1
0
Fork 0
libreoffice/bridges/source/cpp_uno/gcc3_linux_arm/uno2cpp.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

758 lines
26 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <malloc.h>
#include <rtl/alloc.h>
#include <com/sun/star/uno/genfunc.hxx>
#include <com/sun/star/uno/Exception.hpp>
#include <com/sun/star/uno/RuntimeException.hpp>
#include <o3tl/runtimetooustring.hxx>
#include <uno/data.h>
#include <bridge.hxx>
#include <types.hxx>
#include <unointerfaceproxy.hxx>
#include <vtables.hxx>
#include "share.hxx"
#include <exception>
#include <stdio.h>
#include <string.h>
#include <typeinfo>
/*
* Based on http://gcc.gnu.org/PR41443
* References to __SOFTFP__ are incorrect for EABI; the __SOFTFP__ code
* should be used for *soft-float ABI* whether or not VFP is enabled,
* and __SOFTFP__ does specifically mean soft-float not soft-float ABI.
*
* Changing the conditionals to __SOFTFP__ || __ARM_EABI__ then
* -mfloat-abi=softfp should work. -mfloat-abi=hard won't; that would
* need both a new macro to identify the hard-VFP ABI.
*/
#if !defined(__ARM_EABI__) && !defined(__SOFTFP__)
#error Not Implemented
/*
some possibly handy code to detect that we have VFP registers
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <elf.h>
#define HWCAP_ARM_VFP 64
int hasVFP()
{
int fd = open ("/proc/self/auxv", O_RDONLY);
if (fd == -1)
return -1;
int ret = -1;
Elf32_auxv_t buf[128];
ssize_t n;
while ((ret == -1) && ((n = read(fd, buf, sizeof (buf))) > 0))
{
for (int i = 0; i < 128; ++i)
{
if (buf[i].a_type == AT_HWCAP)
{
ret = (buf[i].a_un.a_val & HWCAP_ARM_VFP) ? true : false;
break;
}
else if (buf[i].a_type == AT_NULL)
{
ret = -2;
break;
}
}
}
close (fd);
return ret;
}
#endif
using namespace ::com::sun::star::uno;
namespace arm
{
static bool is_complex_struct(const typelib_TypeDescription * type)
{
const typelib_CompoundTypeDescription * p
= reinterpret_cast< const typelib_CompoundTypeDescription * >(type);
for (sal_Int32 i = 0; i < p->nMembers; ++i)
{
if (p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_STRUCT ||
p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * t = nullptr;
TYPELIB_DANGER_GET(&t, p->ppTypeRefs[i]);
bool b = is_complex_struct(t);
TYPELIB_DANGER_RELEASE(t);
if (b) {
return true;
}
}
else if (!bridges::cpp_uno::shared::isSimpleType(p->ppTypeRefs[i]->eTypeClass))
return true;
}
if (p->pBaseTypeDescription != nullptr)
return is_complex_struct(&p->pBaseTypeDescription->aBase);
return false;
}
#ifdef __ARM_PCS_VFP
static bool is_float_only_struct(const typelib_TypeDescription * type)
{
const typelib_CompoundTypeDescription * p
= reinterpret_cast< const typelib_CompoundTypeDescription * >(type);
for (sal_Int32 i = 0; i < p->nMembers; ++i)
{
if (p->ppTypeRefs[i]->eTypeClass != typelib_TypeClass_FLOAT &&
p->ppTypeRefs[i]->eTypeClass != typelib_TypeClass_DOUBLE)
return false;
}
return true;
}
#endif
bool return_in_hidden_param( typelib_TypeDescriptionReference *pTypeRef )
{
if (bridges::cpp_uno::shared::isSimpleType(pTypeRef))
return false;
else if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * pTypeDescr = nullptr;
TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef );
//A Composite Type not larger than 4 bytes is returned in r0
bool bRet = pTypeDescr->nSize > 4 || is_complex_struct(pTypeDescr);
#ifdef __ARM_PCS_VFP
// In the VFP ABI, structs with only float/double values that fit in
// 16 bytes are returned in registers
if( pTypeDescr->nSize <= 16 && is_float_only_struct(pTypeDescr))
bRet = false;
#endif
TYPELIB_DANGER_RELEASE( pTypeDescr );
return bRet;
}
return true;
}
}
static void MapReturn(sal_uInt32 r0, sal_uInt32 r1, typelib_TypeDescriptionReference * pReturnType, sal_uInt32* pRegisterReturn)
{
switch( pReturnType->eTypeClass )
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
pRegisterReturn[1] = r1;
[[fallthrough]];
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
pRegisterReturn[0] = r0;
break;
case typelib_TypeClass_FLOAT:
#if !defined(__ARM_PCS_VFP) && (defined(__ARM_EABI__) || defined(__SOFTFP__))
pRegisterReturn[0] = r0;
#else
#if defined __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wuninitialized"
#endif
register float fret asm("s0");
*reinterpret_cast<float *>(pRegisterReturn) = fret;
#if defined __clang__
#pragma clang diagnostic pop
#endif
#endif
break;
case typelib_TypeClass_DOUBLE:
#if !defined(__ARM_PCS_VFP) && (defined(__ARM_EABI__) || defined(__SOFTFP__))
pRegisterReturn[1] = r1;
pRegisterReturn[0] = r0;
#else
#if defined __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wuninitialized"
#endif
register double dret asm("d0");
*reinterpret_cast<double *>(pRegisterReturn) = dret;
#if defined __clang__
#pragma clang diagnostic pop
#endif
#endif
break;
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
{
if (!arm::return_in_hidden_param(pReturnType))
pRegisterReturn[0] = r0;
break;
}
default:
break;
}
}
namespace
{
void callVirtualMethod(
void * pThis,
sal_Int32 nVtableIndex,
void * pRegisterReturn,
typelib_TypeDescriptionReference * pReturnType,
sal_uInt32 *pStack,
sal_uInt32 nStack,
sal_uInt32 *pGPR,
sal_uInt32 nGPR,
double *pFPR) __attribute__((noinline));
void callVirtualMethod(
void * pThis,
sal_Int32 nVtableIndex,
void * pRegisterReturn,
typelib_TypeDescriptionReference * pReturnType,
sal_uInt32 *pStack,
sal_uInt32 nStack,
sal_uInt32 *pGPR,
sal_uInt32 nGPR,
double *pFPR)
{
// never called
if (! pThis)
CPPU_CURRENT_NAMESPACE::dummy_can_throw_anything("xxx"); // address something
if ( nStack )
{
// 8-bytes aligned
sal_uInt32 nStackBytes = ( ( nStack + 1 ) >> 1 ) * 8;
sal_uInt32 *stack = static_cast<sal_uInt32 *>(__builtin_alloca( nStackBytes ));
memcpy( stack, pStack, nStackBytes );
}
// Should not happen, but...
if ( nGPR > arm::MAX_GPR_REGS )
nGPR = arm::MAX_GPR_REGS;
sal_uInt32 pMethod = *static_cast<sal_uInt32 *>(pThis);
pMethod += 4 * nVtableIndex;
pMethod = *reinterpret_cast<sal_uInt32 *>(pMethod);
//Return registers
sal_uInt32 r0;
sal_uInt32 r1;
__asm__ __volatile__ (
//Fill in general purpose register arguments
"ldr r4, %[pgpr]\n\t"
"ldmia r4, {r0-r3}\n\t"
#ifdef __ARM_PCS_VFP
//Fill in VFP register arguments as double precision values
"ldr r4, %[pfpr]\n\t"
"vldmia r4, {d0-d7}\n\t"
#endif
//Make the call
"ldr r5, %[pmethod]\n\t"
#ifndef __ARM_ARCH_4T__
"blx r5\n\t"
#else
"mov lr, pc ; bx r5\n\t"
#endif
//Fill in return values
"mov %[r0], r0\n\t"
"mov %[r1], r1\n\t"
: [r0]"=r" (r0), [r1]"=r" (r1)
: [pmethod]"m" (pMethod), [pgpr]"m" (pGPR), [pfpr]"m" (pFPR)
: "r2", "r3", "r4", "r5");
MapReturn(r0, r1, pReturnType, static_cast<sal_uInt32*>(pRegisterReturn));
}
}
#define INSERT_INT32( pSV, nr, pGPR, pDS ) \
if ( nr < arm::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<const sal_uInt32*>( pSV ); \
else \
*pDS++ = *reinterpret_cast<const sal_uInt32*>( pSV );
#ifdef __ARM_EABI__
#define INSERT_INT64( pSV, nr, pGPR, pDS, pStart ) \
if ( (nr < arm::MAX_GPR_REGS) && (nr % 2) ) \
{ \
++nr; \
} \
if ( nr < arm::MAX_GPR_REGS ) \
{ \
pGPR[nr++] = *static_cast<const sal_uInt32 *>( pSV ); \
pGPR[nr++] = *(static_cast<const sal_uInt32 *>( pSV ) + 1); \
} \
else \
{ \
if ( (pDS - pStart) % 2) \
{ \
++pDS; \
} \
*pDS++ = static_cast<sal_uInt32 *>( pSV )[0]; \
*pDS++ = static_cast<sal_uInt32 *>( pSV )[1]; \
}
#else
#define INSERT_INT64( pSV, nr, pGPR, pDS, pStart ) \
INSERT_INT32( pSV, nr, pGPR, pDS ) \
INSERT_INT32( ((sal_uInt32*)pSV)+1, nr, pGPR, pDS )
#endif
#ifdef __ARM_PCS_VFP
// Since single and double arguments share the same register bank the filling of the
// registers is not always linear. Single values go to the first available single register,
// while doubles need to have an 8 byte alignment, so only go into double registers starting
// at every other single register. For ex a float, double, float sequence will fill registers
// s0, d1, and s1, actually corresponding to the linear order s0,s1, d1.
//
// These use the single/double register array and counters and ignore the pGPR argument
// nSR and nDR are the number of single and double precision registers that are no longer
// available
#define INSERT_FLOAT( pSV, nr, pGPR, pDS ) \
if (nSR % 2 == 0) {\
nSR = 2*nDR; \
}\
if ( nSR < arm::MAX_FPR_REGS*2 ) {\
pSPR[nSR++] = *static_cast<float const *>( pSV ); \
if ((nSR % 2 == 1) && (nSR > 2*nDR)) {\
nDR++; \
}\
}\
else \
{\
*pDS++ = *static_cast<float const *>( pSV );\
}
#define INSERT_DOUBLE( pSV, nr, pGPR, pDS, pStart ) \
if ( nDR < arm::MAX_FPR_REGS ) { \
pFPR[nDR++] = *static_cast<double const *>( pSV ); \
}\
else\
{\
if ( (pDS - pStart) % 2) \
{ \
++pDS; \
} \
*reinterpret_cast<double *>(pDS) = *static_cast<double const *>( pSV );\
pDS += 2;\
}
#else
#define INSERT_FLOAT( pSV, nr, pFPR, pDS ) \
INSERT_INT32( pSV, nr, pGPR, pDS )
#define INSERT_DOUBLE( pSV, nr, pFPR, pDS, pStart ) \
INSERT_INT64( pSV, nr, pGPR, pDS, pStart )
#endif
#define INSERT_INT16( pSV, nr, pGPR, pDS ) \
if ( nr < arm::MAX_GPR_REGS ) \
pGPR[nr++] = *static_cast<sal_uInt16 const *>( pSV ); \
else \
*pDS++ = *static_cast<sal_uInt16 const *>( pSV );
#define INSERT_INT8( pSV, nr, pGPR, pDS ) \
if ( nr < arm::MAX_GPR_REGS ) \
pGPR[nr++] = *static_cast<sal_uInt8 const *>( pSV ); \
else \
*pDS++ = *static_cast<sal_uInt8 const *>( pSV );
namespace {
void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// max space for: [complex ret ptr], values|ptr ...
sal_uInt32 * pStack = static_cast<sal_uInt32 *>(__builtin_alloca(
sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) ));
sal_uInt32 * pStackStart = pStack;
sal_uInt32 pGPR[arm::MAX_GPR_REGS];
sal_uInt32 nGPR = 0;
// storage and counters for single and double precision VFP registers
double pFPR[arm::MAX_FPR_REGS];
#ifdef __ARM_PCS_VFP
sal_uInt32 nDR = 0;
float *pSPR = reinterpret_cast< float *>(&pFPR);
sal_uInt32 nSR = 0;
#endif
// return
typelib_TypeDescription * pReturnTypeDescr = nullptr;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
assert(pReturnTypeDescr);
void * pCppReturn = nullptr; // if != 0 && != pUnoReturn, needs reconversion
if (pReturnTypeDescr)
{
bool bSimpleReturn = !arm::return_in_hidden_param( pReturnTypeRef );
if (bSimpleReturn)
pCppReturn = pUnoReturn; // direct way for simple types
else
{
// complex return via ptr
pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? __builtin_alloca( pReturnTypeDescr->nSize )
: pUnoReturn); // direct way
INSERT_INT32( &pCppReturn, nGPR, pGPR, pStack );
}
}
// push this
void * pAdjustedThisPtr = reinterpret_cast< void ** >(pThis->getCppI())
+ aVtableSlot.offset;
INSERT_INT32( &pAdjustedThisPtr, nGPR, pGPR, pStack );
// stack space
static_assert(sizeof(void *) == sizeof(sal_Int32), "### unexpected size!");
// args
void ** pCppArgs = static_cast<void **>(alloca( 3 * sizeof(void *) * nParams ));
// indices of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndices = reinterpret_cast<sal_Int32 *>(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = reinterpret_cast<typelib_TypeDescription **>(pCppArgs + (2 * nParams));
sal_Int32 nTempIndices = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = nullptr;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
// uno_copyAndConvertData( pCppArgs[nPos] = pStack, pUnoArgs[nPos],
uno_copyAndConvertData( pCppArgs[nPos] = alloca(8), pUnoArgs[nPos],
pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "hyper is %p\n", pCppArgs[nPos]);
#endif
INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack, pStackStart );
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "long is %p\n", pCppArgs[nPos]);
#endif
INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_FLOAT:
INSERT_FLOAT( pCppArgs[nPos], nGPR, pGPR, pStack );
break;
case typelib_TypeClass_DOUBLE:
INSERT_DOUBLE( pCppArgs[nPos], nGPR, pGPR, pStack, pStackStart );
break;
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndices[nTempIndices] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
pTempIndices[nTempIndices] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
else // direct way
{
pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
INSERT_INT32( &(pCppArgs[nPos]), nGPR, pGPR, pStack );
}
}
try
{
try {
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeRef,
pStackStart,
(pStack - pStackStart),
pGPR, nGPR,
pFPR);
} catch (css::uno::Exception &) {
throw;
} catch (std::exception & e) {
throw css::uno::RuntimeException(
"C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": "
+ o3tl::runtimeToOUString(e.what()));
} catch (...) {
throw css::uno::RuntimeException("C++ code threw unknown exception");
}
// NO exception occurred...
*ppUnoExc = nullptr;
// reconvert temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, nullptr ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno());
// temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
}
namespace bridges::cpp_uno::shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI);
#if OSL_DEBUG_LEVEL > 0
typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr;
#endif
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
#if OSL_DEBUG_LEVEL > 0
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
assert(nMemberPos < pTypeDescr->nAllMembers);
#endif
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<typelib_InterfaceAttributeTypeDescription const *>
(pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
reinterpret_cast<typelib_InterfaceAttributeTypeDescription const *>(pMemberDescr)->pAttributeTypeRef,
0, nullptr, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
reinterpret_cast<typelib_InterfaceAttributeTypeDescription const *>(pMemberDescr)->pAttributeTypeRef;
aParam.bIn = true;
aParam.bOut = false;
typelib_TypeDescriptionReference * pReturnTypeRef = nullptr;
OUString aVoidName("void");
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1;
cpp_call(
pThis, aVtableSlot, // get, then set method
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
#if OSL_DEBUG_LEVEL > 0
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
assert(nMemberPos < pTypeDescr->nAllMembers);
#endif
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<typelib_InterfaceMethodTypeDescription const *>
(pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = nullptr;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = nullptr;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = nullptr;
TYPELIB_DANGER_GET( &pTD, static_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = nullptr;
(*pThis->getBridge()->getUnoEnv()->getRegisteredInterface)(
pThis->getBridge()->getUnoEnv(),
reinterpret_cast<void **>(&pInterface), pThis->oid.pData, reinterpret_cast<typelib_InterfaceTypeDescription *>(pTD) );
if (pInterface)
{
::uno_any_construct(
static_cast< uno_Any * >( pReturn ),
&pInterface, pTD, nullptr );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = nullptr;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} [[fallthrough]]; // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
reinterpret_cast<typelib_InterfaceMethodTypeDescription const *>(pMemberDescr)->pReturnTypeRef,
reinterpret_cast<typelib_InterfaceMethodTypeDescription const *>(pMemberDescr)->nParams,
reinterpret_cast<typelib_InterfaceMethodTypeDescription const *>(pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
"illegal member type description!",
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = cppu::UnoType<decltype(aExc)>::get();
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), nullptr );
}
}
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */