/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */ /* * This file is part of the LibreOffice project. * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. * * This file incorporates work covered by the following license notice: * * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed * with this work for additional information regarding copyright * ownership. The ASF licenses this file to you under the Apache * License, Version 2.0 (the "License"); you may not use this file * except in compliance with the License. You may obtain a copy of * the License at http://www.apache.org/licenses/LICENSE-2.0 . */ #include #include #include #include #include #include #include #include #include #include #include "bridge.hxx" #include "types.hxx" #include "unointerfaceproxy.hxx" #include "vtables.hxx" #include "share.hxx" #include "abi.hxx" using namespace ::com::sun::star::uno; namespace { void insertArgs(sal_uInt64 value, sal_uInt64& nGPR, sal_uInt64* pGPR, sal_uInt64*& sp) { if (nGPR < MAX_GP_REGS) pGPR[nGPR++] = value; else *(sp++) = value; } static void callVirtualMethod(void* pAdjustedThisPtr, sal_Int32 nVtableIndex, void* pRegisterReturn, typelib_TypeDescriptionReference* pReturnTypeRef, bool bSimpleReturn, sal_uInt64* pStack, sal_uInt32 nStack, sal_uInt64* pGPR, double* pFPR, typelib_TypeDescription* pReturnTypeDescr) { BRIDGE_LOG("In callVirtualMethod:\n"); BRIDGE_LOG( "pAdjustedThisPtr = %p, nVtableIndex = %d, pRegisterReturn = %p, pReturnTypeRef = %p\n", pAdjustedThisPtr, nVtableIndex, pRegisterReturn, pReturnTypeRef); BRIDGE_LOG( "bSimpleReturn = %d, pStack = %p, nStack = %d, pGPR = %p, pFPR = %p, pReturnTypeDescr = " "%p\n", bSimpleReturn, pStack, nStack, pGPR, pFPR, pReturnTypeDescr); // Get pointer to method sal_uInt64 pMethod = *((sal_uInt64*)pAdjustedThisPtr); pMethod += 8 * nVtableIndex; void* mfunc = (void*)*((sal_uInt64*)pMethod); BRIDGE_LOG("calling function %p\n", mfunc); // Load parameters to stack, if necessary sal_uInt64* pCallStack = NULL; if (nStack) { // 16-bytes aligned sal_uInt32 nStackBytes = ((nStack + 1) >> 1) * 16; pCallStack = (sal_uInt64*)__builtin_alloca(nStackBytes); std::memcpy(pCallStack, pStack, nStackBytes); } sal_Int64* gret = (sal_Int64*)malloc(2 * sizeof(sal_Int64)); sal_Int64* gret1 = gret; sal_Int64* gret2 = gret + 1; double* fret = (double*)malloc(2 * sizeof(double)); double* fret1 = fret; double* fret2 = fret + 1; asm volatile( //".set push \n\t" //".set riscv64 \n\t" // Fill the general purpose registers "ld a0, 0(%[gpr]) \n\t" "ld a1, 8(%[gpr]) \n\t" "ld a2, 16(%[gpr]) \n\t" "ld a3, 24(%[gpr]) \n\t" "ld a4, 32(%[gpr]) \n\t" "ld a5, 40(%[gpr]) \n\t" "ld a6, 48(%[gpr]) \n\t" "ld a7, 56(%[gpr]) \n\t" // Fill the floating pointer registers "fld fa0, 0(%[fpr]) \n\t" "fld fa1, 8(%[fpr]) \n\t" "fld fa2, 16(%[fpr]) \n\t" "fld fa3, 24(%[fpr]) \n\t" "fld fa4, 32(%[fpr]) \n\t" "fld fa5, 40(%[fpr]) \n\t" "fld fa6, 48(%[fpr]) \n\t" "fld fa7, 56(%[fpr]) \n\t" // Perform the call "jalr ra,%[mfunc],0 \n\t" // Fill the return values "add %[gret1], a0,zero \n\t" "add %[gret2], a1,zero \n\t" "fmv.d %[fret1], fa0 \n\t" "fmv.d %[fret2], fa1 \n\t" //".set pop \n\t" : [gret1] "=&r"(*gret1), [gret2] "=&r"(*gret2), [fret1] "=&f"(*fret1), [fret2] "=&f"(*fret2) : [gpr] "r"(pGPR), [fpr] "r"(pFPR), [mfunc] "r"(mfunc), [stack] "m"( pCallStack) // dummy input to prevent the compiler from optimizing the alloca out : "a0", "a1", "a2", "a3", "a4", "a5", "a6", "a7", "ra", "fa0", "fa1", "fa2", "fa3", "fa4", "fa5", "fa6", "fa7", "memory"); BRIDGE_LOG("In callVirtualMethod, fret = %p, gret = %p\n", fret, gret); switch (pReturnTypeRef->eTypeClass) { case typelib_TypeClass_HYPER: case typelib_TypeClass_UNSIGNED_HYPER: case typelib_TypeClass_LONG: case typelib_TypeClass_UNSIGNED_LONG: case typelib_TypeClass_ENUM: case typelib_TypeClass_CHAR: case typelib_TypeClass_SHORT: case typelib_TypeClass_UNSIGNED_SHORT: case typelib_TypeClass_BOOLEAN: case typelib_TypeClass_BYTE: *reinterpret_cast(pRegisterReturn) = gret[0]; break; case typelib_TypeClass_FLOAT: case typelib_TypeClass_DOUBLE: *reinterpret_cast(pRegisterReturn) = fret[0]; break; case typelib_TypeClass_STRUCT: case typelib_TypeClass_EXCEPTION: { sal_Int32 const nRetSize = pReturnTypeRef->pType->nSize; BRIDGE_LOG("nRetSize = %d\n", nRetSize); if (bSimpleReturn && nRetSize <= 16 && nRetSize > 0) { typelib_TypeDescription* pTypeDescr = 0; TYPELIB_DANGER_GET(&pTypeDescr, pReturnTypeRef); abi_riscv64::fillUNOStruct(pTypeDescr, gret, fret, pRegisterReturn); TYPELIB_DANGER_RELEASE(pTypeDescr); } break; } default: BRIDGE_LOG("unhandled return type %u\n", pReturnTypeRef->eTypeClass); break; } } static void cpp_call(bridges::cpp_uno::shared::UnoInterfaceProxy* pThis, bridges::cpp_uno::shared::VtableSlot aVtableSlot, typelib_TypeDescriptionReference* pReturnTypeRef, sal_Int32 nParams, typelib_MethodParameter* pParams, void* pUnoReturn, void* pUnoArgs[], uno_Any** ppUnoExc) { BRIDGE_LOG("In cpp_call\n"); BRIDGE_LOG("pThis = %p, aVtableSlot = %p, pReturnTypeRef = %p, nParams = %d\n", pThis, aVtableSlot, pReturnTypeRef, nParams); BRIDGE_LOG("pParams = %p , pUnoReturn = %p, pUnoArgs = %p\n", pParams, pUnoReturn, pUnoArgs); // max space for: [complex ret ptr], values|ptr ... sal_uInt64* pStack = (sal_uInt64*)__builtin_alloca(((nParams + 3) * sizeof(sal_Int64))); sal_uInt64* pStackStart = pStack; sal_uInt64 pGPR[MAX_GP_REGS]; sal_uInt64 nGPR = 0; double pFPR[MAX_FP_REGS]; sal_uInt32 nFPR = 0; BRIDGE_LOG("pGPR = %p, pFPR = %p\n", pGPR, pFPR); // return typelib_TypeDescription* pReturnTypeDescr = 0; TYPELIB_DANGER_GET(&pReturnTypeDescr, pReturnTypeRef); assert(pReturnTypeDescr); void* pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion bool bSimpleReturn = true; if (pReturnTypeDescr) { if (CPPU_CURRENT_NAMESPACE::return_in_hidden_param(pReturnTypeRef)) { bSimpleReturn = false; // complex return via ptr pCppReturn = bridges::cpp_uno::shared::relatesToInterfaceType(pReturnTypeDescr) ? __builtin_alloca(pReturnTypeDescr->nSize) : pUnoReturn; pGPR[nGPR++] = reinterpret_cast(pCppReturn); } else { pCppReturn = pUnoReturn; // direct way for simple types } } // push this void* pAdjustedThisPtr = reinterpret_cast(pThis->getCppI()) + aVtableSlot.offset; pGPR[nGPR++] = reinterpret_cast(pAdjustedThisPtr); // args void** pCppArgs = (void**)alloca(3 * sizeof(void*) * nParams); // indices of values this have to be converted (interface conversion cpp<=>uno) sal_Int32* pTempIndices = (sal_Int32*)(pCppArgs + nParams); // type descriptions for reconversions typelib_TypeDescription** ppTempParamTypeDescr = (typelib_TypeDescription**)(pCppArgs + (2 * nParams)); sal_Int32 nTempIndices = 0; BRIDGE_LOG("In cpp_call, nParams = %d\n", nParams); BRIDGE_LOG("pCppArgs = %p, pStack = %p\n", pCppArgs, pStack); for (sal_Int32 nPos = 0; nPos < nParams; ++nPos) { BRIDGE_LOG("In cpp_call, nPos = %d\n", nPos); const typelib_MethodParameter& rParam = pParams[nPos]; typelib_TypeDescription* pParamTypeDescr = 0; TYPELIB_DANGER_GET(&pParamTypeDescr, rParam.pTypeRef); if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType(pParamTypeDescr)) { BRIDGE_LOG("Before uno_copyAndConvertData and tons of switch.\n"); uno_copyAndConvertData(pCppArgs[nPos] = alloca(8), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp()); BRIDGE_LOG("Type = %d, Param = 0x%lx\n", pParamTypeDescr->eTypeClass, *reinterpret_cast(pCppArgs[nPos])); switch (pParamTypeDescr->eTypeClass) { // In types.h: // typedef unsigned char sal_Bool case typelib_TypeClass_BOOLEAN: insertArgs(*static_cast(pCppArgs[nPos]), nGPR, pGPR, pStack); break; case typelib_TypeClass_BYTE: insertArgs(*static_cast(pCppArgs[nPos]), nGPR, pGPR, pStack); break; // typedef sal_uInt16 sal_Unicode case typelib_TypeClass_CHAR: insertArgs(*static_cast(pCppArgs[nPos]), nGPR, pGPR, pStack); break; case typelib_TypeClass_UNSIGNED_SHORT: insertArgs(*static_cast(pCppArgs[nPos]), nGPR, pGPR, pStack); break; case typelib_TypeClass_SHORT: insertArgs(*static_cast(pCppArgs[nPos]), nGPR, pGPR, pStack); break; case typelib_TypeClass_UNSIGNED_LONG: insertArgs(*static_cast(pCppArgs[nPos]), nGPR, pGPR, pStack); break; case typelib_TypeClass_LONG: insertArgs(*static_cast(pCppArgs[nPos]), nGPR, pGPR, pStack); break; // Todo: what type is enum? case typelib_TypeClass_ENUM: case typelib_TypeClass_UNSIGNED_HYPER: insertArgs(*static_cast(pCppArgs[nPos]), nGPR, pGPR, pStack); break; case typelib_TypeClass_HYPER: insertArgs(*static_cast(pCppArgs[nPos]), nGPR, pGPR, pStack); break; // Floating point register -> General purpose register -> Stack case typelib_TypeClass_FLOAT: char* higher32Bit; if (nFPR < MAX_FP_REGS) { higher32Bit = reinterpret_cast(&pFPR[nFPR]) + 4; std::memcpy(&(pFPR[nFPR++]), pCppArgs[nPos], 4); } else if (nGPR < MAX_GP_REGS) { higher32Bit = reinterpret_cast(&pGPR[nGPR]) + 4; std::memcpy(&(pGPR[nGPR++]), pCppArgs[nPos], 4); } else { higher32Bit = reinterpret_cast(pStack) + 4; std::memcpy(pStack++, pCppArgs[nPos], 4); } // Assure that the higher 32 bits are set to 1 std::memset(higher32Bit, 0xFF, 4); break; case typelib_TypeClass_DOUBLE: if (nFPR < MAX_FP_REGS) { std::memcpy(&(pFPR[nFPR++]), pCppArgs[nPos], 8); } else if (nGPR < MAX_GP_REGS) { std::memcpy(&(pGPR[nGPR++]), pCppArgs[nPos], 8); } else { std::memcpy(pStack++, pCppArgs[nPos], 8); } break; default: break; } // no longer needed TYPELIB_DANGER_RELEASE(pParamTypeDescr); } else // ptr to complex value | ref { if (!rParam.bIn) // is pure out { // cpp out is constructed mem, uno out is not! uno_constructData(pCppArgs[nPos] = alloca(pParamTypeDescr->nSize), pParamTypeDescr); pTempIndices[nTempIndices] = nPos; // default constructed for cpp call // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } // is in/inout else if (bridges::cpp_uno::shared::relatesToInterfaceType(pParamTypeDescr)) { uno_copyAndConvertData(pCppArgs[nPos] = alloca(pParamTypeDescr->nSize), pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp()); pTempIndices[nTempIndices] = nPos; // has to be reconverted // will be released at reconversion ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr; } else // direct way { pCppArgs[nPos] = pUnoArgs[nPos]; // no longer needed TYPELIB_DANGER_RELEASE(pParamTypeDescr); } insertArgs(reinterpret_cast(pCppArgs[nPos]), nGPR, pGPR, pStack); } } try { try { callVirtualMethod(pAdjustedThisPtr, aVtableSlot.index, pCppReturn, pReturnTypeRef, bSimpleReturn, pStackStart, (pStack - pStackStart), pGPR, pFPR, pReturnTypeDescr); } catch (css::uno::Exception&) { throw; } catch (std::exception& e) { throw css::uno::RuntimeException("C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": " + o3tl::runtimeToOUString(e.what())); } catch (...) { throw css::uno::RuntimeException("C++ code threw unknown exception"); } // NO exception occurred... *ppUnoExc = 0; // reconvert temporary params for (; nTempIndices--;) { sal_Int32 nIndex = pTempIndices[nTempIndices]; typelib_TypeDescription* pParamTypeDescr = ppTempParamTypeDescr[nTempIndices]; if (pParams[nIndex].bIn) { if (pParams[nIndex].bOut) // inout { uno_destructData(pUnoArgs[nIndex], pParamTypeDescr, 0); // destroy uno value uno_copyAndConvertData(pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno()); } } else // pure out { uno_copyAndConvertData(pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr, pThis->getBridge()->getCpp2Uno()); } // destroy temp cpp param => cpp: every param was constructed uno_destructData(pCppArgs[nIndex], pParamTypeDescr, cpp_release); TYPELIB_DANGER_RELEASE(pParamTypeDescr); } // return value if (pCppReturn && pUnoReturn != pCppReturn) { uno_copyAndConvertData(pUnoReturn, pCppReturn, pReturnTypeDescr, pThis->getBridge()->getCpp2Uno()); uno_destructData(pCppReturn, pReturnTypeDescr, cpp_release); } } catch (...) { // fill uno exception CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno()); // temporary params for (; nTempIndices--;) { sal_Int32 nIndex = pTempIndices[nTempIndices]; // destroy temp cpp param => cpp: every param was constructed uno_destructData(pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release); TYPELIB_DANGER_RELEASE(ppTempParamTypeDescr[nTempIndices]); } // return type if (pReturnTypeDescr) TYPELIB_DANGER_RELEASE(pReturnTypeDescr); } } } namespace bridges::cpp_uno::shared { void unoInterfaceProxyDispatch(uno_Interface* pUnoI, const typelib_TypeDescription* pMemberDescr, void* pReturn, void* pArgs[], uno_Any** ppException) { BRIDGE_LOG("In unoInterfaceProxyDispatch:\n"); BRIDGE_LOG("pMemberDescr = %p, pReturn = %p, pArgs = %p, ppException = %p\n", pMemberDescr, pReturn, pArgs, ppException); // is my surrogate bridges::cpp_uno::shared::UnoInterfaceProxy* pThis = static_cast(pUnoI); //typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr; BRIDGE_LOG("in dispatch\n"); switch (pMemberDescr->eTypeClass) { case typelib_TypeClass_INTERFACE_ATTRIBUTE: { VtableSlot aVtableSlot(getVtableSlot( reinterpret_cast(pMemberDescr))); if (pReturn) { // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceAttributeTypeDescription*)pMemberDescr)->pAttributeTypeRef, 0, 0, // no params pReturn, pArgs, ppException); } else { // is SET typelib_MethodParameter aParam; aParam.pTypeRef = ((typelib_InterfaceAttributeTypeDescription*)pMemberDescr)->pAttributeTypeRef; aParam.bIn = sal_True; aParam.bOut = sal_False; typelib_TypeDescriptionReference* pReturnTypeRef = 0; OUString aVoidName("void"); typelib_typedescriptionreference_new(&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData); // dependent dispatch aVtableSlot.index += 1; //get then set method cpp_call(pThis, aVtableSlot, pReturnTypeRef, 1, &aParam, pReturn, pArgs, ppException); typelib_typedescriptionreference_release(pReturnTypeRef); } break; } case typelib_TypeClass_INTERFACE_METHOD: { VtableSlot aVtableSlot(getVtableSlot( reinterpret_cast(pMemberDescr))); switch (aVtableSlot.index) { // standard calls case 1: // acquire uno interface (*pUnoI->acquire)(pUnoI); *ppException = 0; break; case 2: // release uno interface (*pUnoI->release)(pUnoI); *ppException = 0; break; case 0: // queryInterface() opt { typelib_TypeDescription* pTD = 0; TYPELIB_DANGER_GET(&pTD, reinterpret_cast(pArgs[0])->getTypeLibType()); if (pTD) { uno_Interface* pInterface = 0; (*pThis->pBridge->getUnoEnv()->getRegisteredInterface)( pThis->pBridge->getUnoEnv(), (void**)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription*)pTD); if (pInterface) { ::uno_any_construct(reinterpret_cast(pReturn), &pInterface, pTD, 0); (*pInterface->release)(pInterface); TYPELIB_DANGER_RELEASE(pTD); *ppException = 0; break; } TYPELIB_DANGER_RELEASE(pTD); } [[fallthrough]]; } // else perform queryInterface() default: // dependent dispatch cpp_call( pThis, aVtableSlot, ((typelib_InterfaceMethodTypeDescription*)pMemberDescr)->pReturnTypeRef, ((typelib_InterfaceMethodTypeDescription*)pMemberDescr)->nParams, ((typelib_InterfaceMethodTypeDescription*)pMemberDescr)->pParams, pReturn, pArgs, ppException); } break; } default: { ::com::sun::star::uno::RuntimeException aExc( "illegal member type description!", ::com::sun::star::uno::Reference<::com::sun::star::uno::XInterface>()); Type const& rExcType = cppu::UnoType::get(); // binary identical null reference ::uno_type_any_construct(*ppException, &aExc, rExcType.getTypeLibType(), 0); } } } } /* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */