639 lines
28 KiB
C++
639 lines
28 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* This file incorporates work covered by the following license notice:
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed
|
|
* with this work for additional information regarding copyright
|
|
* ownership. The ASF licenses this file to you under the Apache
|
|
* License, Version 2.0 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
|
|
*/
|
|
|
|
#include <processor3d/zbufferprocessor3d.hxx>
|
|
#include <basegfx/raster/bzpixelraster.hxx>
|
|
#include <basegfx/raster/rasterconvert3d.hxx>
|
|
#include <drawinglayer/attribute/materialattribute3d.hxx>
|
|
#include <texture/texture.hxx>
|
|
#include <basegfx/polygon/b3dpolygon.hxx>
|
|
#include <basegfx/polygon/b3dpolypolygon.hxx>
|
|
#include <basegfx/polygon/b3dpolygontools.hxx>
|
|
#include <basegfx/polygon/b3dpolypolygontools.hxx>
|
|
#include <drawinglayer/attribute/sdrlightingattribute3d.hxx>
|
|
#include <o3tl/safeint.hxx>
|
|
#include <svtools/optionsdrawinglayer.hxx>
|
|
#include <utility>
|
|
|
|
using namespace com::sun::star;
|
|
|
|
class ZBufferRasterConverter3D : public basegfx::RasterConverter3D
|
|
{
|
|
private:
|
|
const drawinglayer::processor3d::DefaultProcessor3D& mrProcessor;
|
|
basegfx::BZPixelRaster& mrBuffer;
|
|
|
|
// interpolators for a single line span
|
|
basegfx::ip_single maIntZ;
|
|
basegfx::ip_triple maIntColor;
|
|
basegfx::ip_triple maIntNormal;
|
|
basegfx::ip_double maIntTexture;
|
|
basegfx::ip_triple maIntInvTexture;
|
|
|
|
// current material to use for rasterconversion
|
|
const drawinglayer::attribute::MaterialAttribute3D* mpCurrentMaterial;
|
|
|
|
// some boolean flags for line span interpolator usages
|
|
bool mbModifyColor : 1;
|
|
bool mbUseTex : 1;
|
|
bool mbHasTexCoor : 1;
|
|
bool mbHasInvTexCoor : 1;
|
|
bool mbUseNrm : 1;
|
|
bool mbUseCol : 1;
|
|
|
|
void getTextureCoor(basegfx::B2DPoint& rTarget) const
|
|
{
|
|
if(mbHasTexCoor)
|
|
{
|
|
rTarget.setX(maIntTexture.getX().getVal());
|
|
rTarget.setY(maIntTexture.getY().getVal());
|
|
}
|
|
else if(mbHasInvTexCoor)
|
|
{
|
|
const double fZFactor(maIntInvTexture.getZ().getVal());
|
|
const double fInvZFactor(basegfx::fTools::equalZero(fZFactor) ? 1.0 : 1.0 / fZFactor);
|
|
rTarget.setX(maIntInvTexture.getX().getVal() * fInvZFactor);
|
|
rTarget.setY(maIntInvTexture.getY().getVal() * fInvZFactor);
|
|
}
|
|
}
|
|
|
|
void incrementLineSpanInterpolators(double fStep)
|
|
{
|
|
maIntZ.increment(fStep);
|
|
|
|
if(mbUseTex)
|
|
{
|
|
if(mbHasTexCoor)
|
|
{
|
|
maIntTexture.increment(fStep);
|
|
}
|
|
else if(mbHasInvTexCoor)
|
|
{
|
|
maIntInvTexture.increment(fStep);
|
|
}
|
|
}
|
|
|
|
if(mbUseNrm)
|
|
{
|
|
maIntNormal.increment(fStep);
|
|
}
|
|
|
|
if(mbUseCol)
|
|
{
|
|
maIntColor.increment(fStep);
|
|
}
|
|
}
|
|
|
|
double decideColorAndOpacity(basegfx::BColor& rColor) const
|
|
{
|
|
// init values with full opacity and material color
|
|
assert(nullptr != mpCurrentMaterial && "CurrentMaterial not set (!)");
|
|
double fOpacity(1.0);
|
|
rColor = mpCurrentMaterial->getColor();
|
|
|
|
if(mbUseTex)
|
|
{
|
|
basegfx::B2DPoint aTexCoor(0.0, 0.0);
|
|
getTextureCoor(aTexCoor);
|
|
|
|
if(mrProcessor.getGeoTexSvx())
|
|
{
|
|
// calc color in spot. This may also set to invisible already when
|
|
// e.g. bitmap textures have transparent parts
|
|
mrProcessor.getGeoTexSvx()->modifyBColor(aTexCoor, rColor, fOpacity);
|
|
}
|
|
|
|
if (fOpacity > 0.0 && !basegfx::fTools::equalZero(fOpacity) && mrProcessor.getTransparenceGeoTexSvx())
|
|
{
|
|
// calc opacity. Object has a 2nd texture, a transparence texture
|
|
mrProcessor.getTransparenceGeoTexSvx()->modifyOpacity(aTexCoor, fOpacity);
|
|
}
|
|
}
|
|
|
|
if (fOpacity > 0.0 && !basegfx::fTools::equalZero(fOpacity))
|
|
{
|
|
if(mrProcessor.getGeoTexSvx())
|
|
{
|
|
if(mbUseNrm)
|
|
{
|
|
// blend texture with phong
|
|
rColor = mrProcessor.getSdrLightingAttribute().solveColorModel(
|
|
basegfx::B3DVector(maIntNormal.getX().getVal(), maIntNormal.getY().getVal(), maIntNormal.getZ().getVal()),
|
|
rColor,
|
|
mpCurrentMaterial->getSpecular(),
|
|
mpCurrentMaterial->getEmission(),
|
|
mpCurrentMaterial->getSpecularIntensity());
|
|
}
|
|
else if(mbUseCol)
|
|
{
|
|
// blend texture with gouraud
|
|
basegfx::BColor aBlendColor(maIntColor.getX().getVal(), maIntColor.getY().getVal(), maIntColor.getZ().getVal());
|
|
rColor *= aBlendColor;
|
|
}
|
|
else if(mrProcessor.getModulate())
|
|
{
|
|
// blend texture with single material color
|
|
rColor *= mpCurrentMaterial->getColor();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(mbUseNrm)
|
|
{
|
|
// modify color with phong
|
|
rColor = mrProcessor.getSdrLightingAttribute().solveColorModel(
|
|
basegfx::B3DVector(maIntNormal.getX().getVal(), maIntNormal.getY().getVal(), maIntNormal.getZ().getVal()),
|
|
rColor,
|
|
mpCurrentMaterial->getSpecular(),
|
|
mpCurrentMaterial->getEmission(),
|
|
mpCurrentMaterial->getSpecularIntensity());
|
|
}
|
|
else if(mbUseCol)
|
|
{
|
|
// modify color with gouraud
|
|
rColor.setRed(maIntColor.getX().getVal());
|
|
rColor.setGreen(maIntColor.getY().getVal());
|
|
rColor.setBlue(maIntColor.getZ().getVal());
|
|
}
|
|
}
|
|
|
|
if(mbModifyColor)
|
|
{
|
|
rColor = mrProcessor.getBColorModifierStack().getModifiedColor(rColor);
|
|
}
|
|
}
|
|
|
|
return fOpacity;
|
|
}
|
|
|
|
void setupLineSpanInterpolators(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB)
|
|
{
|
|
// get inverse XDelta
|
|
const double xInvDelta(1.0 / (rB.getX().getVal() - rA.getX().getVal()));
|
|
|
|
// prepare Z-interpolator
|
|
const double fZA(rA.getZ().getVal());
|
|
const double fZB(rB.getZ().getVal());
|
|
maIntZ = basegfx::ip_single(fZA, (fZB - fZA) * xInvDelta);
|
|
|
|
// get bools and init other interpolators on demand accordingly
|
|
mbModifyColor = mrProcessor.getBColorModifierStack().count();
|
|
mbHasTexCoor = SCANLINE_EMPTY_INDEX != rA.getTextureIndex() && SCANLINE_EMPTY_INDEX != rB.getTextureIndex();
|
|
mbHasInvTexCoor = SCANLINE_EMPTY_INDEX != rA.getInverseTextureIndex() && SCANLINE_EMPTY_INDEX != rB.getInverseTextureIndex();
|
|
const bool bTextureActive(mrProcessor.getGeoTexSvx() || mrProcessor.getTransparenceGeoTexSvx());
|
|
mbUseTex = bTextureActive && (mbHasTexCoor || mbHasInvTexCoor || mrProcessor.getSimpleTextureActive());
|
|
const bool bUseColorTex(mbUseTex && mrProcessor.getGeoTexSvx());
|
|
const bool bNeedNrmOrCol(!bUseColorTex || mrProcessor.getModulate());
|
|
mbUseNrm = bNeedNrmOrCol && SCANLINE_EMPTY_INDEX != rA.getNormalIndex() && SCANLINE_EMPTY_INDEX != rB.getNormalIndex();
|
|
mbUseCol = !mbUseNrm && bNeedNrmOrCol && SCANLINE_EMPTY_INDEX != rA.getColorIndex() && SCANLINE_EMPTY_INDEX != rB.getColorIndex();
|
|
|
|
if(mbUseTex)
|
|
{
|
|
if(mbHasTexCoor)
|
|
{
|
|
const basegfx::ip_double& rTA(getTextureInterpolators()[rA.getTextureIndex()]);
|
|
const basegfx::ip_double& rTB(getTextureInterpolators()[rB.getTextureIndex()]);
|
|
maIntTexture = basegfx::ip_double(
|
|
rTA.getX().getVal(), (rTB.getX().getVal() - rTA.getX().getVal()) * xInvDelta,
|
|
rTA.getY().getVal(), (rTB.getY().getVal() - rTA.getY().getVal()) * xInvDelta);
|
|
}
|
|
else if(mbHasInvTexCoor)
|
|
{
|
|
const basegfx::ip_triple& rITA(getInverseTextureInterpolators()[rA.getInverseTextureIndex()]);
|
|
const basegfx::ip_triple& rITB(getInverseTextureInterpolators()[rB.getInverseTextureIndex()]);
|
|
maIntInvTexture = basegfx::ip_triple(
|
|
rITA.getX().getVal(), (rITB.getX().getVal() - rITA.getX().getVal()) * xInvDelta,
|
|
rITA.getY().getVal(), (rITB.getY().getVal() - rITA.getY().getVal()) * xInvDelta,
|
|
rITA.getZ().getVal(), (rITB.getZ().getVal() - rITA.getZ().getVal()) * xInvDelta);
|
|
}
|
|
}
|
|
|
|
if(mbUseNrm)
|
|
{
|
|
const basegfx::ip_triple& rNA(getNormalInterpolators()[rA.getNormalIndex()]);
|
|
const basegfx::ip_triple& rNB(getNormalInterpolators()[rB.getNormalIndex()]);
|
|
maIntNormal = basegfx::ip_triple(
|
|
rNA.getX().getVal(), (rNB.getX().getVal() - rNA.getX().getVal()) * xInvDelta,
|
|
rNA.getY().getVal(), (rNB.getY().getVal() - rNA.getY().getVal()) * xInvDelta,
|
|
rNA.getZ().getVal(), (rNB.getZ().getVal() - rNA.getZ().getVal()) * xInvDelta);
|
|
}
|
|
|
|
if(mbUseCol)
|
|
{
|
|
const basegfx::ip_triple& rCA(getColorInterpolators()[rA.getColorIndex()]);
|
|
const basegfx::ip_triple& rCB(getColorInterpolators()[rB.getColorIndex()]);
|
|
maIntColor = basegfx::ip_triple(
|
|
rCA.getX().getVal(), (rCB.getX().getVal() - rCA.getX().getVal()) * xInvDelta,
|
|
rCA.getY().getVal(), (rCB.getY().getVal() - rCA.getY().getVal()) * xInvDelta,
|
|
rCA.getZ().getVal(), (rCB.getZ().getVal() - rCA.getZ().getVal()) * xInvDelta);
|
|
}
|
|
}
|
|
|
|
virtual void processLineSpan(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB, sal_Int32 nLine, sal_uInt32 nSpanCount) override;
|
|
|
|
public:
|
|
ZBufferRasterConverter3D(basegfx::BZPixelRaster& rBuffer, const drawinglayer::processor3d::ZBufferProcessor3D& rProcessor)
|
|
: mrProcessor(rProcessor),
|
|
mrBuffer(rBuffer),
|
|
mpCurrentMaterial(nullptr),
|
|
mbModifyColor(false),
|
|
mbUseTex(false),
|
|
mbHasTexCoor(false),
|
|
mbHasInvTexCoor(false),
|
|
mbUseNrm(false),
|
|
mbUseCol(false)
|
|
{}
|
|
|
|
void setCurrentMaterial(const drawinglayer::attribute::MaterialAttribute3D& rMaterial)
|
|
{
|
|
mpCurrentMaterial = &rMaterial;
|
|
}
|
|
};
|
|
|
|
void ZBufferRasterConverter3D::processLineSpan(const basegfx::RasterConversionLineEntry3D& rA, const basegfx::RasterConversionLineEntry3D& rB, sal_Int32 nLine, sal_uInt32 nSpanCount)
|
|
{
|
|
if(nSpanCount & 0x0001)
|
|
return;
|
|
|
|
if(nLine < 0 || o3tl::make_unsigned(nLine) >= mrBuffer.getHeight())
|
|
return;
|
|
|
|
sal_uInt32 nXA(std::min(mrBuffer.getWidth(), static_cast<sal_uInt32>(std::max(sal_Int32(0), basegfx::fround(rA.getX().getVal())))));
|
|
const sal_uInt32 nXB(std::min(mrBuffer.getWidth(), static_cast<sal_uInt32>(std::max(sal_Int32(0), basegfx::fround(rB.getX().getVal())))));
|
|
|
|
if(nXA >= nXB)
|
|
return;
|
|
|
|
// prepare the span interpolators
|
|
setupLineSpanInterpolators(rA, rB);
|
|
|
|
// bring span interpolators to start condition by incrementing with the possible difference of
|
|
// clamped and non-clamped XStart. Interpolators are setup relying on double precision
|
|
// X-values, so that difference is the correct value to compensate for possible clampings
|
|
incrementLineSpanInterpolators(static_cast<double>(nXA) - rA.getX().getVal());
|
|
|
|
// prepare scanline index
|
|
sal_uInt32 nScanlineIndex(mrBuffer.getIndexFromXY(nXA, static_cast<sal_uInt32>(nLine)));
|
|
basegfx::BColor aNewColor;
|
|
|
|
while(nXA < nXB)
|
|
{
|
|
// early-test Z values if we need to do anything at all
|
|
const double fNewZ(std::clamp(maIntZ.getVal(), 0.0, 65535.0));
|
|
const sal_uInt16 nNewZ(static_cast< sal_uInt16 >(fNewZ));
|
|
sal_uInt16& rOldZ(mrBuffer.getZ(nScanlineIndex));
|
|
|
|
if(nNewZ > rOldZ)
|
|
{
|
|
// detect color and opacity for this pixel
|
|
const sal_uInt16 nOpacity(std::max(sal_Int16(0), static_cast< sal_Int16 >(decideColorAndOpacity(aNewColor) * 255.0)));
|
|
|
|
if(nOpacity > 0)
|
|
{
|
|
// avoid color overrun
|
|
aNewColor.clamp();
|
|
|
|
if(nOpacity >= 0x00ff)
|
|
{
|
|
// full opacity (not transparent), set z and color
|
|
rOldZ = nNewZ;
|
|
mrBuffer.getBPixel(nScanlineIndex) = basegfx::BPixel(aNewColor, 0xff);
|
|
}
|
|
else
|
|
{
|
|
basegfx::BPixel& rDest = mrBuffer.getBPixel(nScanlineIndex);
|
|
|
|
if(rDest.getAlpha())
|
|
{
|
|
// mix new color by using
|
|
// color' = color * (1 - opacity) + newcolor * opacity
|
|
const sal_uInt16 nTransparence(255 - nOpacity);
|
|
rDest.setRed(static_cast<sal_uInt8>(((rDest.getRed() * nTransparence) + (static_cast<sal_uInt16>(255.0 * aNewColor.getRed()) * nOpacity)) >> 8));
|
|
rDest.setGreen(static_cast<sal_uInt8>(((rDest.getGreen() * nTransparence) + (static_cast<sal_uInt16>(255.0 * aNewColor.getGreen()) * nOpacity)) >> 8));
|
|
rDest.setBlue(static_cast<sal_uInt8>(((rDest.getBlue() * nTransparence) + (static_cast<sal_uInt16>(255.0 * aNewColor.getBlue()) * nOpacity)) >> 8));
|
|
|
|
if(255 != rDest.getAlpha())
|
|
{
|
|
// both are transparent, mix new opacity by using
|
|
// opacity = newopacity * (1 - oldopacity) + oldopacity
|
|
rDest.setAlpha(static_cast<sal_uInt8>((nOpacity * (255 - rDest.getAlpha())) >> 8) + rDest.getAlpha());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// dest is unused, set color
|
|
rDest = basegfx::BPixel(aNewColor, static_cast<sal_uInt8>(nOpacity));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// increments
|
|
nScanlineIndex++;
|
|
nXA++;
|
|
incrementLineSpanInterpolators(1.0);
|
|
}
|
|
}
|
|
|
|
// helper class to buffer output for transparent rasterprimitives (filled areas
|
|
// and lines) until the end of processing. To ensure correct transparent
|
|
// visualisation, ZBuffers require to not set Z and to mix with the transparent
|
|
// color. If transparent rasterprimitives overlap, it gets necessary to
|
|
// paint transparent rasterprimitives from back to front to ensure that the
|
|
// mixing happens from back to front. For that purpose, transparent
|
|
// rasterprimitives are held in this class during the processing run, remember
|
|
// all data and will be rendered
|
|
|
|
class RasterPrimitive3D
|
|
{
|
|
private:
|
|
std::shared_ptr< drawinglayer::texture::GeoTexSvx > mpGeoTexSvx;
|
|
std::shared_ptr< drawinglayer::texture::GeoTexSvx > mpTransparenceGeoTexSvx;
|
|
drawinglayer::attribute::MaterialAttribute3D maMaterial;
|
|
basegfx::B3DPolyPolygon maPolyPolygon;
|
|
double mfCenterZ;
|
|
|
|
bool mbModulate : 1;
|
|
bool mbFilter : 1;
|
|
bool mbSimpleTextureActive : 1;
|
|
bool mbIsLine : 1;
|
|
|
|
public:
|
|
RasterPrimitive3D(
|
|
std::shared_ptr< drawinglayer::texture::GeoTexSvx > pGeoTexSvx,
|
|
std::shared_ptr< drawinglayer::texture::GeoTexSvx > pTransparenceGeoTexSvx,
|
|
const drawinglayer::attribute::MaterialAttribute3D& rMaterial,
|
|
const basegfx::B3DPolyPolygon& rPolyPolygon,
|
|
bool bModulate,
|
|
bool bFilter,
|
|
bool bSimpleTextureActive,
|
|
bool bIsLine)
|
|
: mpGeoTexSvx(std::move(pGeoTexSvx)),
|
|
mpTransparenceGeoTexSvx(std::move(pTransparenceGeoTexSvx)),
|
|
maMaterial(rMaterial),
|
|
maPolyPolygon(rPolyPolygon),
|
|
mfCenterZ(basegfx::utils::getRange(rPolyPolygon).getCenter().getZ()),
|
|
mbModulate(bModulate),
|
|
mbFilter(bFilter),
|
|
mbSimpleTextureActive(bSimpleTextureActive),
|
|
mbIsLine(bIsLine)
|
|
{
|
|
}
|
|
|
|
bool operator<(const RasterPrimitive3D& rComp) const
|
|
{
|
|
return mfCenterZ < rComp.mfCenterZ;
|
|
}
|
|
|
|
const std::shared_ptr< drawinglayer::texture::GeoTexSvx >& getGeoTexSvx() const { return mpGeoTexSvx; }
|
|
const std::shared_ptr< drawinglayer::texture::GeoTexSvx >& getTransparenceGeoTexSvx() const { return mpTransparenceGeoTexSvx; }
|
|
const drawinglayer::attribute::MaterialAttribute3D& getMaterial() const { return maMaterial; }
|
|
const basegfx::B3DPolyPolygon& getPolyPolygon() const { return maPolyPolygon; }
|
|
bool getModulate() const { return mbModulate; }
|
|
bool getFilter() const { return mbFilter; }
|
|
bool getSimpleTextureActive() const { return mbSimpleTextureActive; }
|
|
bool getIsLine() const { return mbIsLine; }
|
|
};
|
|
|
|
namespace drawinglayer::processor3d
|
|
{
|
|
void ZBufferProcessor3D::rasterconvertB3DPolygon(const attribute::MaterialAttribute3D& rMaterial, const basegfx::B3DPolygon& rHairline) const
|
|
{
|
|
if(getTransparenceCounter())
|
|
{
|
|
// transparent output; record for later sorting and painting from
|
|
// back to front
|
|
|
|
maRasterPrimitive3Ds.push_back(RasterPrimitive3D(
|
|
getGeoTexSvx(),
|
|
getTransparenceGeoTexSvx(),
|
|
rMaterial,
|
|
basegfx::B3DPolyPolygon(rHairline),
|
|
getModulate(),
|
|
getFilter(),
|
|
getSimpleTextureActive(),
|
|
true));
|
|
}
|
|
else
|
|
{
|
|
// do rasterconversion
|
|
mpZBufferRasterConverter3D->setCurrentMaterial(rMaterial);
|
|
|
|
if(mnAntiAlialize > 1)
|
|
{
|
|
const bool bForceLineSnap(SvtOptionsDrawinglayer::IsAntiAliasing() && SvtOptionsDrawinglayer::IsSnapHorVerLinesToDiscrete());
|
|
|
|
if(bForceLineSnap)
|
|
{
|
|
basegfx::B3DHomMatrix aTransform;
|
|
basegfx::B3DPolygon aSnappedHairline(rHairline);
|
|
const double fScaleDown(1.0 / mnAntiAlialize);
|
|
const double fScaleUp(mnAntiAlialize);
|
|
|
|
// take oversampling out
|
|
aTransform.scale(fScaleDown, fScaleDown, 1.0);
|
|
aSnappedHairline.transform(aTransform);
|
|
|
|
// snap to integer
|
|
aSnappedHairline = basegfx::utils::snapPointsOfHorizontalOrVerticalEdges(aSnappedHairline);
|
|
|
|
// add oversampling again
|
|
aTransform.identity();
|
|
aTransform.scale(fScaleUp, fScaleUp, 1.0);
|
|
|
|
aSnappedHairline.transform(aTransform);
|
|
|
|
mpZBufferRasterConverter3D->rasterconvertB3DPolygon(aSnappedHairline, mnStartLine, mnStopLine, mnAntiAlialize);
|
|
}
|
|
else
|
|
{
|
|
mpZBufferRasterConverter3D->rasterconvertB3DPolygon(rHairline, mnStartLine, mnStopLine, mnAntiAlialize);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
mpZBufferRasterConverter3D->rasterconvertB3DPolygon(rHairline, mnStartLine, mnStopLine, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ZBufferProcessor3D::rasterconvertB3DPolyPolygon(const attribute::MaterialAttribute3D& rMaterial, const basegfx::B3DPolyPolygon& rFill) const
|
|
{
|
|
if(getTransparenceCounter())
|
|
{
|
|
// transparent output; record for later sorting and painting from
|
|
// back to front
|
|
maRasterPrimitive3Ds.push_back(RasterPrimitive3D(
|
|
getGeoTexSvx(),
|
|
getTransparenceGeoTexSvx(),
|
|
rMaterial,
|
|
rFill,
|
|
getModulate(),
|
|
getFilter(),
|
|
getSimpleTextureActive(),
|
|
false));
|
|
}
|
|
else
|
|
{
|
|
mpZBufferRasterConverter3D->setCurrentMaterial(rMaterial);
|
|
mpZBufferRasterConverter3D->rasterconvertB3DPolyPolygon(rFill, &maInvEyeToView, mnStartLine, mnStopLine);
|
|
}
|
|
}
|
|
|
|
ZBufferProcessor3D::ZBufferProcessor3D(
|
|
const geometry::ViewInformation3D& rViewInformation3D,
|
|
const attribute::SdrSceneAttribute& rSdrSceneAttribute,
|
|
const attribute::SdrLightingAttribute& rSdrLightingAttribute,
|
|
const basegfx::B2DRange& rVisiblePart,
|
|
sal_uInt16 nAntiAlialize,
|
|
double fFullViewSizeX,
|
|
double fFullViewSizeY,
|
|
basegfx::BZPixelRaster& rBZPixelRaster,
|
|
sal_uInt32 nStartLine,
|
|
sal_uInt32 nStopLine)
|
|
: DefaultProcessor3D(rViewInformation3D, rSdrSceneAttribute, rSdrLightingAttribute),
|
|
mnAntiAlialize(nAntiAlialize),
|
|
mnStartLine(nStartLine),
|
|
mnStopLine(nStopLine)
|
|
{
|
|
// create DeviceToView for Z-Buffer renderer since Z is handled
|
|
// different from standard 3D transformations (Z is mirrored). Also
|
|
// the transformation includes the step from unit device coordinates
|
|
// to discrete units ([-1.0 .. 1.0] -> [minDiscrete .. maxDiscrete]
|
|
basegfx::B3DHomMatrix aDeviceToView;
|
|
|
|
{
|
|
// step one:
|
|
//
|
|
// bring from [-1.0 .. 1.0] in X,Y and Z to [0.0 .. 1.0]. Also
|
|
// necessary to
|
|
// - flip Y due to screen orientation
|
|
// - flip Z due to Z-Buffer orientation from back to front
|
|
|
|
aDeviceToView.scale(0.5, -0.5, -0.5);
|
|
aDeviceToView.translate(0.5, 0.5, 0.5);
|
|
}
|
|
|
|
{
|
|
// step two:
|
|
//
|
|
// bring from [0.0 .. 1.0] in X,Y and Z to view coordinates
|
|
//
|
|
// #i102611#
|
|
// also: scale Z to [1.5 .. 65534.5]. Normally, a range of [0.0 .. 65535.0]
|
|
// could be used, but a 'unused' value is needed, so '0' is used what reduces
|
|
// the range to [1.0 .. 65535.0]. It has also shown that small numerical errors
|
|
// (smaller as basegfx::fTools::mfSmallValue, which is 0.000000001) happen.
|
|
// Instead of checking those by basegfx::fTools methods which would cost
|
|
// runtime, just add another 0.5 tolerance to the start and end of the Z-Buffer
|
|
// range, thus resulting in [1.5 .. 65534.5]
|
|
const double fMaxZDepth(65533.0);
|
|
aDeviceToView.translate(-rVisiblePart.getMinX(), -rVisiblePart.getMinY(), 0.0);
|
|
|
|
if(mnAntiAlialize)
|
|
aDeviceToView.scale(fFullViewSizeX * mnAntiAlialize, fFullViewSizeY * mnAntiAlialize, fMaxZDepth);
|
|
else
|
|
aDeviceToView.scale(fFullViewSizeX, fFullViewSizeY, fMaxZDepth);
|
|
|
|
aDeviceToView.translate(0.0, 0.0, 1.5);
|
|
}
|
|
|
|
// update local ViewInformation3D with own DeviceToView
|
|
const geometry::ViewInformation3D aNewViewInformation3D(
|
|
getViewInformation3D().getObjectTransformation(),
|
|
getViewInformation3D().getOrientation(),
|
|
getViewInformation3D().getProjection(),
|
|
aDeviceToView,
|
|
getViewInformation3D().getViewTime(),
|
|
getViewInformation3D().getExtendedInformationSequence());
|
|
updateViewInformation(aNewViewInformation3D);
|
|
|
|
// prepare inverse EyeToView transformation. This can be done in constructor
|
|
// since changes in object transformations when processing TransformPrimitive3Ds
|
|
// do not influence this prepared partial transformation
|
|
maInvEyeToView = getViewInformation3D().getDeviceToView() * getViewInformation3D().getProjection();
|
|
maInvEyeToView.invert();
|
|
|
|
// prepare maRasterRange
|
|
maRasterRange.reset();
|
|
maRasterRange.expand(basegfx::B2DPoint(0.0, nStartLine));
|
|
maRasterRange.expand(basegfx::B2DPoint(rBZPixelRaster.getWidth(), nStopLine));
|
|
|
|
// create the raster converter
|
|
mpZBufferRasterConverter3D.reset( new ZBufferRasterConverter3D(rBZPixelRaster, *this) );
|
|
}
|
|
|
|
ZBufferProcessor3D::~ZBufferProcessor3D()
|
|
{
|
|
mpZBufferRasterConverter3D.reset();
|
|
|
|
if(!maRasterPrimitive3Ds.empty())
|
|
{
|
|
OSL_FAIL("ZBufferProcessor3D: destructed, but there are unrendered transparent geometries. Use ZBufferProcessor3D::finish() to render these (!)");
|
|
}
|
|
}
|
|
|
|
void ZBufferProcessor3D::finish()
|
|
{
|
|
if(maRasterPrimitive3Ds.empty())
|
|
return;
|
|
|
|
// there are transparent rasterprimitives
|
|
const sal_uInt32 nSize(maRasterPrimitive3Ds.size());
|
|
|
|
if(nSize > 1)
|
|
{
|
|
// sort them from back to front
|
|
std::sort(maRasterPrimitive3Ds.begin(), maRasterPrimitive3Ds.end());
|
|
}
|
|
|
|
for(sal_uInt32 a(0); a < nSize; a++)
|
|
{
|
|
// paint each one by setting the remembered data and calling
|
|
// the render method
|
|
const RasterPrimitive3D& rCandidate = maRasterPrimitive3Ds[a];
|
|
|
|
mpGeoTexSvx = rCandidate.getGeoTexSvx();
|
|
mpTransparenceGeoTexSvx = rCandidate.getTransparenceGeoTexSvx();
|
|
mbModulate = rCandidate.getModulate();
|
|
mbFilter = rCandidate.getFilter();
|
|
mbSimpleTextureActive = rCandidate.getSimpleTextureActive();
|
|
|
|
if(rCandidate.getIsLine())
|
|
{
|
|
rasterconvertB3DPolygon(
|
|
rCandidate.getMaterial(),
|
|
rCandidate.getPolyPolygon().getB3DPolygon(0));
|
|
}
|
|
else
|
|
{
|
|
rasterconvertB3DPolyPolygon(
|
|
rCandidate.getMaterial(),
|
|
rCandidate.getPolyPolygon());
|
|
}
|
|
}
|
|
|
|
// delete them to signal the destructor that all is done and
|
|
// to allow asserting there
|
|
maRasterPrimitive3Ds.clear();
|
|
}
|
|
|
|
} // end of namespace
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|