1
0
Fork 0
libreoffice/bridges/source/cpp_uno/gcc3_linux_powerpc64/uno2cpp.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

712 lines
27 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <exception>
#include <malloc.h>
#include <typeinfo>
#include <com/sun/star/uno/Exception.hpp>
#include <com/sun/star/uno/RuntimeException.hpp>
#include <com/sun/star/uno/genfunc.hxx>
#include <o3tl/runtimetooustring.hxx>
#include <uno/data.h>
#include "bridge.hxx"
#include "types.hxx"
#include "unointerfaceproxy.hxx"
#include "vtables.hxx"
#include "share.hxx"
#include <stdio.h>
#include <string.h>
using namespace ::com::sun::star::uno;
namespace ppc64
{
#if defined(_CALL_ELF) && _CALL_ELF == 2
bool is_complex_struct(const typelib_TypeDescription * type)
{
const typelib_CompoundTypeDescription * p
= reinterpret_cast< const typelib_CompoundTypeDescription * >(type);
for (sal_Int32 i = 0; i < p->nMembers; ++i)
{
if (p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_STRUCT ||
p->ppTypeRefs[i]->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * t = 0;
TYPELIB_DANGER_GET(&t, p->ppTypeRefs[i]);
bool b = is_complex_struct(t);
TYPELIB_DANGER_RELEASE(t);
if (b) {
return true;
}
}
else if (!bridges::cpp_uno::shared::isSimpleType(p->ppTypeRefs[i]->eTypeClass))
return true;
}
if (p->pBaseTypeDescription != 0)
return is_complex_struct(&p->pBaseTypeDescription->aBase);
return false;
}
#endif
bool return_in_hidden_param( typelib_TypeDescriptionReference *pTypeRef )
{
if (bridges::cpp_uno::shared::isSimpleType(pTypeRef))
return false;
#if defined(_CALL_ELF) && _CALL_ELF == 2
else if (pTypeRef->eTypeClass == typelib_TypeClass_STRUCT || pTypeRef->eTypeClass == typelib_TypeClass_EXCEPTION)
{
typelib_TypeDescription * pTypeDescr = 0;
TYPELIB_DANGER_GET( &pTypeDescr, pTypeRef );
//A Composite Type not larger than 16 bytes is returned in up to two GPRs
bool bRet = pTypeDescr->nSize > 16 || is_complex_struct(pTypeDescr);
TYPELIB_DANGER_RELEASE( pTypeDescr );
return bRet;
}
#endif
return true;
}
}
void MapReturn(long r3, long r4, double dret, typelib_TypeDescriptionReference* pReturnType, void *pRegisterReturn)
{
switch (pReturnType->eTypeClass)
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
*reinterpret_cast<sal_uInt64 *>( pRegisterReturn ) = r3;
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
*reinterpret_cast<sal_uInt32 *>( pRegisterReturn ) = r3;
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
*reinterpret_cast<sal_uInt16 *>( pRegisterReturn ) = (unsigned short)r3;
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*reinterpret_cast<sal_uInt8 *>( pRegisterReturn ) = (unsigned char)r3;
break;
case typelib_TypeClass_FLOAT:
*reinterpret_cast<float *>( pRegisterReturn ) = dret;
break;
case typelib_TypeClass_DOUBLE:
*reinterpret_cast<double *>( pRegisterReturn ) = dret;
break;
#if defined(_CALL_ELF) && _CALL_ELF == 2
case typelib_TypeClass_STRUCT:
case typelib_TypeClass_EXCEPTION:
if (!ppc64::return_in_hidden_param(pReturnType))
{
sal_uInt64 *pRegisters = reinterpret_cast<sal_uInt64*>(pRegisterReturn);
pRegisters[0] = r3;
if (pReturnType->pType->nSize > 8)
pRegisters[1] = r4;
}
#else
(void)r4;
#endif
default:
break;
}
}
namespace
{
static void callVirtualMethod(void * pThis, sal_uInt32 nVtableIndex,
void * pRegisterReturn, typelib_TypeDescription * pReturnTypeDescr,
sal_uInt64 *pStack, sal_uInt32 nStack,
sal_uInt64 *pGPR, sal_uInt32 nGPR,
double *pFPR, sal_uInt32 nFPR)
{
// Stack, if used, must be 16-bytes aligned
if ( nStack )
nStack = ( nStack + 1 ) & ~1;
// Should not happen, but...
if ( nFPR > ppc64::MAX_SSE_REGS )
nFPR = ppc64::MAX_SSE_REGS;
if ( nGPR > ppc64::MAX_GPR_REGS )
nGPR = ppc64::MAX_GPR_REGS;
#if OSL_DEBUG_LEVEL > 2
// Let's figure out what is really going on here
{
fprintf( stderr, "= callVirtualMethod() =\nGPR's (%d): ", nGPR );
for ( sal_uInt32 i = 0; i < nGPR; ++i )
fprintf( stderr, "0x%lx, ", pGPR[i] );
fprintf( stderr, "\nFPR's (%d): ", nFPR );
for ( sal_uInt32 i = 0; i < nFPR; ++i )
fprintf( stderr, "0x%lx (%lf), ", (sal_Int64)pFPR[i], pFPR[i] );
fprintf( stderr, "\nStack (%d): ", nStack );
for ( sal_uInt32 i = 0; i < nStack; ++i )
fprintf( stderr, "0x%lx, ", pStack[i] );
fprintf( stderr, "\n" );
}
#endif
// Load parameters to stack, if necessary
sal_uInt64 *stack = (sal_uInt64 *) __builtin_alloca( nStack * 8 );
memcpy( stack, pStack, nStack * 8 );
// Get pointer to method
sal_uInt64 pMethod = *((sal_uInt64 *)pThis);
pMethod += 8 * nVtableIndex;
pMethod = *((sal_uInt64 *)pMethod);
#if defined(_CALL_ELF) && _CALL_ELF == 2
typedef void (* FunctionCall )(...);
#else
typedef void (* FunctionCall )( sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64, sal_uInt64 );
#endif
FunctionCall pFunc = (FunctionCall)pMethod;
volatile double dret;
// fill registers
__asm__ __volatile__ (
"lfd 1, 0(%0)\n\t"
"lfd 2, 8(%0)\n\t"
"lfd 3, 16(%0)\n\t"
"lfd 4, 24(%0)\n\t"
"lfd 5, 32(%0)\n\t"
"lfd 6, 40(%0)\n\t"
"lfd 7, 48(%0)\n\t"
"lfd 8, 56(%0)\n\t"
"lfd 9, 64(%0)\n\t"
"lfd 10, 72(%0)\n\t"
"lfd 11, 80(%0)\n\t"
"lfd 12, 88(%0)\n\t"
"lfd 13, 96(%0)\n\t"
: : "r" (pFPR)
: "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", "fr8", "fr9",
"fr10", "fr11", "fr12", "fr13"
);
// tell gcc that r3 to r11 are not available to it for doing the TOC and exception munge on the func call
register sal_uInt64 r3 asm("r3");
register sal_uInt64 r4 asm("r4");
(*pFunc)(pGPR[0], pGPR[1], pGPR[2], pGPR[3], pGPR[4], pGPR[5], pGPR[6], pGPR[7]);
// get return value
__asm__ __volatile__ (
"mr %1, 3\n\t"
"mr %2, 4\n\t"
"fmr %0, 1\n\t"
: "=f" (dret), "=r" (r3), "=r" (r4) : );
MapReturn(r3, r4, dret, reinterpret_cast<typelib_TypeDescriptionReference *>(pReturnTypeDescr), pRegisterReturn);
}
// Macros for easier insertion of values to registers or stack
// pSV - pointer to the source
// nr - order of the value [will be increased if stored to register]
// pFPR, pGPR - pointer to the registers
// pDS - pointer to the stack [will be increased if stored here]
// The value in %xmm register is already prepared to be retrieved as a float,
// thus we treat float and double the same
#define INSERT_FLOAT( pSV, nr, pFPR, nGPR, pDS, bOverflow ) \
if ( nGPR < ppc64::MAX_GPR_REGS ) \
++nGPR; \
if ( nr < ppc64::MAX_SSE_REGS ) \
pFPR[nr++] = *reinterpret_cast<float *>( pSV ); \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV ); // verbatim!
#define INSERT_DOUBLE( pSV, nr, pFPR, nGPR, pDS, bOverflow ) \
if ( nGPR < ppc64::MAX_GPR_REGS ) \
++nGPR; \
if ( nr < ppc64::MAX_SSE_REGS ) \
pFPR[nr++] = *reinterpret_cast<double *>( pSV ); \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV ); // verbatim!
#define INSERT_INT64( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < ppc64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_Int64 *>( pSV ); \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_Int64 *>( pSV );
#define INSERT_UINT64( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < ppc64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt64 *>( pSV ); \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_uInt64 *>( pSV );
#define INSERT_INT32( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < ppc64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_Int32 *>( pSV ); \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_Int32 *>( pSV );
#define INSERT_UINT32( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < ppc64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt32 *>( pSV ); \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_uInt32 *>( pSV );
#define INSERT_INT16( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < ppc64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_Int16 *>( pSV ); \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_Int16 *>( pSV );
#define INSERT_UINT16( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < ppc64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt16 *>( pSV ); \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_uInt16 *>( pSV );
#define INSERT_INT8( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < ppc64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_Int8 *>( pSV ); \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_Int8 *>( pSV );
#define INSERT_UINT8( pSV, nr, pGPR, pDS, bOverflow ) \
if ( nr < ppc64::MAX_GPR_REGS ) \
pGPR[nr++] = *reinterpret_cast<sal_uInt8 *>( pSV ); \
else \
bOverflow = true; \
if (bOverflow) \
*pDS++ = *reinterpret_cast<sal_uInt8 *>( pSV );
static void cpp_call(
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis,
bridges::cpp_uno::shared::VtableSlot aVtableSlot,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
#if OSL_DEBUG_LEVEL > 2
fprintf( stderr, "= cpp_call() =\n" );
#endif
// max space for: [complex ret ptr], values|ptr ...
sal_uInt64 * pStack = (sal_uInt64 *)alloca( (nParams+3) * sizeof(sal_Int64) );
sal_uInt64 * pStackStart = pStack;
sal_uInt64 pGPR[ppc64::MAX_GPR_REGS];
sal_uInt32 nGPR = 0;
double pFPR[ppc64::MAX_SSE_REGS];
sal_uInt32 nFPR = 0;
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
assert(pReturnTypeDescr);
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
bool bOverflow = false;
if (pReturnTypeDescr)
{
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "return type is %d\n", pReturnTypeDescr->eTypeClass);
#endif
bool bSimpleReturn =!ppc64::return_in_hidden_param(pReturnTypeRef);
if (bSimpleReturn)
{
pCppReturn = pUnoReturn; // direct way for simple types
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "simple return\n");
#endif
}
else
{
// complex return via ptr
pCppReturn = (bridges::cpp_uno::shared::relatesToInterfaceType( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize ) : pUnoReturn);
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "pCppReturn/pUnoReturn is %p/%p\n", pCppReturn, pUnoReturn);
#endif
INSERT_UINT64( &pCppReturn, nGPR, pGPR, pStack, bOverflow );
}
}
// push "this" pointer
void * pAdjustedThisPtr = reinterpret_cast< void ** >( pThis->getCppI() ) + aVtableSlot.offset;
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "this pointer is %p\n", pAdjustedThisPtr);
#endif
INSERT_UINT64( &pAdjustedThisPtr, nGPR, pGPR, pStack, bOverflow );
// Args
void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
// indices of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndices = (sal_Int32 *)(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndices = 0;
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "n params is %d\n", nParams);
#endif
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "param %d is %d %d %d\n", nPos, rParam.bOut, bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ),
pParamTypeDescr->eTypeClass);
#endif
if (!rParam.bOut && bridges::cpp_uno::shared::isSimpleType( pParamTypeDescr ))
{
uno_copyAndConvertData( pCppArgs[nPos] = pStack, pUnoArgs[nPos], pParamTypeDescr,
pThis->getBridge()->getUno2Cpp() );
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_HYPER:
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "hyper is 0x%lx\n", *(sal_Int64 *)pCppArgs[nPos]);
#endif
INSERT_INT64( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow );
break;
case typelib_TypeClass_UNSIGNED_HYPER:
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "uhyper is 0x%lx\n", *(sal_Int64 *)pCppArgs[nPos]);
#endif
INSERT_UINT64( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow );
break;
case typelib_TypeClass_LONG:
case typelib_TypeClass_ENUM:
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "long is 0x%x\n", *(sal_Int32 *)pCppArgs[nPos]);
#endif
INSERT_INT32( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow );
break;
case typelib_TypeClass_UNSIGNED_LONG:
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "ulong is 0x%x\n", *(sal_Int32 *)pCppArgs[nPos]);
#endif
INSERT_UINT32( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow );
break;
case typelib_TypeClass_SHORT:
INSERT_INT16( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow );
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
INSERT_UINT16( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow );
break;
case typelib_TypeClass_BOOLEAN:
INSERT_UINT8( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow );
break;
case typelib_TypeClass_BYTE:
INSERT_INT8( pCppArgs[nPos], nGPR, pGPR, pStack, bOverflow );
break;
case typelib_TypeClass_FLOAT:
INSERT_FLOAT( pCppArgs[nPos], nFPR, pFPR, nGPR, pStack, bOverflow );
break;
case typelib_TypeClass_DOUBLE:
INSERT_DOUBLE( pCppArgs[nPos], nFPR, pFPR, nGPR, pStack, bOverflow );
break;
default:
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "complex type again %d\n", rParam.bIn);
#endif
if (! rParam.bIn) // is pure out
{
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "complex size is %d\n", pParamTypeDescr->nSize );
#endif
// cpp out is constructed mem, uno out is not!
uno_constructData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndices[nTempIndices] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
// is in/inout
else if (bridges::cpp_uno::shared::relatesToInterfaceType( pParamTypeDescr ))
{
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "this one\n");
#endif
uno_copyAndConvertData(
pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr, pThis->getBridge()->getUno2Cpp() );
pTempIndices[nTempIndices] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndices++] = pParamTypeDescr;
}
else // direct way
{
#if OSL_DEBUG_LEVEL > 2
fprintf(stderr, "that one, passing %p through\n", pUnoArgs[nPos]);
#endif
pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
INSERT_UINT64( &(pCppArgs[nPos]), nGPR, pGPR, pStack, bOverflow );
}
}
try
{
try {
callVirtualMethod(
pAdjustedThisPtr, aVtableSlot.index,
pCppReturn, pReturnTypeDescr,
pStackStart, ( pStack - pStackStart ),
pGPR, nGPR,
pFPR, nFPR );
} catch (css::uno::Exception &) {
throw;
} catch (std::exception & e) {
throw css::uno::RuntimeException(
"C++ code threw " + o3tl::runtimeToOUString(typeid(e).name()) + ": "
+ o3tl::runtimeToOUString(e.what()));
} catch (...) {
throw css::uno::RuntimeException("C++ code threw unknown exception");
}
// NO exception occurred...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndices];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
pThis->getBridge()->getCpp2Uno() );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
pThis->getBridge()->getCpp2Uno() );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
CPPU_CURRENT_NAMESPACE::fillUnoException(*ppUnoExc, pThis->getBridge()->getCpp2Uno());
// temporary params
for ( ; nTempIndices--; )
{
sal_Int32 nIndex = pTempIndices[nTempIndices];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndices], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndices] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
}
namespace bridges::cpp_uno::shared {
void unoInterfaceProxyDispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException )
{
// is my surrogate
bridges::cpp_uno::shared::UnoInterfaceProxy * pThis
= static_cast< bridges::cpp_uno::shared::UnoInterfaceProxy *> (pUnoI);
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceAttributeTypeDescription const * >(
pMemberDescr)));
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName("void");
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
aVtableSlot.index += 1; //get then set method
cpp_call(
pThis, aVtableSlot,
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
VtableSlot aVtableSlot(
getVtableSlot(
reinterpret_cast<
typelib_InterfaceMethodTypeDescription const * >(
pMemberDescr)));
switch (aVtableSlot.index)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->pBridge->getUnoEnv()->getRegisteredInterface)(
pThis->pBridge->getUnoEnv(),
(void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, aVtableSlot,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
"illegal member type description!",
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = cppu::UnoType<decltype(aExc)>::get();
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */