1
0
Fork 0
libreoffice/slideshow/source/engine/box2dtools.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

892 lines
33 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#include <box2dtools.hxx>
#include <config_box2d.h>
#include BOX2D_HEADER
#include <shapemanager.hxx>
#include <attributableshape.hxx>
#include <basegfx/polygon/b2dpolypolygontools.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/polygon/b2dpolygontriangulator.hxx>
#include <svx/svdobj.hxx>
#include <svx/svdoashp.hxx>
#include <svx/svdpage.hxx>
#include <svx/unoapi.hxx>
#include <utility>
#define BOX2D_SLIDE_SIZE_IN_METERS 100.00f
constexpr double fDefaultStaticBodyBounciness(0.1);
namespace box2d::utils
{
namespace
{
double calculateScaleFactor(const ::basegfx::B2DVector& rSlideSize)
{
double fWidth = rSlideSize.getX();
double fHeight = rSlideSize.getY();
// Scale factor is based on whatever is the larger
// value between slide width and height
if (fWidth > fHeight)
return BOX2D_SLIDE_SIZE_IN_METERS / fWidth;
else
return BOX2D_SLIDE_SIZE_IN_METERS / fHeight;
}
b2BodyType getBox2DInternalBodyType(const box2DBodyType eType)
{
switch (eType)
{
default:
case BOX2D_STATIC_BODY:
return b2_staticBody;
case BOX2D_KINEMATIC_BODY:
return b2_kinematicBody;
case BOX2D_DYNAMIC_BODY:
return b2_dynamicBody;
}
}
box2DBodyType getBox2DLOBodyType(const b2BodyType eType)
{
switch (eType)
{
default:
case b2_staticBody:
return BOX2D_STATIC_BODY;
case b2_kinematicBody:
return BOX2D_KINEMATIC_BODY;
case b2_dynamicBody:
return BOX2D_DYNAMIC_BODY;
}
}
b2Vec2 convertB2DPointToBox2DVec2(const basegfx::B2DPoint& aPoint, const double fScaleFactor)
{
return { static_cast<float>(aPoint.getX() * fScaleFactor),
static_cast<float>(aPoint.getY() * -fScaleFactor) };
}
// expects rTriangleVector to have coordinates relative to the shape's bounding box center
void addTriangleVectorToBody(const basegfx::triangulator::B2DTriangleVector& rTriangleVector,
b2Body* aBody, const float fDensity, const float fFriction,
const float fRestitution, const double fScaleFactor)
{
for (const basegfx::triangulator::B2DTriangle& aTriangle : rTriangleVector)
{
b2FixtureDef aFixture;
b2PolygonShape aPolygonShape;
b2Vec2 aTriangleVertices[3]
= { convertB2DPointToBox2DVec2(aTriangle.getA(), fScaleFactor),
convertB2DPointToBox2DVec2(aTriangle.getB(), fScaleFactor),
convertB2DPointToBox2DVec2(aTriangle.getC(), fScaleFactor) };
bool bValidPointDistance
= b2DistanceSquared(aTriangleVertices[0], aTriangleVertices[1]) > 0.003f
&& b2DistanceSquared(aTriangleVertices[0], aTriangleVertices[2]) > 0.003f
&& b2DistanceSquared(aTriangleVertices[1], aTriangleVertices[2]) > 0.003f;
if (bValidPointDistance)
{
// create a fixture that represents the triangle
aPolygonShape.Set(aTriangleVertices, 3);
aFixture.shape = &aPolygonShape;
aFixture.density = fDensity;
aFixture.friction = fFriction;
aFixture.restitution = fRestitution;
aBody->CreateFixture(&aFixture);
}
}
}
// expects rPolygon to have coordinates relative to it's center
void addEdgeShapeToBody(const basegfx::B2DPolygon& rPolygon, b2Body* aBody, const float fDensity,
const float fFriction, const float fRestitution, const double fScaleFactor)
{
// make sure there's no bezier curves on the polygon
assert(!rPolygon.areControlPointsUsed());
basegfx::B2DPolygon aPolygon = basegfx::utils::removeNeutralPoints(rPolygon);
// value that somewhat defines half width of the quadrilateral
// that will be representing edge segment in the box2d world
const float fHalfWidth = 0.1f;
bool bHasPreviousQuadrilateralEdge = false;
b2Vec2 aQuadrilateralVertices[4];
for (sal_uInt32 nIndex = 0; nIndex < aPolygon.count(); nIndex++)
{
b2FixtureDef aFixture;
b2PolygonShape aPolygonShape;
basegfx::B2DPoint aPointA;
basegfx::B2DPoint aPointB;
if (nIndex != 0)
{
// get two adjacent points to create an edge out of
aPointA = aPolygon.getB2DPoint(nIndex - 1);
aPointB = aPolygon.getB2DPoint(nIndex);
}
else if (aPolygon.isClosed())
{
// start by connecting the last point to the first one
aPointA = aPolygon.getB2DPoint(aPolygon.count() - 1);
aPointB = aPolygon.getB2DPoint(nIndex);
}
else // the polygon isn't closed, won't connect last and first points
{
continue;
}
// create a vector that represents the direction of the edge
// and make it a unit vector
b2Vec2 aEdgeUnitVec(convertB2DPointToBox2DVec2(aPointB, fScaleFactor)
- convertB2DPointToBox2DVec2(aPointA, fScaleFactor));
aEdgeUnitVec.Normalize();
// create a unit vector that represents Normal of the edge
b2Vec2 aEdgeNormal(-aEdgeUnitVec.y, aEdgeUnitVec.x);
// if there was an edge previously created it should just connect
// using it's ending points so that there are no empty spots
// between edge segments, if not use wherever aPointA is at
if (!bHasPreviousQuadrilateralEdge)
{
// the point is translated along the edge normal both directions by
// fHalfWidth to create a quadrilateral edge
aQuadrilateralVertices[0]
= convertB2DPointToBox2DVec2(aPointA, fScaleFactor) + fHalfWidth * aEdgeNormal;
aQuadrilateralVertices[1]
= convertB2DPointToBox2DVec2(aPointA, fScaleFactor) + -fHalfWidth * aEdgeNormal;
bHasPreviousQuadrilateralEdge = true;
}
aQuadrilateralVertices[2]
= convertB2DPointToBox2DVec2(aPointB, fScaleFactor) + fHalfWidth * aEdgeNormal;
aQuadrilateralVertices[3]
= convertB2DPointToBox2DVec2(aPointB, fScaleFactor) + -fHalfWidth * aEdgeNormal;
// check whether the edge would have degenerately close points
bool bValidPointDistance
= b2DistanceSquared(aQuadrilateralVertices[0], aQuadrilateralVertices[2]) > 0.003f;
if (bValidPointDistance)
{
// create a quadrilateral shaped fixture to represent the edge
aPolygonShape.Set(aQuadrilateralVertices, 4);
aFixture.shape = &aPolygonShape;
aFixture.density = fDensity;
aFixture.friction = fFriction;
aFixture.restitution = fRestitution;
aBody->CreateFixture(&aFixture);
// prepare the quadrilateral edge for next connection
aQuadrilateralVertices[0] = aQuadrilateralVertices[2];
aQuadrilateralVertices[1] = aQuadrilateralVertices[3];
}
}
}
void addEdgeShapeToBody(const basegfx::B2DPolyPolygon& rPolyPolygon, b2Body* aBody,
const float fDensity, const float fFriction, const float fRestitution,
const double fScaleFactor)
{
for (const basegfx::B2DPolygon& rPolygon : rPolyPolygon)
{
addEdgeShapeToBody(rPolygon, aBody, fDensity, fFriction, fRestitution, fScaleFactor);
}
}
}
box2DWorld::box2DWorld(const ::basegfx::B2DVector& rSlideSize)
: mpBox2DWorld()
, mfScaleFactor(calculateScaleFactor(rSlideSize))
, mbShapesInitialized(false)
, mbHasWorldStepper(false)
, mbAlreadyStepped(false)
, mnPhysicsAnimationCounter(0)
, mpXShapeToBodyMap()
, maShapeParallelUpdateQueue()
{
}
box2DWorld::~box2DWorld() = default;
bool box2DWorld::initiateWorld(const ::basegfx::B2DVector& rSlideSize)
{
if (!mpBox2DWorld)
{
mpBox2DWorld = std::make_unique<b2World>(b2Vec2(0.0f, -30.0f));
createStaticFrameAroundSlide(rSlideSize);
return false;
}
else
{
return true;
}
}
void box2DWorld::createStaticFrameAroundSlide(const ::basegfx::B2DVector& rSlideSize)
{
assert(mpBox2DWorld);
float fWidth = static_cast<float>(rSlideSize.getX() * mfScaleFactor);
float fHeight = static_cast<float>(rSlideSize.getY() * mfScaleFactor);
// static body for creating the frame around the slide
b2BodyDef aBodyDef;
aBodyDef.type = b2_staticBody;
aBodyDef.position.Set(0, 0);
// not going to be stored anywhere, will live
// as long as the Box2DWorld does
b2Body* pStaticBody = mpBox2DWorld->CreateBody(&aBodyDef);
// create an edge loop that represents slide frame
b2Vec2 aEdgePoints[4];
aEdgePoints[0].Set(0, 0);
aEdgePoints[1].Set(0, -fHeight);
aEdgePoints[2].Set(fWidth, -fHeight);
aEdgePoints[3].Set(fWidth, 0);
b2ChainShape aEdgesChainShape;
aEdgesChainShape.CreateLoop(aEdgePoints, 4);
// create the fixture for the shape
b2FixtureDef aFixtureDef;
aFixtureDef.shape = &aEdgesChainShape;
pStaticBody->CreateFixture(&aFixtureDef);
}
void box2DWorld::setShapePosition(const css::uno::Reference<css::drawing::XShape>& xShape,
const basegfx::B2DPoint& rOutPos)
{
const auto iter = mpXShapeToBodyMap.find(xShape);
assert(iter != mpXShapeToBodyMap.end());
Box2DBodySharedPtr pBox2DBody = iter->second;
pBox2DBody->setPosition(rOutPos);
}
void box2DWorld::setShapePositionByLinearVelocity(
const css::uno::Reference<css::drawing::XShape>& xShape, const basegfx::B2DPoint& rOutPos,
const double fPassedTime)
{
assert(mpBox2DWorld);
if (fPassedTime > 0) // this only makes sense if there was an advance in time
{
const auto iter = mpXShapeToBodyMap.find(xShape);
assert(iter != mpXShapeToBodyMap.end());
Box2DBodySharedPtr pBox2DBody = iter->second;
pBox2DBody->setPositionByLinearVelocity(rOutPos, fPassedTime);
}
}
void box2DWorld::setShapeLinearVelocity(const css::uno::Reference<css::drawing::XShape>& xShape,
const basegfx::B2DVector& rVelocity)
{
assert(mpBox2DWorld);
const auto iter = mpXShapeToBodyMap.find(xShape);
assert(iter != mpXShapeToBodyMap.end());
Box2DBodySharedPtr pBox2DBody = iter->second;
pBox2DBody->setLinearVelocity(rVelocity);
}
void box2DWorld::setShapeAngle(const css::uno::Reference<css::drawing::XShape>& xShape,
const double fAngle)
{
const auto iter = mpXShapeToBodyMap.find(xShape);
assert(iter != mpXShapeToBodyMap.end());
Box2DBodySharedPtr pBox2DBody = iter->second;
pBox2DBody->setAngle(fAngle);
}
void box2DWorld::setShapeAngleByAngularVelocity(
const css::uno::Reference<css::drawing::XShape>& xShape, const double fAngle,
const double fPassedTime)
{
assert(mpBox2DWorld);
if (fPassedTime > 0) // this only makes sense if there was an advance in time
{
const auto iter = mpXShapeToBodyMap.find(xShape);
assert(iter != mpXShapeToBodyMap.end());
Box2DBodySharedPtr pBox2DBody = iter->second;
pBox2DBody->setAngleByAngularVelocity(fAngle, fPassedTime);
}
}
void box2DWorld::setShapeAngularVelocity(const css::uno::Reference<css::drawing::XShape>& xShape,
const double fAngularVelocity)
{
assert(mpBox2DWorld);
const auto iter = mpXShapeToBodyMap.find(xShape);
assert(iter != mpXShapeToBodyMap.end());
Box2DBodySharedPtr pBox2DBody = iter->second;
pBox2DBody->setAngularVelocity(fAngularVelocity);
}
void box2DWorld::setShapeCollision(const css::uno::Reference<css::drawing::XShape>& xShape,
bool bCanCollide)
{
assert(mpBox2DWorld);
const auto iter = mpXShapeToBodyMap.find(xShape);
assert(iter != mpXShapeToBodyMap.end());
Box2DBodySharedPtr pBox2DBody = iter->second;
pBox2DBody->setCollision(bCanCollide);
}
void box2DWorld::processUpdateQueue(const double fPassedTime)
{
while (!maShapeParallelUpdateQueue.empty())
{
Box2DDynamicUpdateInformation& aQueueElement = maShapeParallelUpdateQueue.front();
if (aQueueElement.mnDelayForSteps > 0)
{
// it was queued as a delayed action, skip it, don't pop
aQueueElement.mnDelayForSteps--;
}
else
{
switch (aQueueElement.meUpdateType)
{
default:
case BOX2D_UPDATE_POSITION_CHANGE:
setShapePositionByLinearVelocity(aQueueElement.mxShape,
aQueueElement.maPosition, fPassedTime);
break;
case BOX2D_UPDATE_POSITION:
setShapePosition(aQueueElement.mxShape, aQueueElement.maPosition);
break;
case BOX2D_UPDATE_ANGLE:
setShapeAngleByAngularVelocity(aQueueElement.mxShape, aQueueElement.mfAngle,
fPassedTime);
break;
case BOX2D_UPDATE_SIZE:
break;
case BOX2D_UPDATE_VISIBILITY:
setShapeCollision(aQueueElement.mxShape, aQueueElement.mbVisibility);
break;
case BOX2D_UPDATE_LINEAR_VELOCITY:
setShapeLinearVelocity(aQueueElement.mxShape, aQueueElement.maVelocity);
break;
case BOX2D_UPDATE_ANGULAR_VELOCITY:
setShapeAngularVelocity(aQueueElement.mxShape, aQueueElement.mfAngularVelocity);
}
maShapeParallelUpdateQueue.pop();
}
}
}
void box2DWorld::initiateAllShapesAsStaticBodies(
const slideshow::internal::ShapeManagerSharedPtr& pShapeManager)
{
assert(mpBox2DWorld);
mbShapesInitialized = true;
auto aXShapeToShapeMap = pShapeManager->getXShapeToShapeMap();
std::unordered_map<css::uno::Reference<css::drawing::XShape>, bool> aXShapeBelongsToAGroup;
// iterate over the shapes in the current slide and flag them if they belong to a group
// will flag the only ones that are belong to a group since std::unordered_map operator[]
// defaults the value to false if the key doesn't have a corresponding value
for (auto aIt = aXShapeToShapeMap.begin(); aIt != aXShapeToShapeMap.end(); aIt++)
{
slideshow::internal::ShapeSharedPtr pShape = aIt->second;
if (pShape->isForeground())
{
SdrObject* pTemp = SdrObject::getSdrObjectFromXShape(pShape->getXShape());
if (pTemp && pTemp->IsGroupObject())
{
// if it is a group object iterate over its children and flag them
SdrObjList* aObjList = pTemp->GetSubList();
for (const rtl::Reference<SdrObject>& pGroupMember : *aObjList)
{
aXShapeBelongsToAGroup.insert(
std::make_pair(GetXShapeForSdrObject(pGroupMember.get()), true));
}
}
}
}
// iterate over shapes in the current slide
for (auto aIt = aXShapeToShapeMap.begin(); aIt != aXShapeToShapeMap.end(); aIt++)
{
slideshow::internal::ShapeSharedPtr pShape = aIt->second;
// only create static bodies for the shapes that do not belong to a group
// groups themselves will have one body that represents the whole shape
// collection
if (pShape->isForeground() && !aXShapeBelongsToAGroup[pShape->getXShape()])
{
Box2DBodySharedPtr pBox2DBody = createStaticBody(pShape);
mpXShapeToBodyMap.insert(std::make_pair(pShape->getXShape(), pBox2DBody));
if (!pShape->isVisible())
{
// if the shape isn't visible, queue an update for it
queueShapeVisibilityUpdate(pShape->getXShape(), false);
}
}
}
}
bool box2DWorld::hasWorldStepper() const { return mbHasWorldStepper; }
void box2DWorld::setHasWorldStepper(const bool bHasWorldStepper)
{
mbHasWorldStepper = bHasWorldStepper;
}
void box2DWorld::queueDynamicPositionUpdate(const css::uno::Reference<css::drawing::XShape>& xShape,
const basegfx::B2DPoint& rOutPos)
{
Box2DDynamicUpdateInformation aQueueElement = { xShape, {}, BOX2D_UPDATE_POSITION_CHANGE };
aQueueElement.maPosition = rOutPos;
maShapeParallelUpdateQueue.push(aQueueElement);
}
void box2DWorld::queueLinearVelocityUpdate(const css::uno::Reference<css::drawing::XShape>& xShape,
const basegfx::B2DVector& rVelocity,
const int nDelayForSteps)
{
Box2DDynamicUpdateInformation aQueueElement
= { xShape, {}, BOX2D_UPDATE_LINEAR_VELOCITY, nDelayForSteps };
aQueueElement.maVelocity = rVelocity;
maShapeParallelUpdateQueue.push(aQueueElement);
}
void box2DWorld::queueDynamicRotationUpdate(const css::uno::Reference<css::drawing::XShape>& xShape,
const double fAngle)
{
Box2DDynamicUpdateInformation aQueueElement = { xShape, {}, BOX2D_UPDATE_ANGLE };
aQueueElement.mfAngle = fAngle;
maShapeParallelUpdateQueue.push(aQueueElement);
}
void box2DWorld::queueAngularVelocityUpdate(const css::uno::Reference<css::drawing::XShape>& xShape,
const double fAngularVelocity, const int nDelayForSteps)
{
Box2DDynamicUpdateInformation aQueueElement
= { xShape, {}, BOX2D_UPDATE_ANGULAR_VELOCITY, nDelayForSteps };
aQueueElement.mfAngularVelocity = fAngularVelocity;
maShapeParallelUpdateQueue.push(aQueueElement);
}
void box2DWorld::queueShapeVisibilityUpdate(const css::uno::Reference<css::drawing::XShape>& xShape,
const bool bVisibility)
{
Box2DDynamicUpdateInformation aQueueElement = { xShape, {}, BOX2D_UPDATE_VISIBILITY };
aQueueElement.mbVisibility = bVisibility;
maShapeParallelUpdateQueue.push(aQueueElement);
}
void box2DWorld::queueShapePositionUpdate(const css::uno::Reference<css::drawing::XShape>& xShape,
const basegfx::B2DPoint& rOutPos)
{
Box2DDynamicUpdateInformation aQueueElement = { xShape, {}, BOX2D_UPDATE_POSITION };
aQueueElement.maPosition = rOutPos;
maShapeParallelUpdateQueue.push(aQueueElement);
}
void box2DWorld::queueShapePathAnimationUpdate(
const css::uno::Reference<css::drawing::XShape>& xShape,
const slideshow::internal::ShapeAttributeLayerSharedPtr& pAttrLayer, const bool bIsFirstUpdate)
{
// Workaround for PathAnimations since they do not have their own AttributeType
// - using PosX makes it register a DynamicPositionUpdate -
queueShapeAnimationUpdate(xShape, pAttrLayer, slideshow::internal::AttributeType::PosX,
bIsFirstUpdate);
}
void box2DWorld::queueShapeAnimationUpdate(
const css::uno::Reference<css::drawing::XShape>& xShape,
const slideshow::internal::ShapeAttributeLayerSharedPtr& pAttrLayer,
const slideshow::internal::AttributeType eAttrType, const bool bIsFirstUpdate)
{
switch (eAttrType)
{
case slideshow::internal::AttributeType::Visibility:
queueShapeVisibilityUpdate(xShape, pAttrLayer->getVisibility());
return;
case slideshow::internal::AttributeType::Rotate:
queueDynamicRotationUpdate(xShape, pAttrLayer->getRotationAngle());
return;
case slideshow::internal::AttributeType::PosX:
case slideshow::internal::AttributeType::PosY:
if (bIsFirstUpdate) // if it is the first update shape should _teleport_ to the position
queueShapePositionUpdate(xShape, { pAttrLayer->getPosX(), pAttrLayer->getPosY() });
else
queueDynamicPositionUpdate(xShape,
{ pAttrLayer->getPosX(), pAttrLayer->getPosY() });
return;
default:
return;
}
}
void box2DWorld::queueShapeAnimationEndUpdate(
const css::uno::Reference<css::drawing::XShape>& xShape,
const slideshow::internal::AttributeType eAttrType)
{
switch (eAttrType)
{
// end updates that change the velocity are delayed for a step
// since we do not want them to override the last position/angle
case slideshow::internal::AttributeType::Rotate:
queueAngularVelocityUpdate(xShape, 0.0, 1);
return;
case slideshow::internal::AttributeType::PosX:
case slideshow::internal::AttributeType::PosY:
queueLinearVelocityUpdate(xShape, { 0, 0 }, 1);
return;
default:
return;
}
}
void box2DWorld::alertPhysicsAnimationEnd(const slideshow::internal::ShapeSharedPtr& pShape)
{
const auto iter = mpXShapeToBodyMap.find(pShape->getXShape());
assert(iter != mpXShapeToBodyMap.end());
Box2DBodySharedPtr pBox2DBody = iter->second;
// since the animation ended make the body static
makeBodyStatic(pBox2DBody);
pBox2DBody->setRestitution(fDefaultStaticBodyBounciness);
if (--mnPhysicsAnimationCounter == 0)
{
// if there are no more physics animation effects going on clean up
maShapeParallelUpdateQueue = {};
mbShapesInitialized = false;
// clearing the map will make the box2d bodies get
// destroyed if there's nothing else that owns them
mpXShapeToBodyMap.clear();
}
else
{
// the physics animation that will take over the lock after this one
// shouldn't step the world for an update cycle - since it was already
// stepped.
mbAlreadyStepped = true;
}
}
void box2DWorld::alertPhysicsAnimationStart(
const ::basegfx::B2DVector& rSlideSize,
const slideshow::internal::ShapeManagerSharedPtr& pShapeManager)
{
if (!mpBox2DWorld)
initiateWorld(rSlideSize);
if (!mbShapesInitialized)
initiateAllShapesAsStaticBodies(pShapeManager);
mnPhysicsAnimationCounter++;
}
void box2DWorld::step(const float fTimeStep, const int nVelocityIterations,
const int nPositionIterations)
{
assert(mpBox2DWorld);
mpBox2DWorld->Step(fTimeStep, nVelocityIterations, nPositionIterations);
}
double box2DWorld::stepAmount(const double fPassedTime, const float fTimeStep,
const int nVelocityIterations, const int nPositionIterations)
{
assert(mpBox2DWorld);
unsigned int nStepAmount = static_cast<unsigned int>(std::round(fPassedTime / fTimeStep));
// find the actual time that will be stepped through so
// that the updates can be processed using that value
double fTimeSteppedThrough = fTimeStep * nStepAmount;
// do the updates required to simulate other animation effects going in parallel
processUpdateQueue(fTimeSteppedThrough);
if (!mbAlreadyStepped)
{
for (unsigned int nStepCounter = 0; nStepCounter < nStepAmount; nStepCounter++)
{
step(fTimeStep, nVelocityIterations, nPositionIterations);
}
}
else
{
// just got the step lock from another physics animation
// so skipping stepping the world for an update cycle
mbAlreadyStepped = false;
}
return fTimeSteppedThrough;
}
bool box2DWorld::shapesInitialized() { return mbShapesInitialized; }
bool box2DWorld::isInitialized() const
{
if (mpBox2DWorld)
return true;
else
return false;
}
Box2DBodySharedPtr
box2DWorld::makeShapeDynamic(const css::uno::Reference<css::drawing::XShape>& xShape,
const basegfx::B2DVector& rStartVelocity, const double fDensity,
const double fBounciness)
{
assert(mpBox2DWorld);
Box2DBodySharedPtr pBox2DBody = mpXShapeToBodyMap.find(xShape)->second;
pBox2DBody->setDensityAndRestitution(fDensity, fBounciness);
queueLinearVelocityUpdate(xShape, rStartVelocity, 1);
return makeBodyDynamic(pBox2DBody);
}
Box2DBodySharedPtr makeBodyDynamic(const Box2DBodySharedPtr& pBox2DBody)
{
if (pBox2DBody->getType() != BOX2D_DYNAMIC_BODY)
{
pBox2DBody->setType(BOX2D_DYNAMIC_BODY);
}
return pBox2DBody;
}
Box2DBodySharedPtr box2DWorld::makeShapeStatic(const slideshow::internal::ShapeSharedPtr& pShape)
{
assert(mpBox2DWorld);
assert(pShape && pShape->getXShape());
const auto iter = mpXShapeToBodyMap.find(pShape->getXShape());
assert(iter != mpXShapeToBodyMap.end());
Box2DBodySharedPtr pBox2DBody = iter->second;
return makeBodyStatic(pBox2DBody);
}
Box2DBodySharedPtr makeBodyStatic(const Box2DBodySharedPtr& pBox2DBody)
{
if (pBox2DBody->getType() != BOX2D_STATIC_BODY)
{
pBox2DBody->setType(BOX2D_STATIC_BODY);
}
return pBox2DBody;
}
Box2DBodySharedPtr box2DWorld::createStaticBody(const slideshow::internal::ShapeSharedPtr& rShape,
const float fDensity, const float fFriction)
{
assert(mpBox2DWorld);
::basegfx::B2DRectangle aShapeBounds = rShape->getBounds();
b2BodyDef aBodyDef;
aBodyDef.type = b2_staticBody;
aBodyDef.position = convertB2DPointToBox2DVec2(aShapeBounds.getCenter(), mfScaleFactor);
slideshow::internal::ShapeAttributeLayerSharedPtr pShapeAttributeLayer
= static_cast<slideshow::internal::AttributableShape*>(rShape.get())
->getTopmostAttributeLayer();
if (pShapeAttributeLayer && pShapeAttributeLayer->isRotationAngleValid())
{
// if the shape's rotation value was altered by another animation effect set it.
aBodyDef.angle = ::basegfx::deg2rad(-pShapeAttributeLayer->getRotationAngle());
}
// create a shared pointer with a destructor so that the body will be properly destroyed
std::shared_ptr<b2Body> pBody(mpBox2DWorld->CreateBody(&aBodyDef), [](b2Body* pB2Body) {
pB2Body->GetWorld()->DestroyBody(pB2Body);
});
SdrObject* pSdrObject = SdrObject::getSdrObjectFromXShape(rShape->getXShape());
rtl::OUString aShapeType = rShape->getXShape()->getShapeType();
basegfx::B2DPolyPolygon aPolyPolygon;
// workaround:
// TakeXorPoly() doesn't return beziers for CustomShapes and we want the beziers
// so that we can decide the complexity of the polygons generated from them
if (aShapeType == "com.sun.star.drawing.CustomShape")
{
aPolyPolygon = static_cast<SdrObjCustomShape*>(pSdrObject)->GetLineGeometry(true);
}
else
{
aPolyPolygon = pSdrObject->TakeXorPoly();
}
// make beziers into polygons, using a high degree angle as fAngleBound in
// adaptiveSubdivideByAngle reduces complexity of the resulting polygon shapes
aPolyPolygon = aPolyPolygon.areControlPointsUsed()
? basegfx::utils::adaptiveSubdivideByAngle(aPolyPolygon, 20)
: aPolyPolygon;
aPolyPolygon.removeDoublePoints();
// make polygon coordinates relative to the center of the shape instead of top left of the slide
// since box2d shapes are expressed this way
aPolyPolygon
= basegfx::utils::distort(aPolyPolygon, aPolyPolygon.getB2DRange(),
{ -aShapeBounds.getWidth() / 2, -aShapeBounds.getHeight() / 2 },
{ aShapeBounds.getWidth() / 2, -aShapeBounds.getHeight() / 2 },
{ -aShapeBounds.getWidth() / 2, aShapeBounds.getHeight() / 2 },
{ aShapeBounds.getWidth() / 2, aShapeBounds.getHeight() / 2 });
if (pSdrObject->IsClosedObj() && !pSdrObject->IsEdgeObj() && pSdrObject->HasFillStyle())
{
basegfx::triangulator::B2DTriangleVector aTriangleVector;
// iterate over the polygons of the shape and create representations for them
for (const auto& rPolygon : std::as_const(aPolyPolygon))
{
// if the polygon is closed it will be represented by triangles
if (rPolygon.isClosed())
{
basegfx::triangulator::B2DTriangleVector aTempTriangleVector(
basegfx::triangulator::triangulate(rPolygon));
aTriangleVector.insert(aTriangleVector.end(), aTempTriangleVector.begin(),
aTempTriangleVector.end());
}
else // otherwise it will be an edge representation (example: smile line of the smiley shape)
{
addEdgeShapeToBody(rPolygon, pBody.get(), fDensity, fFriction,
static_cast<float>(fDefaultStaticBodyBounciness), mfScaleFactor);
}
}
addTriangleVectorToBody(aTriangleVector, pBody.get(), fDensity, fFriction,
static_cast<float>(fDefaultStaticBodyBounciness), mfScaleFactor);
}
else
{
addEdgeShapeToBody(aPolyPolygon, pBody.get(), fDensity, fFriction,
static_cast<float>(fDefaultStaticBodyBounciness), mfScaleFactor);
}
return std::make_shared<box2DBody>(pBody, mfScaleFactor);
}
box2DBody::box2DBody(std::shared_ptr<b2Body> pBox2DBody, double fScaleFactor)
: mpBox2DBody(std::move(pBox2DBody))
, mfScaleFactor(fScaleFactor)
{
}
::basegfx::B2DPoint box2DBody::getPosition() const
{
b2Vec2 aPosition = mpBox2DBody->GetPosition();
double fX = static_cast<double>(aPosition.x) / mfScaleFactor;
double fY = static_cast<double>(aPosition.y) / -mfScaleFactor;
return ::basegfx::B2DPoint(fX, fY);
}
void box2DBody::setPosition(const basegfx::B2DPoint& rPos)
{
mpBox2DBody->SetTransform(convertB2DPointToBox2DVec2(rPos, mfScaleFactor),
mpBox2DBody->GetAngle());
}
void box2DBody::setPositionByLinearVelocity(const basegfx::B2DPoint& rDesiredPos,
const double fPassedTime)
{
// kinematic bodies are not affected by other bodies, but unlike static ones can still have velocity
if (mpBox2DBody->GetType() != b2_kinematicBody)
mpBox2DBody->SetType(b2_kinematicBody);
::basegfx::B2DPoint aCurrentPos = getPosition();
// calculate the velocity needed to reach the rDesiredPos in the given time frame
::basegfx::B2DVector aVelocity = (rDesiredPos - aCurrentPos) / fPassedTime;
setLinearVelocity(aVelocity);
}
void box2DBody::setAngleByAngularVelocity(const double fDesiredAngle, const double fPassedTime)
{
// kinematic bodies are not affected by other bodies, but unlike static ones can still have velocity
if (mpBox2DBody->GetType() != b2_kinematicBody)
mpBox2DBody->SetType(b2_kinematicBody);
double fDeltaAngle = fDesiredAngle - getAngle();
// temporary hack for repeating animation effects
while (fDeltaAngle > 180
|| fDeltaAngle < -180) // if it is bigger than 180 opposite rotation is actually closer
fDeltaAngle += fDeltaAngle > 0 ? -360 : +360;
double fAngularVelocity = fDeltaAngle / fPassedTime;
setAngularVelocity(fAngularVelocity);
}
void box2DBody::setLinearVelocity(const ::basegfx::B2DVector& rVelocity)
{
b2Vec2 aVelocity = { static_cast<float>(rVelocity.getX() * mfScaleFactor),
static_cast<float>(rVelocity.getY() * -mfScaleFactor) };
mpBox2DBody->SetLinearVelocity(aVelocity);
}
void box2DBody::setAngularVelocity(const double fAngularVelocity)
{
float fBox2DAngularVelocity = static_cast<float>(basegfx::deg2rad(-fAngularVelocity));
mpBox2DBody->SetAngularVelocity(fBox2DAngularVelocity);
}
void box2DBody::setCollision(const bool bCanCollide)
{
// collision have to be set for each fixture of the body individually
for (b2Fixture* pFixture = mpBox2DBody->GetFixtureList(); pFixture;
pFixture = pFixture->GetNext())
{
b2Filter aFilter = pFixture->GetFilterData();
// 0xFFFF means collides with everything
// 0x0000 means collides with nothing
aFilter.maskBits = bCanCollide ? 0xFFFF : 0x0000;
pFixture->SetFilterData(aFilter);
}
}
double box2DBody::getAngle() const
{
double fAngle = static_cast<double>(mpBox2DBody->GetAngle());
return ::basegfx::rad2deg(-fAngle);
}
void box2DBody::setAngle(const double fAngle)
{
mpBox2DBody->SetTransform(mpBox2DBody->GetPosition(), ::basegfx::deg2rad(-fAngle));
}
void box2DBody::setDensityAndRestitution(const double fDensity, const double fRestitution)
{
// density and restitution have to be set for each fixture of the body individually
for (b2Fixture* pFixture = mpBox2DBody->GetFixtureList(); pFixture;
pFixture = pFixture->GetNext())
{
pFixture->SetDensity(static_cast<float>(fDensity));
pFixture->SetRestitution(static_cast<float>(fRestitution));
}
// without resetting the massdata of the body, density change won't take effect
mpBox2DBody->ResetMassData();
}
void box2DBody::setRestitution(const double fRestitution)
{
for (b2Fixture* pFixture = mpBox2DBody->GetFixtureList(); pFixture;
pFixture = pFixture->GetNext())
{
pFixture->SetRestitution(static_cast<float>(fRestitution));
}
}
void box2DBody::setType(box2DBodyType eType)
{
mpBox2DBody->SetType(getBox2DInternalBodyType(eType));
}
box2DBodyType box2DBody::getType() const { return getBox2DLOBodyType(mpBox2DBody->GetType()); }
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */