1
0
Fork 0
libreoffice/bridges/source/cpp_uno/gcc3_linux_powerpc64/cpp2uno.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

755 lines
25 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <com/sun/star/uno/genfunc.hxx>
#include <sal/log.hxx>
#include <uno/data.h>
#include <typelib/typedescription.hxx>
#include <osl/endian.h>
#include "bridge.hxx"
#include "cppinterfaceproxy.hxx"
#include "types.hxx"
#include "vtablefactory.hxx"
#include "share.hxx"
#include <stdio.h>
#include <string.h>
#include <typeinfo>
#ifdef OSL_BIGENDIAN
#define IS_BIG_ENDIAN 1
#else
#define IS_BIG_ENDIAN 0
#endif
using namespace ::com::sun::star::uno;
namespace
{
static typelib_TypeClass cpp2uno_call(
bridges::cpp_uno::shared::CppInterfaceProxy * pThis,
const typelib_TypeDescription * pMemberTypeDescr,
typelib_TypeDescriptionReference * pReturnTypeRef, // 0 indicates void return
sal_Int32 nParams, typelib_MethodParameter * pParams,
void ** gpreg, void ** fpreg, void ** ovrflw,
sal_Int64 * pRegisterReturn /* space for register return */ )
{
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "as far as cpp2uno_call\n");
#endif
int ng = 0; //number of gpr registers used
int nf = 0; //number of fpr registers used
// gpreg: [ret *], this, [gpr params]
// fpreg: [fpr params]
// ovrflw: [gpr or fpr params (properly aligned)]
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
if (pReturnTypeRef)
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
void * pUnoReturn = 0;
void * pCppReturn = 0; // complex return ptr: if != 0 && != pUnoReturn, reconversion need
if (pReturnTypeDescr)
{
if (!ppc64::return_in_hidden_param(pReturnTypeRef))
{
pUnoReturn = pRegisterReturn; // direct way for simple types
}
else // complex return via ptr (pCppReturn)
{
pCppReturn = *(void **)gpreg;
gpreg++;
ng++;
pUnoReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize )
: pCppReturn); // direct way
}
}
// pop this
gpreg++;
ng++;
// stack space
static_assert(sizeof(void *) == sizeof(sal_Int64), "### unexpected size!");
// parameters
void ** pUnoArgs = (void **)alloca( 4 * sizeof(void *) * nParams );
void ** pCppArgs = pUnoArgs + nParams;
// indices of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndices = (sal_Int32 *)(pUnoArgs + (2 * nParams));
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pUnoArgs + (3 * nParams));
sal_Int32 nTempIndices = 0;
bool bOverflowUsed = false;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "arg %d of %d\n", nPos, nParams);
#endif
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "simple\n");
#endif
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_FLOAT:
case typelib_TypeClass_DOUBLE:
if (nf < ppc64::MAX_SSE_REGS)
{
if (pParamTypeDescr->eTypeClass == typelib_TypeClass_FLOAT)
{
float tmp = (float) (*((double *)fpreg));
(*((float *) fpreg)) = tmp;
}
pCppArgs[nPos] = pUnoArgs[nPos] = fpreg++;
nf++;
if (ng < ppc64::MAX_GPR_REGS)
{
ng++;
gpreg++;
}
}
else
{
pCppArgs[nPos] = pUnoArgs[nPos] = ovrflw;
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw++;
break;
case typelib_TypeClass_BYTE:
case typelib_TypeClass_BOOLEAN:
if (ng < ppc64::MAX_GPR_REGS)
{
pCppArgs[nPos] = pUnoArgs[nPos] = (((char *)gpreg) + 7*IS_BIG_ENDIAN);
ng++;
gpreg++;
}
else
{
pCppArgs[nPos] = pUnoArgs[nPos] = (((char *)ovrflw) + 7*IS_BIG_ENDIAN);
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw++;
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
if (ng < ppc64::MAX_GPR_REGS)
{
pCppArgs[nPos] = pUnoArgs[nPos] = (((char *)gpreg) + 6*IS_BIG_ENDIAN);
ng++;
gpreg++;
}
else
{
pCppArgs[nPos] = pUnoArgs[nPos] = (((char *)ovrflw) + 6*IS_BIG_ENDIAN);
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw++;
break;
case typelib_TypeClass_ENUM:
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
if (ng < ppc64::MAX_GPR_REGS)
{
pCppArgs[nPos] = pUnoArgs[nPos] = (((char *)gpreg) + 4*IS_BIG_ENDIAN);
ng++;
gpreg++;
}
else
{
pCppArgs[nPos] = pUnoArgs[nPos] = (((char *)ovrflw) + 4*IS_BIG_ENDIAN);
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw++;
break;
default:
if (ng < ppc64::MAX_GPR_REGS)
{
pCppArgs[nPos] = pUnoArgs[nPos] = gpreg++;
ng++;
}
else
{
pCppArgs[nPos] = pUnoArgs[nPos] = ovrflw;
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw++;
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "complex, ng is %d\n", ng);
#endif
void *pCppStack; //temporary stack pointer
if (ng < ppc64::MAX_GPR_REGS)
{
pCppArgs[nPos] = pCppStack = *gpreg++;
ng++;
}
else
{
pCppArgs[nPos] = pCppStack = *ovrflw;
bOverflowUsed = true;
}
if (bOverflowUsed) ovrflw++;
if (! rParam.bIn) // is pure out
{
// uno out is unconstructed mem!
pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize );
pTempIndices[nTempIndices] = nPos;
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
uno_copyAndConvertData( pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pCppStack, pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
pTempIndices[nTempIndices] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
else // direct way
{
pUnoArgs[nPos] = pCppStack;
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
}
}
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "end of params\n");
#endif
// ExceptionHolder
uno_Any aUnoExc; // Any will be constructed by callee
uno_Any * pUnoExc = &aUnoExc;
// invoke uno dispatch call
(*pThis->getUnoI()->pDispatcher)( pThis->getUnoI(), pMemberTypeDescr, pUnoReturn, pUnoArgs, &pUnoExc );
// in case an exception occurred...
if (pUnoExc)
{
// destruct temporary in/inout params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
if (pParams[nIndex].bIn) // is in/inout => was constructed
uno_destructData( pUnoArgs[nIndex], ppTempParamTypeDescr[nTempIndices], 0 );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
}
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
CPPU_CURRENT_NAMESPACE::raiseException( &aUnoExc, pThis->getBridge()->getUno2Cpp() );
// has to destruct the any
// is here for dummy
return typelib_TypeClass_VOID;
}
else // else no exception occurred...
{
// temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];
if (pParams[nIndex].bOut) // inout/out
{
// convert and assign
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
uno_copyAndConvertData( pCppArgs[nIndex], pUnoArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
}
// destroy temp uno param
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return
if (pCppReturn) // has complex return
{
if (pUnoReturn != pCppReturn) // needs reconversion
{
uno_copyAndConvertData( pCppReturn, pUnoReturn, pReturnTypeDescr,
pThis->getBridge()->getUno2Cpp() );
// destroy temp uno return
uno_destructData( pUnoReturn, pReturnTypeDescr, 0 );
}
// complex return ptr is set to return reg
*(void **)pRegisterReturn = pCppReturn;
}
if (pReturnTypeDescr)
{
typelib_TypeClass eRet = (typelib_TypeClass)pReturnTypeDescr->eTypeClass;
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
return eRet;
}
else
return typelib_TypeClass_VOID;
}
}
#if defined(_CALL_ELF) && _CALL_ELF == 2
# define PARAMSAVE 32
#else
# define PARAMSAVE 48
#endif
static typelib_TypeClass cpp_mediate(
sal_uInt64 nOffsetAndIndex,
void ** gpreg, void ** fpreg, long sp,
sal_Int64 * pRegisterReturn /* space for register return */ )
{
static_assert(sizeof(sal_Int64)==sizeof(void *), "### unexpected!");
sal_Int32 nVtableOffset = (nOffsetAndIndex >> 32);
sal_Int32 nFunctionIndex = (nOffsetAndIndex & 0xFFFFFFFF);
long sf = *(long*)sp;
void ** ovrflw = (void**)(sf + PARAMSAVE + 64);
// gpreg: [ret *], this, [other gpr params]
// fpreg: [fpr params]
// ovrflw: [gpr or fpr params (properly aligned)]
void * pThis;
if (nFunctionIndex & 0x80000000 )
{
nFunctionIndex &= 0x7fffffff;
pThis = gpreg[1];
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "pThis is gpreg[1]\n");
#endif
}
else
{
pThis = gpreg[0];
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "pThis is gpreg[0]\n");
#endif
}
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "pThis is %lx\n", pThis);
#endif
pThis = static_cast< char * >(pThis) - nVtableOffset;
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "pThis is now %lx\n", pThis);
#endif
bridges::cpp_uno::shared::CppInterfaceProxy * pCppI
= bridges::cpp_uno::shared::CppInterfaceProxy::castInterfaceToProxy(
pThis);
typelib_InterfaceTypeDescription * pTypeDescr = pCppI->getTypeDescr();
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "indexes are %d %d\n", nFunctionIndex, pTypeDescr->nMapFunctionIndexToMemberIndex);
#endif
if (nFunctionIndex >= pTypeDescr->nMapFunctionIndexToMemberIndex)
{
SAL_WARN(
"bridges",
"illegal " << OUString::unacquired(&pTypeDescr->aBase.pTypeName)
<< " vtable index " << nFunctionIndex << "/"
<< pTypeDescr->nMapFunctionIndexToMemberIndex);
throw RuntimeException(
("illegal " + OUString::unacquired(&pTypeDescr->aBase.pTypeName)
+ " vtable index " + OUString::number(nFunctionIndex) + "/"
+ OUString::number(pTypeDescr->nMapFunctionIndexToMemberIndex)),
(XInterface *)pThis);
}
// determine called method
sal_Int32 nMemberPos = pTypeDescr->pMapFunctionIndexToMemberIndex[nFunctionIndex];
assert(nMemberPos < pTypeDescr->nAllMembers);
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "members are %d %d\n", nMemberPos, pTypeDescr->nAllMembers);
#endif
TypeDescription aMemberDescr( pTypeDescr->ppAllMembers[nMemberPos] );
typelib_TypeClass eRet;
switch (aMemberDescr.get()->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
if (pTypeDescr->pMapMemberIndexToFunctionIndex[nMemberPos] == nFunctionIndex)
{
// is GET method
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef,
0, 0, // no params
gpreg, fpreg, ovrflw, pRegisterReturn );
}
else
{
// is SET method
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
0, // indicates void return
1, &aParam,
gpreg, fpreg, ovrflw, pRegisterReturn );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
// is METHOD
switch (nFunctionIndex)
{
case 1: // acquire()
pCppI->acquireProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 2: // release()
pCppI->releaseProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( gpreg[2] )->getTypeLibType() );
if (pTD)
{
XInterface * pInterface = 0;
(*pCppI->getBridge()->getCppEnv()->getRegisteredInterface)(
pCppI->getBridge()->getCppEnv(),
(void **)&pInterface, pCppI->getOid().pData,
(typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( gpreg[0] ),
&pInterface, pTD, cpp_acquire );
pInterface->release();
TYPELIB_DANGER_RELEASE( pTD );
*(void **)pRegisterReturn = gpreg[0];
eRet = typelib_TypeClass_ANY;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->nParams,
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pParams,
gpreg, fpreg, ovrflw, pRegisterReturn );
}
break;
}
default:
{
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "screwed\n");
#endif
throw RuntimeException( "no member description found!", (XInterface *)pThis );
}
}
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "end of cpp_mediate\n");
#endif
return eRet;
}
extern "C" void privateSnippetExecutor( ... )
{
sal_uInt64 gpreg[ppc64::MAX_GPR_REGS];
register long r3 asm("r3"); gpreg[0] = r3;
register long r4 asm("r4"); gpreg[1] = r4;
register long r5 asm("r5"); gpreg[2] = r5;
register long r6 asm("r6"); gpreg[3] = r6;
register long r7 asm("r7"); gpreg[4] = r7;
register long r8 asm("r8"); gpreg[5] = r8;
register long r9 asm("r9"); gpreg[6] = r9;
register long r10 asm("r10"); gpreg[7] = r10;
double fpreg[ppc64::MAX_SSE_REGS];
__asm__ __volatile__ (
"stfd 1, 0(%0)\t\n"
"stfd 2, 8(%0)\t\n"
"stfd 3, 16(%0)\t\n"
"stfd 4, 24(%0)\t\n"
"stfd 5, 32(%0)\t\n"
"stfd 6, 40(%0)\t\n"
"stfd 7, 48(%0)\t\n"
"stfd 8, 56(%0)\t\n"
"stfd 9, 64(%0)\t\n"
"stfd 10, 72(%0)\t\n"
"stfd 11, 80(%0)\t\n"
"stfd 12, 88(%0)\t\n"
"stfd 13, 96(%0)\t\n"
: : "r" (fpreg)
: "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", "fr8", "fr9",
"fr10", "fr11", "fr12", "fr13"
);
register long r11 asm("r11");
const long nOffsetAndIndex = r11;
register long r1 asm("r1");
const long sp = r1;
#if defined(_CALL_ELF) && _CALL_ELF == 2
volatile long nRegReturn[2];
#else
volatile long nRegReturn[1];
#endif
typelib_TypeClass aType =
cpp_mediate( nOffsetAndIndex, (void**)gpreg, (void**)fpreg, sp, (sal_Int64*)nRegReturn);
switch( aType )
{
case typelib_TypeClass_VOID:
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
__asm__( "lbz 3,%0\n\t"
: : "m" (nRegReturn[0]) );
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
__asm__( "lhz 3,%0\n\t"
: : "m" (nRegReturn[0]) );
break;
case typelib_TypeClass_SHORT:
__asm__( "lha 3,%0\n\t"
: : "m" (nRegReturn[0]) );
break;
case typelib_TypeClass_ENUM:
case typelib_TypeClass_UNSIGNED_LONG:
__asm__( "lwz 3,%0\n\t"
: : "m"(nRegReturn[0]) );
break;
case typelib_TypeClass_LONG:
__asm__( "lwa 3,%0\n\t"
: : "m"(nRegReturn[0]) );
break;
case typelib_TypeClass_FLOAT:
__asm__( "lfs 1,%0\n\t"
: : "m" (*((float*)nRegReturn)) );
break;
case typelib_TypeClass_DOUBLE:
__asm__( "lfd 1,%0\n\t"
: : "m" (*((double*)nRegReturn)) );
break;
default:
__asm__( "ld 3,%0\n\t"
: : "m" (nRegReturn[0]) );
#if defined(_CALL_ELF) && _CALL_ELF == 2
__asm__( "ld 4,%0\n\t"
: : "m" (nRegReturn[1]) );
#endif
break;
}
}
#if defined(_CALL_ELF) && _CALL_ELF == 2
const int codeSnippetSize = 32;
#else
const int codeSnippetSize = 24;
#endif
unsigned char * codeSnippet( unsigned char * code, sal_Int32 nFunctionIndex, sal_Int32 nVtableOffset,
bool bHasHiddenParam)
{
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr,"in codeSnippet functionIndex is %x\n", nFunctionIndex);
fprintf(stderr,"in codeSnippet vtableOffset is %x\n", nVtableOffset);
#endif
sal_uInt64 nOffsetAndIndex = ( ( (sal_uInt64) nVtableOffset ) << 32 ) | ( (sal_uInt64) nFunctionIndex );
if ( bHasHiddenParam )
nOffsetAndIndex |= 0x80000000;
#if defined(_CALL_ELF) && _CALL_ELF == 2
unsigned int *raw = (unsigned int *)&code[0];
raw[0] = 0xe96c0018; /* 0: ld 11,2f-0b(12) */
raw[1] = 0xe98c0010; /* ld 12,1f-0b(12) */
raw[2] = 0x7d8903a6; /* mtctr 12 */
raw[3] = 0x4e800420; /* bctr */
/* 1: .quad function_addr */
/* 2: .quad context */
*(void **)&raw[4] = (void *)privateSnippetExecutor;
*(void **)&raw[6] = (void*)nOffsetAndIndex;
#else
void ** raw = (void **)&code[0];
memcpy(raw, (char*) privateSnippetExecutor, 16);
raw[2] = (void*) nOffsetAndIndex;
#endif
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "in: offset/index is %x %x %d, %lx\n",
nFunctionIndex, nVtableOffset, bHasHiddenParam, raw[2]);
#endif
return (code + codeSnippetSize);
}
}
void bridges::cpp_uno::shared::VtableFactory::flushCode(unsigned char const * bptr, unsigned char const * eptr)
{
int const lineSize = 32;
for (unsigned char const * p = bptr; p < eptr + lineSize; p += lineSize) {
__asm__ volatile ("dcbst 0, %0" : : "r"(p) : "memory");
}
__asm__ volatile ("sync" : : : "memory");
for (unsigned char const * p = bptr; p < eptr + lineSize; p += lineSize) {
__asm__ volatile ("icbi 0, %0" : : "r"(p) : "memory");
}
__asm__ volatile ("isync" : : : "memory");
}
struct bridges::cpp_uno::shared::VtableFactory::Slot { void const * fn; };
bridges::cpp_uno::shared::VtableFactory::Slot *
bridges::cpp_uno::shared::VtableFactory::mapBlockToVtable(void * block)
{
return static_cast< Slot * >(block) + 2;
}
std::size_t bridges::cpp_uno::shared::VtableFactory::getBlockSize(
sal_Int32 slotCount)
{
return (slotCount + 2) * sizeof (Slot) + slotCount * codeSnippetSize;
}
namespace {
// Some dummy type whose RTTI is used in the synthesized proxy vtables to make uses of dynamic_cast
// on such proxy objects not crash:
struct ProxyRtti {};
}
bridges::cpp_uno::shared::VtableFactory::Slot *
bridges::cpp_uno::shared::VtableFactory::initializeBlock(
void * block, sal_Int32 slotCount, sal_Int32,
typelib_InterfaceTypeDescription *)
{
Slot * slots = mapBlockToVtable(block);
slots[-2].fn = 0;
slots[-1].fn = &typeid(ProxyRtti);
return slots + slotCount;
}
unsigned char * bridges::cpp_uno::shared::VtableFactory::addLocalFunctions(
Slot ** slots, unsigned char * code, sal_PtrDiff writetoexecdiff,
typelib_InterfaceTypeDescription const * type, sal_Int32 functionOffset,
sal_Int32 functionCount, sal_Int32 vtableOffset)
{
(*slots) -= functionCount;
Slot * s = *slots;
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "in addLocalFunctions functionOffset is %x\n",functionOffset);
fprintf(stderr, "in addLocalFunctions vtableOffset is %x\n",vtableOffset);
#endif
for (sal_Int32 i = 0; i < type->nMembers; ++i) {
typelib_TypeDescription * member = 0;
TYPELIB_DANGER_GET(&member, type->ppMembers[i]);
assert(member != 0);
switch (member->eTypeClass) {
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
// Getter:
(s++)->fn = code + writetoexecdiff;
code = codeSnippet(
code, functionOffset++, vtableOffset,
ppc64::return_in_hidden_param(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription * >(
member)->pAttributeTypeRef));
// Setter:
if (!reinterpret_cast<
typelib_InterfaceAttributeTypeDescription * >(
member)->bReadOnly)
{
(s++)->fn = code + writetoexecdiff;
code = codeSnippet(code, functionOffset++, vtableOffset, false);
}
break;
case typelib_TypeClass_INTERFACE_METHOD:
(s++)->fn = code + writetoexecdiff;
code = codeSnippet(
code, functionOffset++, vtableOffset,
ppc64::return_in_hidden_param(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription * >(
member)->pReturnTypeRef));
break;
default:
assert(false);
break;
}
TYPELIB_DANGER_RELEASE(member);
}
return code;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */