1
0
Fork 0
libreoffice/bridges/source/cpp_uno/gcc3_linux_mips64/uno2cpp.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

592 lines
20 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <exception>
#include <malloc.h>
#include <cstring>
#include <typeinfo>
#include <com/sun/star/uno/Exception.hpp>
#include <com/sun/star/uno/RuntimeException.hpp>
#include <com/sun/star/uno/genfunc.hxx>
#include <o3tl/runtimetooustring.hxx>
#include <uno/data.h>
#include "bridge.hxx"
#include "types.hxx"
#include "unointerfaceproxy.hxx"
#include "vtables.hxx"
#include "share.hxx"
//#define BRDEBUG
#ifdef BRDEBUG
#include <stdio.h>
#endif
#define INSERT_FLOAT_DOUBLE( pSV, nr, pFPR, pDS ) \
if ( nr < MAX_FP_REGS ) \
pFPR[nr++] = *reinterpret_cast<double *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV ); // verbatim!
#define INSERT_INT64( pSV, nr, pGPR, pDS ) \
if ( nr < MAX_GP_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_Int64 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_Int64 *>( pSV );
#define INSERT_INT32( pSV, nr, pGPR, pDS ) \
if ( nr < MAX_GP_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_Int32 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_Int32 *>( pSV );
#define INSERT_INT16( pSV, nr, pGPR, pDS ) \
if ( nr < MAX_GP_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_Int16 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_Int16 *>( pSV );
#define INSERT_UINT16( pSV, nr, pGPR, pDS ) \
if ( nr < MAX_GP_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt16 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_uInt16 *>( pSV );
#define INSERT_INT8( pSV, nr, pGPR, pDS ) \
if ( nr < MAX_GP_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_Int8 *>( pSV ); \
else \
*pDS++ = *reinterpret_cast<sal_Int8 *>( pSV );
using namespace ::com::sun::star::uno;
namespace
{
bool isReturnInFPR(const typelib_TypeDescription * pTypeDescr, sal_uInt32 & nSize)
{
const typelib_CompoundTypeDescription *p =
reinterpret_cast<const typelib_CompoundTypeDescription*>( pTypeDescr );
for (sal_Int32 i = 0; i < p->nMembers; ++i)
{
typelib_TypeDescriptionReference *pTypeInStruct = p->ppTypeRefs[ i ];
switch (pTypeInStruct->eTypeClass)
{
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
{
typelib_TypeDescription * t = 0;
TYPELIB_DANGER_GET(&t, pTypeInStruct);
bool isFPR = isReturnInFPR(t, nSize);
TYPELIB_DANGER_RELEASE(t);
if (!isFPR)
return false;
}
break;
case typelib_TypeClass_FLOAT:
case typelib_TypeClass_DOUBLE:
if (nSize >= 16)
return false;
nSize += 8;
break;
default:
return false;
}
}
return true;
}
void fillReturn(const typelib_TypeDescription * pTypeDescr,
sal_Int64 * gret, double * fret, void * pRegisterReturn)
{
sal_uInt32 nSize = 0;
if (isReturnInFPR(pTypeDescr, nSize))
{
reinterpret_cast<double *>( pRegisterReturn )[0] = fret[0];
reinterpret_cast<double *>( pRegisterReturn )[1] = fret[1];
}
else
{
reinterpret_cast<sal_Int64 *>( pRegisterReturn )[0] = gret[0];
reinterpret_cast<sal_Int64 *>( pRegisterReturn )[1] = gret[1];
}
}
static void callVirtualMethod(
void * pAdjustedThisPtr,
sal_Int32 nVtableIndex,
void * pRegisterReturn,
typelib_TypeDescriptionReference * pReturnTypeRef,
bool bSimpleReturn,
sal_uInt64 *pStack,
sal_uInt32 nStack,
sal_uInt64 *pGPR,
double *pFPR,
sal_uInt32 nREG)
{
// Should not happen, but...
static_assert(MAX_GP_REGS == MAX_FP_REGS, "must be the same size");
if ( nREG > MAX_GP_REGS )
nREG = MAX_GP_REGS;
// Get pointer to method
sal_uInt64 pMethod = *((sal_uInt64 *)pAdjustedThisPtr);
pMethod += 8 * nVtableIndex;
void *mfunc = (void *) *((sal_uInt64 *)pMethod);
#ifdef BRDEBUG
fprintf(stderr, "calling function %p\n", mfunc);
#endif
// Load parameters to stack, if necessary
sal_uInt64* pCallStack = NULL;
if ( nStack )
{
// 16-bytes aligned
sal_uInt32 nStackBytes = ( ( nStack + 1 ) >> 1 ) * 16;
pCallStack = (sal_uInt64 *) __builtin_alloca( nStackBytes );
std::memcpy( pCallStack, pStack, nStackBytes );
}
sal_Int64 gret[2];
double fret[2];
asm volatile (
".set push \n\t"
".set mips64 \n\t"
// Fill the general purpose registers
"ld $4, 0(%[gpr]) \n\t"
"ld $5, 8(%[gpr]) \n\t"
"ld $6, 16(%[gpr]) \n\t"
"ld $7, 24(%[gpr]) \n\t"
"ld $8, 32(%[gpr]) \n\t"
"ld $9, 40(%[gpr]) \n\t"
"ld $10, 48(%[gpr]) \n\t"
"ld $11, 56(%[gpr]) \n\t"
// Fill the floating pointer registers
"ldc1 $f12, 0(%[fpr]) \n\t"
"ldc1 $f13, 8(%[fpr]) \n\t"
"ldc1 $f14, 16(%[fpr]) \n\t"
"ldc1 $f15, 24(%[fpr]) \n\t"
"ldc1 $f16, 32(%[fpr]) \n\t"
"ldc1 $f17, 40(%[fpr]) \n\t"
"ldc1 $f18, 48(%[fpr]) \n\t"
"ldc1 $f19, 56(%[fpr]) \n\t"
// Perform the call
"jalr %[mfunc] \n\t"
// Fill the return values
"move %[gret1], $2 \n\t"
"move %[gret2], $3 \n\t"
"mov.d %[fret1], $f0 \n\t"
"mov.d %[fret2], $f2 \n\t"
".set pop \n\t"
:[gret1]"=r"(gret[0]), [gret2]"=r"(gret[1]),
[fret1]"=f"(fret[0]), [fret2]"=f"(fret[1])
:[gpr]"r"(pGPR), [fpr]"r"(pFPR), [mfunc]"c"(mfunc),
[stack]"m"(pCallStack) // dummy input to prevent the compiler from optimizing the alloca out
:"$2", "$3", "$4", "$5", "$6", "$7", "$8",
"$9", "$10", "$11", "$31",
"$f0", "$f2", "$f12", "$f13", "$f14", "$f15",
"$f16", "$f17", "$f18", "$f19", "memory"
);
switch (pReturnTypeRef->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*reinterpret_cast<sal_Int64 *>( pRegisterReturn ) = gret[0];
break;
case typelib_TypeClass_FLOAT:
case typelib_TypeClass_DOUBLE:
*reinterpret_cast<double *>( pRegisterReturn ) = fret[0];
break;
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
{
sal_Int32 const nRetSize = pReturnTypeRef->pType->nSize;
if (bSimpleReturn && nRetSize <= 16 && nRetSize > 0)
{
typelib_TypeDescription * pTypeDescr = 0;
TYPELIB_DANGER_GET( &pTypeDescr, pReturnTypeRef );
fillReturn(pTypeDescr, gret, fret, pRegisterReturn);
TYPELIB_DANGER_RELEASE( pTypeDescr );
}
break;
}
default:
#ifdef BRDEBUG
fprintf(stderr,"unhandled return type %u\n", pReturnTypeRef->eTypeClass);
#endif
break;
}
}
static void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// max space for: [complex ret ptr], values|ptr ...
sal_uInt64 *pStack = (sal_uInt64 *)__builtin_alloca( ((nParams+3) * sizeof(sal_Int64)) );
sal_uInt64 *pStackStart = pStack;
sal_uInt64 pGPR[MAX_GP_REGS];
double pFPR[MAX_FP_REGS];
sal_uInt32 nREG = 0;
#ifdef BRDEBUG
fprintf(stderr, "in cpp_call\n");
#endif
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
assert(pReturnTypeDescr);
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
bool bSimpleReturn = true;
if (pReturnTypeDescr)
{
if ( CPPU_CURRENT_NAMESPACE::return_in_hidden_param( pReturnTypeRef ) )
{
bSimpleReturn = false;
// complex return via ptr
pCppReturn = bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )?
__builtin_alloca( pReturnTypeDescr->nSize ) : pUnoReturn;
INSERT_INT64( &pCppReturn, nREG, pGPR, pStack );
}
else
{
pCppReturn = pUnoReturn; // direct way for simple types
}
}
// push this
void* pAdjustedThisPtr = reinterpret_cast< void **>( pThis->getCppI() ) + aVtableSlot.offset;
INSERT_INT64( &pAdjustedThisPtr, nREG, pGPR, pStack );
// args
void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
// indices of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndices = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
uno_copyAndConvertData( pCppArgs[nPos] = alloca( 8 ), pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
INSERT_INT32( pCppArgs[nPos], nREG, pGPR, pStack );
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
INSERT_INT16( pCppArgs[nPos], nREG, pGPR, pStack );
break;
case typelib_TypeClass_UNSIGNED_SHORT:
INSERT_UINT16( pCppArgs[nPos], nREG, pGPR, pStack );
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
INSERT_INT8( pCppArgs[nPos], nREG, pGPR, pStack );
break;
case typelib_TypeClass_FLOAT:
case typelib_TypeClass_DOUBLE:
INSERT_FLOAT_DOUBLE( pCppArgs[nPos], nREG, pFPR, pStack );
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
INSERT_INT64( pCppArgs[nPos], nREG, pGPR, pStack );
break;
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndices[nTempIndices] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
pTempIndices[nTempIndices] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
else // direct way
{
pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
INSERT_INT64( &(pCppArgs[nPos]), nREG, pGPR, pStack );
}
}
try
{
try {
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeRef, bSimpleReturn,
pStackStart, ( pStack - pStackStart ),
pGPR, pFPR, nREG);
} catch (css::uno::Exception &) {
throw;
} catch (std::exception & e) {
throw css::uno::RuntimeException(
"C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": "
+ o3tl::runtimeToOUString(e.what()));
} catch (...) {
throw css::uno::RuntimeException("C++ code threw unknown exception");
}
// NO exception occurred...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno());
// temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
}
namespace bridges::cpp_uno::shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI);
//typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr;
#ifdef BRDEBUG
fprintf(stderr, "in dispatch\n");
#endif
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription const * >(
pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName("void");
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1; //get then set method
cpp_call(
pThis, aVtableSlot,
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription const * >(
pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(pThis->pBridge->getUnoEnv(),
(void **)&pInterface, pThis->oid.pData,
(typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
"illegal member type description!",
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = cppu::UnoType<decltype(aExc)>::get();
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */