtod(*sp, NULL);
*sp = s;
return true;
}
static void skip_space(const char **sp)
{
const char *s = *sp;
while (is_space(*s))
s++;
*sp = s;
}
static void emit_value(SB *out, const JsonNode *node)
{
assert(tag_is_valid(node->tag));
switch (node->tag) {
case JSON_NULL:
sb_puts(out, "null");
break;
case JSON_BOOL:
sb_puts(out, node->bool_ ? "true" : "false");
break;
case JSON_STRING:
emit_string(out, node->string_);
break;
case JSON_NUMBER:
emit_number(out, node->number_);
break;
case JSON_ARRAY:
emit_array(out, node);
break;
case JSON_OBJECT:
emit_object(out, node);
break;
default:
assert(false);
}
}
void emit_value_indented(SB *out, const JsonNode *node, const char *space, int indent_level)
{
assert(tag_is_valid(node->tag));
switch (node->tag) {
case JSON_NULL:
sb_puts(out, "null");
break;
case JSON_BOOL:
sb_puts(out, node->bool_ ? "true" : "false");
break;
case JSON_STRING:
emit_string(out, node->string_);
break;
case JSON_NUMBER:
emit_number(out, node->number_);
break;
case JSON_ARRAY:
emit_array_indented(out, node, space, indent_level);
break;
case JSON_OBJECT:
emit_object_indented(out, node, space, indent_level);
break;
default:
assert(false);
}
}
static void emit_array(SB *out, const JsonNode *array)
{
const JsonNode *element;
sb_putc(out, '[');
json_foreach(element, array) {
emit_value(out, element);
if (element->next != NULL)
sb_putc(out, ',');
}
sb_putc(out, ']');
}
static void emit_array_indented(SB *out, const JsonNode *array, const char *space, int indent_level)
{
const JsonNode *element = array->children.head;
int i;
if (element == NULL) {
sb_puts(out, "[]");
return;
}
sb_puts(out, "[\n");
while (element != NULL) {
for (i = 0; i < indent_level + 1; i++)
sb_puts(out, space);
emit_value_indented(out, element, space, indent_level + 1);
element = element->next;
sb_puts(out, element != NULL ? ",\n" : "\n");
}
for (i = 0; i < indent_level; i++)
sb_puts(out, space);
sb_putc(out, ']');
}
static void emit_object(SB *out, const JsonNode *object)
{
const JsonNode *member;
sb_putc(out, '{');
json_foreach(member, object) {
emit_string(out, member->key);
sb_putc(out, ':');
emit_value(out, member);
if (member->next != NULL)
sb_putc(out, ',');
}
sb_putc(out, '}');
}
static void emit_object_indented(SB *out, const JsonNode *object, const char *space, int indent_level)
{
const JsonNode *member = object->children.head;
int i;
if (member == NULL) {
sb_puts(out, "{}");
return;
}
sb_puts(out, "{\n");
while (member != NULL) {
for (i = 0; i < indent_level + 1; i++)
sb_puts(out, space);
emit_string(out, member->key);
sb_puts(out, ": ");
emit_value_indented(out, member, space, indent_level + 1);
member = member->next;
sb_puts(out, member != NULL ? ",\n" : "\n");
}
for (i = 0; i < indent_level; i++)
sb_puts(out, space);
sb_putc(out, '}');
}
void emit_string(SB *out, const char *str)
{
bool escape_unicode = false;
const char *s = str;
char *b;
assert(utf8_validate(str));
/*
* 14 bytes is enough space to write up to two
* \uXXXX escapes and two quotation marks.
*/
sb_need(out, 14);
b = out->cur;
*b++ = '"';
while (*s != 0) {
unsigned char c = *s++;
/* Encode the next character, and write it to b. */
switch (c) {
case '"':
*b++ = '\\';
*b++ = '"';
break;
case '\\':
*b++ = '\\';
*b++ = '\\';
break;
case '\b':
*b++ = '\\';
*b++ = 'b';
break;
case '\f':
*b++ = '\\';
*b++ = 'f';
break;
case '\n':
*b++ = '\\';
*b++ = 'n';
break;
case '\r':
*b++ = '\\';
*b++ = 'r';
break;
case '\t':
*b++ = '\\';
*b++ = 't';
break;
default: {
int len;
s--;
len = utf8_validate_cz(s);
if (len == 0) {
/*
* Handle invalid UTF-8 character gracefully in production
* by writing a replacement character (U+FFFD)
* and skipping a single byte.
*
* This should never happen when assertions are enabled
* due to the assertion at the beginning of this function.
*/
assert(false);
if (escape_unicode) {
strcpy(b, "\\uFFFD");
b += 6;
} else {
*b++ = (char)0xEF;
*b++ = (char)0xBF;
*b++ = (char)0xBD;
}
s++;
} else if (c < 0x1F || (c >= 0x80 && escape_unicode)) {
/* Encode using \u.... */
uint32_t unicode;
s += utf8_read_char(s, &unicode);
if (unicode <= 0xFFFF) {
*b++ = '\\';
*b++ = 'u';
b += write_hex16(b, unicode);
} else {
/* Produce a surrogate pair. */
uint16_t uc, lc;
assert(unicode <= 0x10FFFF);
to_surrogate_pair(unicode, &uc, &lc);
*b++ = '\\';
*b++ = 'u';
b += write_hex16(b, uc);
*b++ = '\\';
*b++ = 'u';
b += write_hex16(b, lc);
}
} else {
/* Write the character directly. */
while (len--)
*b++ = *s++;
}
break;
}
}
/*
* Update *out to know about the new bytes,
* and set up b to write another encoded character.
*/
out->cur = b;
sb_need(out, 14);
b = out->cur;
}
*b++ = '"';
out->cur = b;
}
static void emit_number(SB *out, double num)
{
/*
* This isn't exactly how JavaScript renders numbers,
* but it should produce valid JSON for reasonable numbers
* preserve precision well enough, and avoid some oddities
* like 0.3 -> 0.299999999999999988898 .
*/
char buf[64];
sprintf(buf, "%.16g", num);
if (number_is_valid(buf))
sb_puts(out, buf);
else
sb_puts(out, "null");
}
static bool tag_is_valid(unsigned int tag)
{
return (/* tag >= JSON_NULL && */ tag <= JSON_OBJECT);
}
static bool number_is_valid(const char *num)
{
return (parse_number(&num, NULL) && *num == '\0');
}
static bool expect_literal(const char **sp, const char *str)
{
const char *s = *sp;
while (*str != '\0')
if (*s++ != *str++)
return false;
*sp = s;
return true;
}
/*
* Parses exactly 4 hex characters (capital or lowercase).
* Fails if any input chars are not [0-9A-Fa-f].
*/
static bool parse_hex16(const char **sp, uint16_t *out)
{
const char *s = *sp;
uint16_t ret = 0;
uint16_t i;
uint16_t tmp;
char c;
for (i = 0; i < 4; i++) {
c = *s++;
if (c >= '0' && c <= '9')
tmp = c - '0';
else if (c >= 'A' && c <= 'F')
tmp = c - 'A' + 10;
else if (c >= 'a' && c <= 'f')
tmp = c - 'a' + 10;
else
return false;
ret <<= 4;
ret += tmp;
}
if (out)
*out = ret;
*sp = s;
return true;
}
/*
* Encodes a 16-bit number into hexadecimal,
* writing exactly 4 hex chars.
*/
static int write_hex16(char *out, uint16_t val)
{
const char *hex = "0123456789ABCDEF";
*out++ = hex[(val >> 12) & 0xF];
*out++ = hex[(val >> 8) & 0xF];
*out++ = hex[(val >> 4) & 0xF];
*out++ = hex[ val & 0xF];
return 4;
}
bool json_check(const JsonNode *node, char errmsg[256])
{
#define problem(...) do { \
if (errmsg != NULL) \
snprintf(errmsg, 256, __VA_ARGS__); \
return false; \
} while (0)
if (node->key != NULL && !utf8_validate(node->key))
problem("key contains invalid UTF-8");
if (!tag_is_valid(node->tag))
problem("tag is invalid (%u)", node->tag);
if (node->tag == JSON_BOOL) {
if (node->bool_ != false && node->bool_ != true)
problem("bool_ is neither false (%d) nor true (%d)", (int)false, (int)true);
} else if (node->tag == JSON_STRING) {
if (node->string_ == NULL)
problem("string_ is NULL");
if (!utf8_validate(node->string_))
problem("string_ contains invalid UTF-8");
} else if (node->tag == JSON_ARRAY || node->tag == JSON_OBJECT) {
JsonNode *head = node->children.head;
JsonNode *tail = node->children.tail;
if (head == NULL || tail == NULL) {
if (head != NULL)
problem("tail is NULL, but head is not");
if (tail != NULL)
problem("head is NULL, but tail is not");
} else {
JsonNode *child;
JsonNode *last = NULL;
if (head->prev != NULL)
problem("First child's prev pointer is not NULL");
for (child = head; child != NULL; last = child, child = child->next) {
if (child == node)
problem("node is its own child");
if (child->next == child)
problem("child->next == child (cycle)");
if (child->next == head)
problem("child->next == head (cycle)");
if (child->parent != node)
problem("child does not point back to parent");
if (child->next != NULL && child->next->prev != child)
problem("child->next does not point back to child");
if (node->tag == JSON_ARRAY && child->key != NULL)
problem("Array element's key is not NULL");
if (node->tag == JSON_OBJECT && child->key == NULL)
problem("Object member's key is NULL");
if (!json_check(child, errmsg))
return false;
}
if (last != tail)
problem("tail does not match pointer found by starting at head and following next links");
}
}
return true;
#undef problem
}