1
0
Fork 0
libreoffice/bridges/source/cpp_uno/gcc3_linux_mips64/cpp2uno.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

711 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <com/sun/star/uno/genfunc.hxx>
#include <sal/log.hxx>
#include <typelib/typedescription.hxx>
#include <uno/data.h>
#include <osl/endian.h>
#include "bridge.hxx"
#include "cppinterfaceproxy.hxx"
#include "types.hxx"
#include "vtablefactory.hxx"
#include "call.hxx"
#include "share.hxx"
#include <stdio.h>
#include <string.h>
#include <typeinfo>
using namespace com::sun::star::uno;
//#define BRDEBUG
#ifdef BRDEBUG
#include <rtl/strbuf.hxx>
#include <rtl/ustrbuf.hxx>
using namespace ::std;
using namespace ::osl;
using namespace ::rtl;
#endif
#ifndef ANDROID
#include <sys/sysmips.h>
#endif
#ifdef ANDROID
#include <unistd.h>
#endif
namespace CPPU_CURRENT_NAMESPACE
{
bool is_complex_struct(const typelib_TypeDescription * type)
{
const typelib_CompoundTypeDescription * p
= reinterpret_cast< const typelib_CompoundTypeDescription * >(type);
for (sal_Int32 i = 0; i < p->nMembers; ++i)
{
if (p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_STRUCT ||
p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * t = 0;
TYPELIB_DANGER_GET(&t, p->ppTypeRefs[i]);
bool b = is_complex_struct(t);
TYPELIB_DANGER_RELEASE(t);
if (b) {
return true;
}
}
else if (!bridges::cpp_uno::shared::isSimpleType(p->ppTypeRefs[i]->eTypeClass))
return true;
}
if (p->pBaseTypeDescription != 0)
return is_complex_struct(&p->pBaseTypeDescription->aBase);
return false;
}
bool return_in_hidden_param( typelib_TypeDescriptionReference *pTypeRef )
{
if (bridges::cpp_uno::shared::isSimpleType(pTypeRef))
return false;
else if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT ||
pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * pTypeDescr = 0;
TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef );
//A Composite Type not larger than 16 bytes is returned in up to two GPRs
bool bRet = pTypeDescr->nSize > 16 || is_complex_struct(pTypeDescr);
TYPELIB_DANGER_RELEASE( pTypeDescr );
return bRet;
}
return true;
}
}
namespace
{
static typelib_TypeClass cpp2uno_call(
bridges::cpp_uno::shared::CppInterfaceProxy * pThis,
const typelib_TypeDescription * pMemberTypeDescr,
typelib_TypeDescriptionReference * pReturnTypeRef, // 0 indicates void return
sal_Int32 nParams, typelib_MethodParameter * pParams,
void ** gpreg, void ** fpreg, void ** ovrflw,
sal_uInt64 * pRegisterReturn /* space for register return */ )
{
/* Most MIPS ABIs view the arguments as a struct, of which the
first N words go in registers and the rest go on the stack. If I < N, the
With word might go in With integer argument register or the With
floating-point one. For these ABIs, we only need to remember the number
of words passed so far. We are interested only in n64 ABI,so it is the
case.
*/
unsigned int nREG = 0;
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call:begin\n");
#endif
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
if (pReturnTypeRef)
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
void * pUnoReturn = 0;
void * pCppReturn = 0; // complex return ptr: if != 0 && != pUnoReturn, reconversion need
if (pReturnTypeDescr)
{
if (CPPU_CURRENT_NAMESPACE::return_in_hidden_param( pReturnTypeRef ) )
{
pCppReturn = gpreg[nREG]; // complex return via ptr (pCppReturn)
nREG++;
pUnoReturn = ( bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize )
: pCppReturn); // direct way
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call:complexreturn\n");
#endif
}
else
{
pUnoReturn = pRegisterReturn; // direct way for simple types
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call:simplereturn\n");
#endif
}
}
// pop this
nREG++;
// stack space
static_assert(sizeof(void *) == sizeof(sal_Int64), "### unexpected size!");
// parameters
void ** pUnoArgs = (void **)alloca( 4 * sizeof(void *) * nParams );
void ** pCppArgs = pUnoArgs + nParams;
// indices of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndices = (sal_Int32 *)(pUnoArgs + (2 * nParams));
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pUnoArgs + (3 * nParams));
sal_Int32 nTempIndices = 0;
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call:nParams=%d\n", nParams);
#endif
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr )) // value
{
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call:Param %u, type %u\n", nPos, pParamTypeDescr->eTypeClass);
#endif
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_FLOAT:
case typelib_TypeClass_DOUBLE:
if (nREG < MAX_FP_REGS) {
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call:fpr=%p\n", fpreg[nREG]);
#endif
pCppArgs[nPos] = &(fpreg[nREG]);
pUnoArgs[nPos] = &(fpreg[nREG]);
} else {
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call:fpr=%p\n", ovrflw[nREG - MAX_FP_REGS]);
#endif
pCppArgs[nPos] = &(ovrflw[nREG - MAX_FP_REGS]);
pUnoArgs[nPos] = &(ovrflw[nREG - MAX_FP_REGS]);
}
nREG++;
break;
default:
if (nREG < MAX_GP_REGS) {
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call:gpr=%p\n", gpreg[nREG]);
#endif
pCppArgs[nPos] = &(gpreg[nREG]);
pUnoArgs[nPos] = &(gpreg[nREG]);
} else {
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call:gpr=%p\n", ovrflw[nREG - MAX_GP_REGS]);
#endif
pCppArgs[nPos] = &(ovrflw[nREG - MAX_GP_REGS]);
pUnoArgs[nPos] = &(ovrflw[nREG - MAX_GP_REGS]);
}
nREG++;
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
#ifdef BRDEBUG
fprintf(stderr,"cpp2uno_call:ptr|ref\n");
#endif
void *pCppStack;
if (nREG < MAX_GP_REGS) {
pCppArgs[nPos] = pCppStack = gpreg[nREG];
} else {
pCppArgs[nPos] = pCppStack = ovrflw[nREG - MAX_GP_REGS];
}
nREG++;
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call:pCppStack=%p\n", pCppStack);
#endif
if (! rParam.bIn) // is pure out
{
// uno out is unconstructed mem!
pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize );
pTempIndices[nTempIndices] = nPos;
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData( pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pCppStack, pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
pTempIndices[nTempIndices] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call:related to interface,%p,%d,pUnoargs[%d]=%p\n",
pCppStack, pParamTypeDescr->nSize, nPos, pUnoArgs[nPos]);
#endif
}
else // direct way
{
pUnoArgs[nPos] = pCppStack;
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call:direct,pUnoArgs[%d]=%p\n", nPos, pUnoArgs[nPos]);
#endif
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
}
}
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call2,%p,unoargs=%p\n", pThis->getUnoI()->pDispatcher, pUnoArgs);
#endif
// ExceptionHolder
uno_Any aUnoExc; // Any will be constructed by callee
uno_Any * pUnoExc = &aUnoExc;
// invoke uno dispatch call
(*pThis->getUnoI()->pDispatcher)( pThis->getUnoI(), pMemberTypeDescr, pUnoReturn, pUnoArgs, &pUnoExc );
#ifdef BRDEBUG
fprintf(stderr, "cpp2uno_call2,after dispatch\n");
#endif
// in case an exception occurred...
if (pUnoExc)
{
// destruct temporary in/inout params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
if (pParams[nIndex].bIn) // is in/inout => was constructed
uno_destructData( pUnoArgs[nIndex], ppTempParamTypeDescr[nTempIndices], 0 );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
}
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
CPPU_CURRENT_NAMESPACE::raiseException( &aUnoExc, pThis->getBridge()->getUno2Cpp() );
// has to destruct the any
// is here for dummy
return typelib_TypeClass_VOID;
}
else // else no exception occurred...
{
// temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];
if (pParams[nIndex].bOut) // inout/out
{
// convert and assign
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
uno_copyAndConvertData( pCppArgs[nIndex], pUnoArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
}
// destroy temp uno param
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return
if (pCppReturn) // has complex return
{
if (pUnoReturn != pCppReturn) // needs reconversion
{
uno_copyAndConvertData( pCppReturn, pUnoReturn, pReturnTypeDescr,
pThis->getBridge()->getUno2Cpp() );
// destroy temp uno return
uno_destructData( pUnoReturn, pReturnTypeDescr, 0 );
}
// complex return ptr is set to return reg
*(void **)pRegisterReturn = pCppReturn;
}
if (pReturnTypeDescr)
{
typelib_TypeClass eRet = (typelib_TypeClass)pReturnTypeDescr->eTypeClass;
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
return eRet;
}
else
return typelib_TypeClass_VOID;
}
}
/**
* is called on incoming vtable calls
* (called by asm snippets)
*/
typelib_TypeClass cpp_vtable_call(
sal_Int32 nFunctionIndex,
sal_Int32 nVtableOffset,
void ** gpreg, void ** fpreg, void ** ovrflw,
sal_uInt64 * pRegisterReturn /* space for register return */ )
{
static_assert( sizeof(sal_Int64)==sizeof(void *), "### unexpected!" );
#ifdef BRDEBUG
fprintf(stderr, "in cpp_vtable_call nFunctionIndex is %d\n", nFunctionIndex);
fprintf(stderr, "in cpp_vtable_call nVtableOffset is %d\n", nVtableOffset);
fprintf(stderr, "in cpp_vtable_call gp=%p, fp=%p, ov=%p\n", gpreg, fpreg, ovrflw);
#endif
// gpreg: [ret *], this, [other gpr params]
// fpreg: [fpr params]
// ovrflw: [gpr or fpr params (properly aligned)]
void * pThis;
if (nFunctionIndex & 0x80000000 )
{
nFunctionIndex &= 0x7fffffff;
pThis = gpreg[1];
}
else
{
pThis = gpreg[0];
}
#ifdef BRDEBUG
fprintf(stderr, "cpp_vtable_call, pThis=%p, nFunctionIndex=%d, nVtableOffset=%d\n",
pThis, nFunctionIndex, nVtableOffset);
#endif
pThis = static_cast< char * >(pThis) - nVtableOffset;
bridges::cpp_uno::shared::CppInterfaceProxy * pCppI =
bridges::cpp_uno::shared::CppInterfaceProxy::castInterfaceToProxy( pThis );
#ifdef BRDEBUG
fprintf(stderr, "cpp_vtable_call, pCppI=%p\n", pCppI);
#endif
typelib_InterfaceTypeDescription * pTypeDescr = pCppI->getTypeDescr();
if (nFunctionIndex >= pTypeDescr->nMapFunctionIndexToMemberIndex)
{
SAL_WARN(
"bridges",
"illegal " << OUString::unacquired(&pTypeDescr->aBase.pTypeName)
<< " vtable index " << nFunctionIndex << "/"
<< pTypeDescr->nMapFunctionIndexToMemberIndex);
throw RuntimeException(
("illegal " + OUString::unacquired(&pTypeDescr->aBase.pTypeName)
+ " vtable index " + OUString::number(nFunctionIndex) + "/"
+ OUString::number(pTypeDescr->nMapFunctionIndexToMemberIndex)),
(XInterface *)pThis);
}
// determine called method
sal_Int32 nMemberPos = pTypeDescr->pMapFunctionIndexToMemberIndex[nFunctionIndex];
assert(nMemberPos < pTypeDescr->nAllMembers);
TypeDescription aMemberDescr( pTypeDescr->ppAllMembers[nMemberPos] );
#ifdef BRDEBUG
OString cstr( OUStringToOString( aMemberDescr.get()->pTypeName, RTL_TEXTENCODING_ASCII_US ) );
fprintf(stderr, "calling %s, nFunctionIndex=%d\n", cstr.getStr(), nFunctionIndex );
#endif
typelib_TypeClass eRet;
switch (aMemberDescr.get()->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
#ifdef BRDEBUG
fprintf(stderr, "cpp_vtable_call interface attribute\n");
#endif
typelib_TypeDescriptionReference *pAttrTypeRef =
reinterpret_cast<typelib_InterfaceAttributeTypeDescription *>( aMemberDescr.get() )->pAttributeTypeRef;
if (pTypeDescr->pMapMemberIndexToFunctionIndex[nMemberPos] == nFunctionIndex)
{
// is GET method
eRet = cpp2uno_call( pCppI, aMemberDescr.get(), pAttrTypeRef,
0, 0, // no params
gpreg, fpreg, ovrflw, pRegisterReturn );
}
else
{
// is SET method
typelib_MethodParameter aParam;
aParam.pTypeRef = pAttrTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
eRet = cpp2uno_call( pCppI, aMemberDescr.get(),
0, // indicates void return
1, &aParam,
gpreg, fpreg, ovrflw, pRegisterReturn );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
#ifdef BRDEBUG
fprintf(stderr, "cpp_vtable_call interface method\n");
#endif
// is METHOD
switch (nFunctionIndex)
{
case 1: // acquire()
#ifdef BRDEBUG
fprintf(stderr, "cpp_vtable_call method acquire\n");
#endif
pCppI->acquireProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 2: // release()
#ifdef BRDEBUG
fprintf(stderr, "cpp_vtable_call method release\n");
#endif
pCppI->releaseProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 0: // queryInterface() opt
{
#ifdef BRDEBUG
fprintf(stderr, "cpp_vtable_call method query interface opt\n");
#endif
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( gpreg[2] )->getTypeLibType() );
if (pTD)
{
XInterface * pInterface = 0;
(*pCppI->getBridge()->getCppEnv()->getRegisteredInterface)
( pCppI->getBridge()->getCppEnv(),
(void **)&pInterface,
pCppI->getOid().pData,
reinterpret_cast<typelib_InterfaceTypeDescription *>( pTD ) );
if (pInterface)
{
::uno_any_construct( reinterpret_cast< uno_Any * >( gpreg[0] ),
&pInterface, pTD, cpp_acquire );
pInterface->release();
TYPELIB_DANGER_RELEASE( pTD );
reinterpret_cast<void **>( pRegisterReturn )[0] = gpreg[0];
eRet = typelib_TypeClass_ANY;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
#ifdef BRDEBUG
fprintf(stderr, "cpp_vtable_call method query interface\n");
#endif
typelib_InterfaceMethodTypeDescription *pMethodTD =
reinterpret_cast<typelib_InterfaceMethodTypeDescription *>( aMemberDescr.get() );
eRet = cpp2uno_call( pCppI, aMemberDescr.get(),
pMethodTD->pReturnTypeRef,
pMethodTD->nParams,
pMethodTD->pParams,
gpreg, fpreg, ovrflw, pRegisterReturn );
}
break;
}
default:
{
#ifdef BRDEBUG
fprintf(stderr, "cpp_vtable_call no member\n");
#endif
throw RuntimeException( "no member description found!", (XInterface *)pThis );
}
}
return eRet;
}
extern "C" void privateSnippetExecutor( ... );
int const codeSnippetSize = 0x44;
unsigned char * codeSnippet( unsigned char * code,
sal_Int32 functionIndex, sal_Int32 vtableOffset,
bool bHasHiddenParam )
{
#ifdef BRDEBUG
fprintf(stderr,"in codeSnippet functionIndex is %d\n", functionIndex);
fprintf(stderr,"in codeSnippet vtableOffset is %d\n", vtableOffset);
fflush(stderr);
#endif
if ( bHasHiddenParam )
functionIndex |= 0x80000000;
unsigned int * p = (unsigned int *) code;
assert((((unsigned long)code) & 0x3) == 0 ); //aligned to 4 otherwise a mistake
/* generate this code */
/*
# index
0: 3c020000 lui v0,0x0
4: 34420000 ori v0,v0,0x0
# privateSnippetExecutor
8: 3c0c0000 lui t0,0x0
c: 358c0000 ori t0,t0,0x0
10: 000c6438 dsll t0,t0,0x10
14: 358c0000 ori t0,t0,0x0
18: 000c6438 dsll t0,t0,0x10
1c: 358c0000 ori t0,t0,0x0
# cpp_vtable_call
20: 3c190000 lui t9,0x0
24: 37390000 ori t9,t9,0x0
28: 0019cc38 dsll t9,t9,0x10
2c: 37390000 ori t9,t9,0x0
30: 0019cc38 dsll t9,t9,0x10
34: 37390000 ori t9,t9,0x0
# offset
38: 3c030000 lui v1,0x0
3c: 01800008 jr t0
40: 34630000 ori v1,v1,0x0
*/
* p++ = 0x3c020000 | ((functionIndex>>16) & 0x0000ffff);
* p++ = 0x34420000 | (functionIndex & 0x0000ffff);
* p++ = 0x3c0c0000 | ((((unsigned long)privateSnippetExecutor) >> 48) & 0x0000ffff);
* p++ = 0x358c0000 | ((((unsigned long)privateSnippetExecutor) >> 32) & 0x0000ffff);
* p++ = 0x000c6438;
* p++ = 0x358c0000 | ((((unsigned long)privateSnippetExecutor) >> 16) & 0x0000ffff);
* p++ = 0x000c6438;
* p++ = 0x358c0000 | (((unsigned long)privateSnippetExecutor) & 0x0000ffff);
* p++ = 0x3c190000 | ((((unsigned long)cpp_vtable_call) >> 48) & 0x0000ffff);
* p++ = 0x37390000 | ((((unsigned long)cpp_vtable_call) >> 32) & 0x0000ffff);
* p++ = 0x0019cc38;
* p++ = 0x37390000 | ((((unsigned long)cpp_vtable_call) >> 16) & 0x0000ffff);
* p++ = 0x0019cc38;
* p++ = 0x37390000 | (((unsigned long)cpp_vtable_call) & 0x0000ffff);
* p++ = 0x3c030000 | ((vtableOffset>>16) & 0x0000ffff);
* p++ = 0x01800008;
* p++ = 0x34630000 | (vtableOffset & 0x0000ffff);
return (code + codeSnippetSize);
}
}
void bridges::cpp_uno::shared::VtableFactory::flushCode(unsigned char const *bptr, unsigned char const *eptr)
{
#ifndef ANDROID
(void) bptr;
(void) eptr;
sysmips(FLUSH_CACHE, 0, 0, 0);
#else
cacheflush((long) bptr, (long) eptr, 0);
#endif
}
struct bridges::cpp_uno::shared::VtableFactory::Slot { void const * fn; };
bridges::cpp_uno::shared::VtableFactory::Slot *
bridges::cpp_uno::shared::VtableFactory::mapBlockToVtable(void * block)
{
return static_cast< Slot * >(block) + 2;
}
std::size_t bridges::cpp_uno::shared::VtableFactory::getBlockSize(
sal_Int32 slotCount)
{
return (slotCount + 2) * sizeof (Slot) + slotCount * codeSnippetSize;
}
namespace {
// Some dummy type whose RTTI is used in the synthesized proxy vtables to make uses of dynamic_cast
// on such proxy objects not crash:
struct ProxyRtti {};
}
bridges::cpp_uno::shared::VtableFactory::Slot *
bridges::cpp_uno::shared::VtableFactory::initializeBlock(
void * block, sal_Int32 slotCount, sal_Int32,
typelib_InterfaceTypeDescription *)
{
Slot * slots = mapBlockToVtable(block);
slots[-2].fn = 0; //null
slots[-1].fn = &typeid(ProxyRtti);
return slots + slotCount;
}
unsigned char * bridges::cpp_uno::shared::VtableFactory::addLocalFunctions(
Slot ** slots, unsigned char * code, sal_PtrDiff writetoexecdiff,
typelib_InterfaceTypeDescription const * type, sal_Int32 functionOffset,
sal_Int32 functionCount, sal_Int32 vtableOffset)
{
(*slots) -= functionCount;
Slot * s = *slots;
#ifdef BRDEBUG
fprintf(stderr, "in addLocalFunctions functionOffset is %d\n", functionOffset);
fprintf(stderr, "in addLocalFunctions vtableOffset is %d\n", vtableOffset);
fprintf(stderr, "nMembers=%d\n", type->nMembers);
fflush(stderr);
#endif
for (sal_Int32 i = 0; i < type->nMembers; ++i) {
typelib_TypeDescription * member = 0;
TYPELIB_DANGER_GET(&member, type->ppMembers[i]);
assert(member != 0);
switch (member->eTypeClass) {
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
// Getter:
(s++)->fn = code + writetoexecdiff;
code = codeSnippet(
code, functionOffset++, vtableOffset,
CPPU_CURRENT_NAMESPACE::return_in_hidden_param(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription * >(
member)->pAttributeTypeRef));
// Setter:
if (!reinterpret_cast<
typelib_InterfaceAttributeTypeDescription * >(
member)->bReadOnly)
{
(s++)->fn = code + writetoexecdiff;
code = codeSnippet(code, functionOffset++, vtableOffset, false);
}
break;
case typelib_TypeClass_INTERFACE_METHOD:
(s++)->fn = code + writetoexecdiff;
code = codeSnippet(
code, functionOffset++, vtableOffset,
CPPU_CURRENT_NAMESPACE::return_in_hidden_param(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription * >(
member)->pReturnTypeRef));
break;
default:
assert(false);
break;
}
TYPELIB_DANGER_RELEASE(member);
}
return code;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */