1
0
Fork 0
knot/tests/modules/test_rrl.c
Daniel Baumann 70063ca008
Adding upstream version 3.4.6.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-21 13:47:52 +02:00

418 lines
13 KiB
C

/* Copyright (C) 2024 CZ.NIC, z.s.p.o. <knot-dns@labs.nic.cz>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <tap/basic.h>
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include <stdatomic.h>
#include "libdnssec/crypto.h"
#include "libdnssec/random.h"
#include "libknot/libknot.h"
#include "contrib/openbsd/siphash.h"
#include "contrib/sockaddr.h"
#include "time.h"
int fakeclock_gettime(clockid_t clockid, struct timespec *tp);
#define clock_gettime fakeclock_gettime
#include "knot/modules/rrl/functions.c"
#undef clock_gettime
#define RRL_THREADS 4
//#define RRL_SYNC_WITH_REAL_TIME
#define BATCH_QUERIES_LOG 3 // threads acquire queries in batches of 8
#define HOSTS_LOG 3 // at most 6 attackers + 2 wildcard addresses for normal users
#define TICK_QUERIES_LOG 13 // at most 1024 queries per host per tick
// Accessing RRL configuration of INSTANT/RATE limits for V4/V6 and specific prefix.
#define LIMIT(type, Vx, prefix) (RRL_MULT(Vx, prefix) * RRL_ ## type ## _LIMIT)
#define RRL_CONFIG(Vx, name) RRL_ ## Vx ## _ ## name
#define RRL_MULT(Vx, prefix) get_mult(RRL_CONFIG(Vx, PREFIXES), RRL_CONFIG(Vx, RATE_MULT), RRL_CONFIG(Vx, PREFIXES_CNT), prefix)
static inline kru_price_t get_mult(uint8_t prefixes[], kru_price_t mults[], size_t cnt, uint8_t wanted_prefix) {
for (size_t i = 0; i < cnt; i++)
if (prefixes[i] == wanted_prefix)
return mults[i];
assert(0);
return 0;
}
// Macro correction depending on the table mode.
int DIFF = 0;
// Instant limits and rate limits per msec.
#define INST(Vx, prefix) (LIMIT(INSTANT, Vx, prefix) + DIFF)
#define RATEM(Vx, prefix) (LIMIT(RATE, Vx, prefix) / 1000 + DIFF)
// Expected range of limits for parallel test.
#define RANGE_INST(Vx, prefix) INST(Vx, prefix) - 1, INST(Vx, prefix) + RRL_THREADS - 1 + DIFF
#define RANGE_RATEM(Vx, prefix) RATEM(Vx, prefix) - 1 - DIFF, RATEM(Vx, prefix) + RRL_THREADS - DIFF
#define RANGE_UNLIM(queries) queries, queries
/* Fix seed for randomness in RLL module. Change if improbable collisions arise. (one byte) */
#define RRL_SEED_GENERIC 1
#define RRL_SEED_AVX2 1
struct kru_generic {
SIPHASH_KEY hash_key;
// ...
};
struct kru_avx2 {
_Alignas(32) char hash_key[48];
// ...
};
/* Override time in RRL module. */
struct timespec fakeclock_start;
uint32_t fakeclock_tick = 0;
void fakeclock_init(void)
{
clock_gettime(CLOCK_MONOTONIC_COARSE, &fakeclock_start);
fakeclock_tick = 0;
}
int fakeclock_gettime(clockid_t clockid, struct timespec *tp)
{
uint32_t inc_msec = fakeclock_tick;
tp->tv_sec = fakeclock_start.tv_sec + (fakeclock_start.tv_nsec / 1000000 + inc_msec) / 1000;
tp->tv_nsec = (fakeclock_start.tv_nsec + (inc_msec % 1000) * 1000000) % 1000000000;
return 0;
}
struct host {
uint32_t queries_per_tick;
int addr_family;
char *addr_format;
uint32_t min_passed, max_passed;
_Atomic uint32_t passed;
};
struct stage {
uint32_t first_tick, last_tick;
struct host hosts[1 << HOSTS_LOG];
};
struct runnable_data {
rrl_table_t *rrl;
int prime;
_Atomic uint32_t *queries_acquired, *queries_done;
struct stage *stages;
};
static void *rrl_runnable(void *arg)
{
struct runnable_data *d = (struct runnable_data *)arg;
size_t si = 0;
char addr_str[40];
struct sockaddr_storage addr;
while (true) {
uint32_t qi1 = atomic_fetch_add(d->queries_acquired, 1 << BATCH_QUERIES_LOG);
/* increment time if needed; sync on incrementing using spinlock */
uint32_t tick = qi1 >> TICK_QUERIES_LOG;
for (size_t i = 1; tick != fakeclock_tick; i++) {
if ((*d->queries_done >> TICK_QUERIES_LOG) >= tick) {
fakeclock_tick = tick;
}
if (i % (1<<14) == 0) sched_yield();
__sync_synchronize();
}
/* increment stage if needed */
while (tick > d->stages[si].last_tick) {
++si;
if (!d->stages[si].first_tick) return NULL;
}
#ifdef RRL_SYNC_WITH_REAL_TIME
{
struct timespec ts_fake, ts_real;
do {
fakeclock_gettime(CLOCK_MONOTONIC_COARSE, &ts_fake);
clock_gettime(CLOCK_MONOTONIC_COARSE, &ts_real);
} while (!((ts_real.tv_sec > ts_fake.tv_sec) ||
((ts_real.tv_sec == ts_fake.tv_sec) && (ts_real.tv_nsec >= ts_fake.tv_nsec))));
}
#endif
if (tick >= d->stages[si].first_tick) {
uint32_t qi2 = 0;
do {
uint32_t qi = qi1 + qi2;
/* perform query qi */
uint32_t hi = qi % (1 << HOSTS_LOG);
if (!d->stages[si].hosts[hi].queries_per_tick) continue;
uint32_t hqi = (qi % (1 << TICK_QUERIES_LOG)) >> HOSTS_LOG; // host query index within tick
if (hqi >= d->stages[si].hosts[hi].queries_per_tick) continue;
hqi += (qi >> TICK_QUERIES_LOG) * d->stages[si].hosts[hi].queries_per_tick; // across ticks
(void)snprintf(addr_str, sizeof(addr_str), d->stages[si].hosts[hi].addr_format,
hqi % 0xff, (hqi >> 8) % 0xff, (hqi >> 16) % 0xff);
sockaddr_set(&addr, d->stages[si].hosts[hi].addr_family, addr_str, 0);
if (rrl_query(d->rrl, &addr, NULL) == KNOT_EOK) {
atomic_fetch_add(&d->stages[si].hosts[hi].passed, 1);
if (!d->rrl->rw_mode) {
rrl_update(d->rrl, &addr, 1);
}
}
} while ((qi2 = (qi2 + d->prime) % (1 << BATCH_QUERIES_LOG)));
}
atomic_fetch_add(d->queries_done, 1 << BATCH_QUERIES_LOG);
}
}
char *impl_name = "";
rrl_table_t *rrl = NULL;
void count_test(char *desc, int expected_passing, double margin_fract,
int addr_family, char *addr_format, uint32_t min_value, uint32_t max_value)
{
uint32_t max_queries = expected_passing > 0 ? 2 * expected_passing : -expected_passing;
struct sockaddr_storage addr;
char addr_str[40];
int cnt = -1;
for (size_t i = 0; i < max_queries; i++) {
(void)snprintf(addr_str, sizeof(addr_str), addr_format,
i % (max_value - min_value + 1) + min_value,
i / (max_value - min_value + 1) % 256);
sockaddr_set(&addr, addr_family, addr_str, 0);
if (rrl_query(rrl, &addr, NULL) != KNOT_EOK) {
cnt = i;
break;
}
if (!rrl->rw_mode) {
rrl_update(rrl, &addr, 1);
}
}
if (expected_passing < 0) expected_passing = -1;
if (margin_fract == 0) {
is_int(expected_passing, cnt, "rrl(%s): %-48s [%7d ]", impl_name, desc, expected_passing);
} else {
int max_diff = expected_passing * margin_fract;
ok((expected_passing - max_diff <= cnt) && (cnt <= expected_passing + max_diff),
"rrl(%s): %-48s [%7d <=%7d <=%7d ]", impl_name, desc,
expected_passing - max_diff, cnt, expected_passing + max_diff);
}
}
void test_rrl(bool rw_mode)
{
size_t RRL_TABLE_SIZE = (1 << 20);
uint32_t RRL_INSTANT_LIMIT = (1 << 7);
uint32_t RRL_RATE_LIMIT = (1 << 16);
if (rw_mode) {
RRL_INSTANT_LIMIT = (1 << 8);
RRL_RATE_LIMIT = (1 << 17);
}
fakeclock_init();
/* create rrl table */
rrl = rrl_create(RRL_TABLE_SIZE, RRL_INSTANT_LIMIT, RRL_RATE_LIMIT, rw_mode, 0);
ok(rrl != NULL, "rrl(%s): create", impl_name);
assert(rrl);
if (KRU.initialize == KRU_GENERIC.initialize) {
struct kru_generic *kru = (struct kru_generic *) rrl->kru;
memset(&kru->hash_key, RRL_SEED_GENERIC, sizeof(kru->hash_key));
} else if (KRU.initialize == KRU_AVX2.initialize) {
struct kru_avx2 *kru = (struct kru_avx2 *) rrl->kru;
memset(&kru->hash_key, RRL_SEED_AVX2, sizeof(kru->hash_key));
} else {
assert(0);
}
/* IPv4 multi-prefix tests */
static_assert(RRL_V4_PREFIXES_CNT == 4,
"There are no more IPv4 limited prefixes (/32, /24, /20, /18 will be tested).");
count_test("IPv4 instant limit /32", INST(V4, 32), 0,
AF_INET, "128.0.0.0", 0, 0);
count_test("IPv4 instant limit /32 not applied on /31", -1, 0,
AF_INET, "128.0.0.1", 0, 0);
count_test("IPv4 instant limit /24", INST(V4, 24) - INST(V4, 32) - 1, 0,
AF_INET, "128.0.0.%d", 2, 255);
count_test("IPv4 instant limit /24 not applied on /23", -1, 0,
AF_INET, "128.0.1.0", 0, 0);
count_test("IPv4 instant limit /20", INST(V4, 20) - INST(V4, 24) - 1, 0.001,
AF_INET, "128.0.%d.%d", 2, 15);
count_test("IPv4 instant limit /20 not applied on /19", -1, 0,
AF_INET, "128.0.16.0", 0, 0);
count_test("IPv4 instant limit /18", INST(V4, 18) - INST(V4, 20) - 1, 0.01,
AF_INET, "128.0.%d.%d", 17, 63);
count_test("IPv4 instant limit /18 not applied on /17", -1, 0,
AF_INET, "128.0.64.0", 0, 0);
/* IPv6 multi-prefix tests */
static_assert(RRL_V6_PREFIXES_CNT == 5,
"There are no more IPv6 limited prefixes (/128, /64, /56, /48, /32 will be tested).");
count_test("IPv6 instant limit /128, independent to IPv4", INST(V6, 128), 0,
AF_INET6, "8000::", 0, 0);
count_test("IPv6 instant limit /128 not applied on /127", -1, 0,
AF_INET6, "8000::1", 0, 0);
count_test("IPv6 instant limit /64", INST(V6, 64) - INST(V6, 128) - 1, 0,
AF_INET6, "8000:0:0:0:%02x%02x::", 0x01, 0xff);
count_test("IPv6 instant limit /64 not applied on /63", -1, 0,
AF_INET6, "8000:0:0:1::", 0, 0);
count_test("IPv6 instant limit /56", INST(V6, 56) - INST(V6, 64) - 1, rw_mode ? 0 : 0.01,
AF_INET6, "8000:0:0:00%02x:%02x00::", 0x02, 0xff);
count_test("IPv6 instant limit /56 not applied on /55", -1, 0,
AF_INET6, "8000:0:0:0100::", 0, 0);
count_test("IPv6 instant limit /48", INST(V6, 48) - INST(V6, 56) - 1, 0.01,
AF_INET6, "8000:0:0:%02x%02x::", 0x02, 0xff);
count_test("IPv6 instant limit /48 not applied on /47", -1, 0,
AF_INET6, "8000:0:1::", 0, 0);
count_test("IPv6 instant limit /32", INST(V6, 32) - INST(V6, 48) - 1, rw_mode ? 0.001 : 0,
AF_INET6, "8000:0:%02x%02x::", 0x02, 0xff);
count_test("IPv6 instant limit /32 not applied on /31", -1, 0,
AF_INET6, "8000:1::", 0, 0);
/* limit after 1 msec */
fakeclock_tick++;
count_test("IPv4 rate limit /32 after 1 msec", RATEM(V4, 32), 0,
AF_INET, "128.0.0.0", 0, 0);
count_test("IPv6 rate limit /128 after 1 msec", RATEM(V6, 128), 0,
AF_INET6, "8000::", 0, 0);
/* parallel tests */
struct stage stages[] = {
/* first tick, last tick, hosts */
{32, 32, {
/* queries per tick, family, address, min passed, max passed */
{1024, AF_INET, "%d.%d.%d.1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET, "3.3.3.3", RANGE_INST ( V4, 32 )},
{ 512, AF_INET, "4.4.4.4", RANGE_INST ( V4, 32 )},
{1024, AF_INET6, "%x%x:%x00::1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET6, "3333::3333", RANGE_INST ( V6, 128 )},
{ 512, AF_INET6, "4444::4444", RANGE_INST ( V6, 128 )}
}},
{33, 255, {
{1024, AF_INET, "%d.%d.%d.1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET, "3.3.3.3", RANGE_RATEM ( V4, 32 )},
{ 512, AF_INET, "4.4.4.4", RANGE_RATEM ( V4, 32 )},
{1024, AF_INET6, "%x%x:%x00::1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET6, "3333::3333", RANGE_RATEM ( V6, 128 )},
{ 512, AF_INET6, "4444::4444", RANGE_RATEM ( V6, 128 )},
}},
{256, 511, {
{1024, AF_INET, "3.3.3.3", RANGE_RATEM ( V4, 32 )},
{1024, AF_INET6, "3333::3333", RANGE_RATEM ( V6, 128 )}
}},
{512, 512, {
{1024, AF_INET, "%d.%d.%d.1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET, "3.3.3.3", RANGE_RATEM ( V4, 32 )},
{ 512, AF_INET, "4.4.4.4", RANGE_INST ( V4, 32 )},
{1024, AF_INET6, "%x%x:%x00::1", RANGE_UNLIM ( 1024 )},
{1024, AF_INET6, "3333::3333", RANGE_RATEM ( V6, 128 )},
{ 512, AF_INET6, "4444::4444", RANGE_INST ( V6, 128 )}
}},
{0}
};
pthread_t thr[RRL_THREADS];
struct runnable_data rd[RRL_THREADS];
_Atomic uint32_t queries_acquired = 0, queries_done = 0;
int primes[] = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61};
assert(sizeof(primes)/sizeof(*primes) >= RRL_THREADS);
for (unsigned i = 0; i < RRL_THREADS; ++i) {
rd[i].rrl = rrl;
rd[i].queries_acquired = &queries_acquired;
rd[i].queries_done = &queries_done;
rd[i].prime = primes[i];
rd[i].stages = stages;
pthread_create(thr + i, NULL, &rrl_runnable, rd + i);
}
for (unsigned i = 0; i < RRL_THREADS; ++i) {
pthread_join(thr[i], NULL);
}
unsigned si = 0;
do {
struct host * const h = stages[si].hosts;
uint32_t ticks = stages[si].last_tick - stages[si].first_tick + 1;
for (size_t i = 0; h[i].queries_per_tick; i++) {
ok( h[i].min_passed * ticks <= h[i].passed && h[i].passed <= h[i].max_passed * ticks,
"rrl(%s): parallel stage %d, addr %-25s [%7d <=%12.4f <=%7d ]", impl_name,
si, h[i].addr_format, h[i].min_passed, (double)h[i].passed / ticks, h[i].max_passed);
}
} while (stages[++si].first_tick);
rrl_destroy(rrl);
}
void test_rrl_mode(bool test_avx2, bool rw_mode)
{
if (!rw_mode) {
DIFF = 1;
}
KRU = KRU_GENERIC;
impl_name = "KRU_GENERIC";
test_rrl(rw_mode);
if (test_avx2) {
KRU = KRU_AVX2;
impl_name = "KRU_AVX2";
test_rrl(rw_mode);
} else {
diag("AVX2 NOT available");
}
}
int main(int argc, char *argv[])
{
plan_lazy();
dnssec_crypto_init();
assert(KRU_GENERIC.initialize != KRU_AVX2.initialize);
bool test_avx2 = (KRU.initialize == KRU_AVX2.initialize);
test_rrl_mode(test_avx2, true);
test_rrl_mode(test_avx2, false);
dnssec_crypto_cleanup();
return 0;
}