1
0
Fork 0
libreoffice/include/basegfx/range/b2dconnectedranges.hxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

238 lines
9.4 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#pragma once
#include <osl/diagnose.h>
#include <basegfx/range/b2drange.hxx>
#include <list>
#include <utility>
namespace basegfx
{
/** Calculate connected ranges from input ranges.
This template constructs a list of connected ranges from the
given input ranges. That is, the output will contain a set of
ranges, itself containing a number of input ranges, which will
be mutually non-intersecting.
Example:
<code>
-------------------
| -------|
| | ||
| --- | ||
| | | -------| --------
| | +--------- | | |
| --+ | | | |
| | | | --------
| ---------- |
-------------------
</code
Here, the outer rectangles represent the output
ranges. Contained are the input rectangles that comprise these
output ranges.
@tpl UserData
User data to be stored along with the range, to later identify
which range went into which connected component. Must be
assignable, default- and copy-constructible.
*/
template< typename UserData > class B2DConnectedRanges
{
public:
/// Type of the basic entity (rect + user data)
typedef ::std::pair< B2DRange, UserData > ComponentType;
typedef ::std::list< ComponentType > ComponentListType;
/// List of (intersecting) components, plus overall bounds
struct ConnectedComponents
{
ComponentListType maComponentList;
B2DRange maTotalBounds;
};
typedef ::std::list< ConnectedComponents > ConnectedComponentsType;
/// Create the range calculator
B2DConnectedRanges() :
maDisjunctAggregatesList()
{
}
/** Add an additional range.
This method integrates a new range into the connected
ranges lists. The method has a worst-case time complexity
of O(n^2), with n denoting the number of already added
ranges (typically, for well-behaved input, it is O(n)
though).
*/
void addRange( const B2DRange& rRange,
const UserData& rUserData )
{
// check whether fast path is possible: if new range is
// outside accumulated total range, can add it as a
// separate component right away.
const bool bNotOutsideEverything(
maTotalBounds.overlaps( rRange ) );
// update own global bounds range
maTotalBounds.expand( rRange );
// assemble anything intersecting with rRange into
// this new connected component
ConnectedComponents aNewConnectedComponent;
// as at least rRange will be a member of
// aNewConnectedComponent (will be added below), can
// preset the overall bounds here.
aNewConnectedComponent.maTotalBounds = rRange;
// STAGE 1: Search for intersecting maDisjunctAggregatesList entries
// if rRange is empty, it will intersect with no
// maDisjunctAggregatesList member. Thus, we can safe us
// the check.
// if rRange is outside all other rectangle, skip here,
// too
if( bNotOutsideEverything &&
!rRange.isEmpty() )
{
typename ConnectedComponentsType::iterator aCurrAggregate;
typename ConnectedComponentsType::iterator aLastAggregate;
// flag, determining whether we touched one or more of
// the maDisjunctAggregatesList entries. _If_ we did,
// we have to repeat the intersection process, because
// these changes might have generated new
// intersections.
bool bSomeAggregatesChanged;
// loop, until bSomeAggregatesChanged stays false
do
{
// only continue loop if 'intersects' branch below was hit
bSomeAggregatesChanged = false;
// iterate over all current members of maDisjunctAggregatesList
for( aCurrAggregate=maDisjunctAggregatesList.begin(),
aLastAggregate=maDisjunctAggregatesList.end();
aCurrAggregate != aLastAggregate; )
{
// first check if current component's bounds
// are empty. This ensures that distinct empty
// components are not merged into one
// aggregate. As a matter of fact, they have
// no position and size.
if( !aCurrAggregate->maTotalBounds.isEmpty() &&
aCurrAggregate->maTotalBounds.overlaps(
aNewConnectedComponent.maTotalBounds ) )
{
// union the intersecting
// maDisjunctAggregatesList element into
// aNewConnectedComponent
// calc union bounding box
aNewConnectedComponent.maTotalBounds.expand( aCurrAggregate->maTotalBounds );
// extract all aCurrAggregate components
// to aNewConnectedComponent
aNewConnectedComponent.maComponentList.splice(
aNewConnectedComponent.maComponentList.end(),
aCurrAggregate->maComponentList );
// remove and delete aCurrAggregate entry
// from list (we've gutted it's content
// above). list::erase() will update our
// iterator with the predecessor here.
aCurrAggregate = maDisjunctAggregatesList.erase( aCurrAggregate );
// at least one aggregate changed, need to rescan everything
bSomeAggregatesChanged = true;
}
else
{
++aCurrAggregate;
}
}
}
while( bSomeAggregatesChanged );
}
// STAGE 2: Add newly generated connected component list element
// add new component to the end of the component list
aNewConnectedComponent.maComponentList.push_back(
ComponentType( rRange, rUserData ) );
// do some consistency checks (aka post conditions)
OSL_ENSURE( !aNewConnectedComponent.maComponentList.empty(),
"B2DConnectedRanges::addRange(): empty aggregate list" );
OSL_ENSURE( !aNewConnectedComponent.maTotalBounds.isEmpty() ||
aNewConnectedComponent.maComponentList.size() == 1,
"B2DConnectedRanges::addRange(): empty ranges must be solitary");
// add aNewConnectedComponent as a new entry to
// maDisjunctAggregatesList
maDisjunctAggregatesList.push_back( aNewConnectedComponent );
}
/** Apply a functor to each of the disjunct component
aggregates.
@param aFunctor
Functor to apply. Must provide an operator( const ConnectedComponents& ).
@return a copy of the functor, as applied to all aggregates.
*/
template< typename UnaryFunctor > UnaryFunctor forEachAggregate( UnaryFunctor aFunctor ) const
{
return ::std::for_each( maDisjunctAggregatesList.begin(),
maDisjunctAggregatesList.end(),
aFunctor );
}
private:
B2DConnectedRanges(const B2DConnectedRanges&) = delete;
B2DConnectedRanges& operator=( const B2DConnectedRanges& ) = delete;
/** Current list of disjunct sets of connected components
Each entry corresponds to one of the top-level rectangles
in the drawing above.
*/
ConnectedComponentsType maDisjunctAggregatesList;
/** Global bound rect over all added ranges.
*/
B2DRange maTotalBounds;
};
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */