1
0
Fork 0
libreoffice/bridges/source/cpp_uno/gcc3_linux_hppa/uno2cpp.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

526 lines
19 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <malloc.h>
#include <rtl/alloc.h>
#include <com/sun/star/uno/genfunc.hxx>
#include <com/sun/star/uno/Exception.hpp>
#include "com/sun/star/uno/RuntimeException.hpp"
#include <o3tl/runtimetooustring.hxx>
#include <uno/data.h>
#include <bridge.hxx>
#include <types.hxx>
#include <unointerfaceproxy.hxx>
#include <vtables.hxx>
#include "share.hxx"
#include <exception>
#include <stdio.h>
#include <string.h>
#include <typeinfo>
using namespace ::com::sun::star::uno;
void callVirtualMethod(void * pThis, sal_uInt32 nVtableIndex,
void * pRegisterReturn, typelib_TypeDescription *pReturnTypeDescr, bool bRegisterReturn,
sal_uInt32 *pStack, sal_uInt32 nStack, sal_uInt32 *pGPR, double *pFPR);
#define INSERT_INT32( pSV, nr, pGPR, pDS, bOverflow )\
if (nr < hppa::MAX_WORDS_IN_REGS) \
{ \
pGPR[nr++] = *reinterpret_cast<sal_uInt32 *>( pSV ); \
} \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_uInt32 *>( pSV );
#define INSERT_INT64( pSV, nr, pGPR, pDS, pStart, bOverflow )\
if ( (nr < hppa::MAX_WORDS_IN_REGS) && (nr % 2) ) \
{ \
++nr; \
} \
if ( nr < hppa::MAX_WORDS_IN_REGS ) \
{ \
pGPR[nr++] = *reinterpret_cast<sal_uInt32 *>( pSV ); \
pGPR[nr++] = *(reinterpret_cast<sal_uInt32 *>( pSV ) + 1); \
} \
else \
bOverflow = true; \
if ( bOverflow ) \
{ \
if ( (pDS - pStart) % 2) \
++pDS; \
*pDS++ = reinterpret_cast<sal_uInt32 *>( pSV )[1]; \
*pDS++ = reinterpret_cast<sal_uInt32 *>( pSV )[0]; \
}
#define INSERT_FLOAT( pSV, nr, pFPR, pDS, bOverflow ) \
if (nr < hppa::MAX_WORDS_IN_REGS) \
{ \
sal_uInt32 *pDouble = (sal_uInt32 *)&(pFPR[nr++]); \
pDouble[0] = *reinterpret_cast<sal_uInt32 *>( pSV ); \
} \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_uInt32 *>( pSV );
#define INSERT_DOUBLE( pSV, nr, pFPR, pDS, pStart, bOverflow ) \
if ( (nr < hppa::MAX_WORDS_IN_REGS) && (nr % 2) ) \
{ \
++nr; \
} \
if ( nr < hppa::MAX_WORDS_IN_REGS ) \
{ \
sal_uInt32 *pDouble = (sal_uInt32 *)&(pFPR[nr+1]); \
pDouble[0] = *reinterpret_cast<sal_uInt32 *>( pSV ); \
pDouble[1] = *(reinterpret_cast<sal_uInt32 *>( pSV ) + 1); \
nr+=2; \
} \
else \
bOverflow = true; \
if ( bOverflow ) \
{ \
if ( (pDS - pStart) % 2) \
++pDS; \
*pDS++ = reinterpret_cast<sal_uInt32 *>( pSV )[1]; \
*pDS++ = reinterpret_cast<sal_uInt32 *>( pSV )[0]; \
}
#define INSERT_INT16( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < hppa::MAX_WORDS_IN_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt16 *>( pSV ); \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_uInt16 *>( pSV );
#define INSERT_INT8( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < hppa::MAX_WORDS_IN_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt8 *>( pSV ); \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_uInt8 *>( pSV );
namespace hppa
{
bool is_complex_struct(const typelib_TypeDescription * type)
{
const typelib_CompoundTypeDescription * p
= reinterpret_cast< const typelib_CompoundTypeDescription * >(type);
for (sal_Int32 i = 0; i < p->nMembers; ++i)
{
if (p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_STRUCT ||
p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * t = 0;
TYPELIB_DANGER_GET(&t, p->ppTypeRefs[i]);
bool b = is_complex_struct(t);
TYPELIB_DANGER_RELEASE(t);
if (b) {
return true;
}
}
else if (!bridges::cpp_uno::shared::isSimpleType(p->ppTypeRefs[i]->eTypeClass))
return true;
}
if (p->pBaseTypeDescription != 0)
return is_complex_struct(&p->pBaseTypeDescription->aBase);
return false;
}
bool isRegisterReturn( typelib_TypeDescriptionReference *pTypeRef )
{
if (bridges::cpp_uno::shared::isSimpleType(pTypeRef))
return true;
else if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * pTypeDescr = 0;
TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef );
/* If the struct is larger than 8 bytes, then there is a buffer at r8 to stick the return value into */
bool bRet = pTypeDescr->nSize <= 8 && !is_complex_struct(pTypeDescr);
TYPELIB_DANGER_RELEASE( pTypeDescr );
return bRet;
}
return false;
}
}
namespace {
static void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// max space for: [complex ret ptr], values|ptr ...
sal_uInt32 * pStack = (sal_uInt32 *)__builtin_alloca(
sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) );
sal_uInt32 * pStackStart = pStack;
sal_uInt32 pGPR[hppa::MAX_GPR_REGS];
double pFPR[hppa::MAX_SSE_REGS];
sal_uInt32 nRegs=0;
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
assert(pReturnTypeDescr);
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
bool bOverflow = false;
bool bRegisterReturn = true;
if (pReturnTypeDescr)
{
bRegisterReturn = hppa::isRegisterReturn(pReturnTypeRef);
if (bRegisterReturn)
pCppReturn = pUnoReturn; // direct way for simple types
else
{
// complex return via ptr
pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? __builtin_alloca( pReturnTypeDescr->nSize )
: pUnoReturn); // direct way
}
}
// push this
void * pAdjustedThisPtr = reinterpret_cast< void ** >(pThis->getCppI())
+ aVtableSlot.offset;
INSERT_INT32( &pAdjustedThisPtr, nRegs, pGPR, pStack, bOverflow );
// stack space
static_assert(sizeof(void *) == sizeof(sal_Int32), "### unexpected size!");
// args
void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
// indices of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndices = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
uno_copyAndConvertData( pCppArgs[nPos] = alloca(8), pUnoArgs[nPos],
pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "hyper is %llx\n", *((long long*)pCppArgs[nPos]));
#endif
INSERT_INT64( pCppArgs[nPos], nRegs, pGPR, pStack, pStackStart, bOverflow );
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "long is %x\n", pCppArgs[nPos]);
#endif
INSERT_INT32( pCppArgs[nPos], nRegs, pGPR, pStack, bOverflow );
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
INSERT_INT16( pCppArgs[nPos], nRegs, pGPR, pStack, bOverflow );
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
INSERT_INT8( pCppArgs[nPos], nRegs, pGPR, pStack, bOverflow );
break;
case typelib_TypeClass_FLOAT:
INSERT_FLOAT( pCppArgs[nPos], nRegs, pFPR, pStack, bOverflow );
break;
case typelib_TypeClass_DOUBLE:
INSERT_DOUBLE( pCppArgs[nPos], nRegs, pFPR, pStack, pStackStart, bOverflow );
break;
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndices[nTempIndices] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
pTempIndices[nTempIndices] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
else // direct way
{
pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
INSERT_INT32( &(pCppArgs[nPos]), nRegs, pGPR, pStack, bOverflow );
}
}
try
{
try {
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeDescr, bRegisterReturn,
pStackStart,
(pStack - pStackStart), pGPR, pFPR);
} catch (css::uno::Exception &) {
throw;
} catch (std::exception & e) {
throw css::uno::RuntimeException(
"C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": "
+ o3tl::runtimeToOUString(e.what()));
} catch (...) {
throw css::uno::RuntimeException("C++ code threw unknown exception");
}
// NO exception occurred...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno());
// temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
}
namespace bridges::cpp_uno::shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy * >(pUnoI);
#if OSL_DEBUG_LEVEL > 0
typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr;
#endif
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
#if OSL_DEBUG_LEVEL > 0
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
assert(nMemberPos < pTypeDescr->nAllMembers);
#endif
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<typelib_InterfaceAttributeTypeDescription const *>
(pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName("void");
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1;
cpp_call(
pThis, aVtableSlot, // get, then set method
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
#if OSL_DEBUG_LEVEL > 0
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
assert(nMemberPos < pTypeDescr->nAllMembers);
#endif
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<typelib_InterfaceMethodTypeDescription const *>
(pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->getBridge()->getUnoEnv()->getRegisteredInterface)(
pThis->getBridge()->getUnoEnv(),
(void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
"illegal member type description!",
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = cppu::UnoType<decltype(aExc)>::get();
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */