1357 lines
40 KiB
C++
1357 lines
40 KiB
C++
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
|
/*
|
|
* This file is part of the LibreOffice project.
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* This file incorporates work covered by the following license notice:
|
|
*
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed
|
|
* with this work for additional information regarding copyright
|
|
* ownership. The ASF licenses this file to you under the Apache
|
|
* License, Version 2.0 (the "License"); you may not use this file
|
|
* except in compliance with the License. You may obtain a copy of
|
|
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
|
|
*/
|
|
|
|
#include <algorithm>
|
|
|
|
#include <string.h>
|
|
#include <sal/log.hxx>
|
|
#include <o3tl/safeint.hxx>
|
|
#include <osl/diagnose.h>
|
|
#include <osl/file.hxx>
|
|
#include <unotools/tempfile.hxx>
|
|
|
|
#include "stgelem.hxx"
|
|
#include "stgcache.hxx"
|
|
#include "stgstrms.hxx"
|
|
#include "stgdir.hxx"
|
|
#include "stgio.hxx"
|
|
#include <memory>
|
|
|
|
///////////////////////////// class StgFAT
|
|
|
|
// The FAT class performs FAT operations on an underlying storage stream.
|
|
// This stream is either the master FAT stream (m == true ) or a normal
|
|
// storage stream, which then holds the FAT for small data allocations.
|
|
|
|
StgFAT::StgFAT( StgStrm& r, bool m ) : m_rStrm( r )
|
|
{
|
|
m_bPhys = m;
|
|
m_nPageSize = m_rStrm.GetIo().GetPhysPageSize();
|
|
m_nEntries = m_nPageSize >> 2;
|
|
m_nOffset = 0;
|
|
m_nMaxPage = 0;
|
|
m_nLimit = 0;
|
|
}
|
|
|
|
// Retrieve the physical page for a given byte offset.
|
|
|
|
rtl::Reference< StgPage > StgFAT::GetPhysPage( sal_Int32 nByteOff )
|
|
{
|
|
rtl::Reference< StgPage > pPg;
|
|
// Position within the underlying stream
|
|
// use the Pos2Page() method of the stream
|
|
if( m_rStrm.Pos2Page( nByteOff ) )
|
|
{
|
|
m_nOffset = m_rStrm.GetOffset();
|
|
sal_Int32 nPhysPage = m_rStrm.GetPage();
|
|
// get the physical page (must be present)
|
|
pPg = m_rStrm.GetIo().Get( nPhysPage, true );
|
|
}
|
|
return pPg;
|
|
}
|
|
|
|
// Get the follow page for a certain FAT page.
|
|
|
|
sal_Int32 StgFAT::GetNextPage( sal_Int32 nPg )
|
|
{
|
|
if (nPg >= 0)
|
|
{
|
|
if (nPg > (SAL_MAX_INT32 >> 2))
|
|
return STG_EOF;
|
|
rtl::Reference< StgPage > pPg = GetPhysPage( nPg << 2 );
|
|
nPg = pPg.is() ? StgCache::GetFromPage( pPg, m_nOffset >> 2 ) : STG_EOF;
|
|
}
|
|
return nPg;
|
|
}
|
|
|
|
// Find the best fit block for the given size. Return
|
|
// the starting block and its size or STG_EOF and 0.
|
|
// nLastPage is a stopper which tells the current
|
|
// underlying stream size. It is treated as a recommendation
|
|
// to abort the search to inhibit excessive file growth.
|
|
|
|
sal_Int32 StgFAT::FindBlock( sal_Int32& nPgs )
|
|
{
|
|
sal_Int32 nMinStart = STG_EOF, nMinLen = 0;
|
|
sal_Int32 nMaxStart = STG_EOF, nMaxLen = 0x7FFFFFFFL;
|
|
sal_Int32 nTmpStart = STG_EOF, nTmpLen = 0;
|
|
sal_Int32 nPages = m_rStrm.GetSize() >> 2;
|
|
bool bFound = false;
|
|
rtl::Reference< StgPage > pPg;
|
|
short nEntry = 0;
|
|
for( sal_Int32 i = 0; i < nPages; i++, nEntry++ )
|
|
{
|
|
if( !( nEntry % m_nEntries ) )
|
|
{
|
|
// load the next page for that stream
|
|
nEntry = 0;
|
|
pPg = GetPhysPage( i << 2 );
|
|
if( !pPg.is() )
|
|
return STG_EOF;
|
|
}
|
|
sal_Int32 nCur = StgCache::GetFromPage( pPg, nEntry );
|
|
if( nCur == STG_FREE )
|
|
{
|
|
// count the size of this area
|
|
if( nTmpLen )
|
|
nTmpLen++;
|
|
else
|
|
{
|
|
nTmpStart = i;
|
|
nTmpLen = 1;
|
|
}
|
|
if( nTmpLen == nPgs
|
|
// If we already did find a block, stop when reaching the limit
|
|
|| ( bFound && ( nEntry >= m_nLimit ) ) )
|
|
break;
|
|
}
|
|
else if( nTmpLen )
|
|
{
|
|
if( nTmpLen > nPgs && nTmpLen < nMaxLen )
|
|
{
|
|
// block > requested size
|
|
nMaxLen = nTmpLen;
|
|
nMaxStart = nTmpStart;
|
|
bFound = true;
|
|
}
|
|
else if( nTmpLen >= nMinLen )
|
|
{
|
|
// block < requested size
|
|
nMinLen = nTmpLen;
|
|
nMinStart = nTmpStart;
|
|
bFound = true;
|
|
if( nTmpLen == nPgs )
|
|
break;
|
|
}
|
|
nTmpStart = STG_EOF;
|
|
nTmpLen = 0;
|
|
}
|
|
}
|
|
// Determine which block to use.
|
|
if( nTmpLen )
|
|
{
|
|
if( nTmpLen > nPgs && nTmpLen < nMaxLen )
|
|
{
|
|
// block > requested size
|
|
nMaxLen = nTmpLen;
|
|
nMaxStart = nTmpStart;
|
|
}
|
|
else if( nTmpLen >= nMinLen )
|
|
{
|
|
// block < requested size
|
|
nMinLen = nTmpLen;
|
|
nMinStart = nTmpStart;
|
|
}
|
|
}
|
|
if( nMinStart != STG_EOF && nMaxStart != STG_EOF )
|
|
{
|
|
// two areas found; return the best fit area
|
|
sal_Int32 nMinDiff = nPgs - nMinLen;
|
|
sal_Int32 nMaxDiff = nMaxLen - nPgs;
|
|
if( nMinDiff > nMaxDiff )
|
|
nMinStart = STG_EOF;
|
|
}
|
|
if( nMinStart != STG_EOF )
|
|
{
|
|
nPgs = nMinLen; return nMinStart;
|
|
}
|
|
else
|
|
{
|
|
return nMaxStart;
|
|
}
|
|
}
|
|
|
|
// Set up the consecutive chain for a given block.
|
|
|
|
bool StgFAT::MakeChain( sal_Int32 nStart, sal_Int32 nPgs )
|
|
{
|
|
sal_Int32 nPos = nStart << 2;
|
|
rtl::Reference< StgPage > pPg = GetPhysPage( nPos );
|
|
if( !pPg.is() || !nPgs )
|
|
return false;
|
|
while( --nPgs )
|
|
{
|
|
if( m_nOffset >= m_nPageSize )
|
|
{
|
|
pPg = GetPhysPage( nPos );
|
|
if( !pPg.is() )
|
|
return false;
|
|
}
|
|
m_rStrm.GetIo().SetToPage( pPg, m_nOffset >> 2, ++nStart );
|
|
m_nOffset += 4;
|
|
nPos += 4;
|
|
}
|
|
if( m_nOffset >= m_nPageSize )
|
|
{
|
|
pPg = GetPhysPage( nPos );
|
|
if( !pPg.is() )
|
|
return false;
|
|
}
|
|
m_rStrm.GetIo().SetToPage( pPg, m_nOffset >> 2, STG_EOF );
|
|
return true;
|
|
}
|
|
|
|
// Allocate a block of data from the given page number on.
|
|
// It the page number is != STG_EOF, chain the block.
|
|
|
|
sal_Int32 StgFAT::AllocPages( sal_Int32 nBgn, sal_Int32 nPgs )
|
|
{
|
|
sal_Int32 nOrig = nBgn;
|
|
sal_Int32 nLast = nBgn;
|
|
sal_Int32 nBegin = STG_EOF;
|
|
sal_Int32 nAlloc;
|
|
sal_Int32 nPages = m_rStrm.GetSize() >> 2;
|
|
short nPasses = 0;
|
|
// allow for two passes
|
|
while( nPasses < 2 )
|
|
{
|
|
// try to satisfy the request from the pool of free pages
|
|
while( nPgs )
|
|
{
|
|
nAlloc = nPgs;
|
|
nBegin = FindBlock( nAlloc );
|
|
// no more blocks left in present alloc chain
|
|
if( nBegin == STG_EOF )
|
|
break;
|
|
if( ( nBegin + nAlloc ) > m_nMaxPage )
|
|
m_nMaxPage = nBegin + nAlloc;
|
|
if( !MakeChain( nBegin, nAlloc ) )
|
|
return STG_EOF;
|
|
if( nOrig == STG_EOF )
|
|
nOrig = nBegin;
|
|
else
|
|
{
|
|
// Patch the chain
|
|
rtl::Reference< StgPage > pPg = GetPhysPage( nLast << 2 );
|
|
if( !pPg.is() )
|
|
return STG_EOF;
|
|
m_rStrm.GetIo().SetToPage( pPg, m_nOffset >> 2, nBegin );
|
|
}
|
|
nLast = nBegin + nAlloc - 1;
|
|
nPgs -= nAlloc;
|
|
}
|
|
if( nPgs && !nPasses )
|
|
{
|
|
// we need new, fresh space, so allocate and retry
|
|
if( !m_rStrm.SetSize( ( nPages + nPgs ) << 2 ) )
|
|
return STG_EOF;
|
|
if( !m_bPhys && !InitNew( nPages ) )
|
|
return 0;
|
|
// FIXME: this was originally "FALSE", whether or not that
|
|
// makes sense (or should be STG_EOF instead, say?)
|
|
nPages = m_rStrm.GetSize() >> 2;
|
|
nPasses++;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
// now we should have a chain for the complete block
|
|
if( nBegin == STG_EOF || nPgs )
|
|
{
|
|
m_rStrm.GetIo().SetError( SVSTREAM_FILEFORMAT_ERROR );
|
|
return STG_EOF; // bad structure
|
|
}
|
|
return nOrig;
|
|
}
|
|
|
|
// Initialize newly allocated pages for a standard FAT stream
|
|
// It can be assumed that the stream size is always on
|
|
// a page boundary
|
|
|
|
bool StgFAT::InitNew( sal_Int32 nPage1 )
|
|
{
|
|
sal_Int32 n = ( ( m_rStrm.GetSize() >> 2 ) - nPage1 ) / m_nEntries;
|
|
if ( n > 0 )
|
|
{
|
|
while( n-- )
|
|
{
|
|
rtl::Reference< StgPage > pPg;
|
|
// Position within the underlying stream
|
|
// use the Pos2Page() method of the stream
|
|
m_rStrm.Pos2Page( nPage1 << 2 );
|
|
// Initialize the page
|
|
pPg = m_rStrm.GetIo().Copy( m_rStrm.GetPage() );
|
|
if ( !pPg.is() )
|
|
return false;
|
|
for( short i = 0; i < m_nEntries; i++ )
|
|
m_rStrm.GetIo().SetToPage( pPg, i, STG_FREE );
|
|
nPage1++;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Release a chain
|
|
|
|
bool StgFAT::FreePages( sal_Int32 nStart, bool bAll )
|
|
{
|
|
while( nStart >= 0 )
|
|
{
|
|
rtl::Reference< StgPage > pPg = GetPhysPage( nStart << 2 );
|
|
if( !pPg.is() )
|
|
return false;
|
|
nStart = StgCache::GetFromPage( pPg, m_nOffset >> 2 );
|
|
// The first released page is either set to EOF or FREE
|
|
m_rStrm.GetIo().SetToPage( pPg, m_nOffset >> 2, bAll ? STG_FREE : STG_EOF );
|
|
bAll = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
///////////////////////////// class StgStrm
|
|
|
|
// The base stream class provides basic functionality for seeking
|
|
// and accessing the data on a physical basis. It uses the built-in
|
|
// FAT class for the page allocations.
|
|
|
|
StgStrm::StgStrm( StgIo& r )
|
|
: m_nPos(0),
|
|
m_bBytePosValid(true),
|
|
m_rIo(r),
|
|
m_pEntry(nullptr),
|
|
m_nStart(STG_EOF),
|
|
m_nSize(0),
|
|
m_nPage(STG_EOF),
|
|
m_nOffset(0),
|
|
m_nPageSize(m_rIo.GetPhysPageSize())
|
|
{
|
|
}
|
|
|
|
StgStrm::~StgStrm()
|
|
{
|
|
}
|
|
|
|
// Attach the stream to the given entry.
|
|
|
|
void StgStrm::SetEntry( StgDirEntry& r )
|
|
{
|
|
r.m_aEntry.SetLeaf( STG_DATA, m_nStart );
|
|
r.m_aEntry.SetSize( m_nSize );
|
|
m_pEntry = &r;
|
|
r.SetDirty();
|
|
}
|
|
|
|
/*
|
|
* The page chain, is basically a singly linked list of slots each
|
|
* point to the next page. Instead of traversing the file structure
|
|
* for this each time build a simple flat in-memory vector list
|
|
* of pages.
|
|
*/
|
|
sal_Int32 StgStrm::scanBuildPageChainCache()
|
|
{
|
|
if (m_nSize > 0)
|
|
{
|
|
m_aPagesCache.reserve(m_nSize/m_nPageSize);
|
|
m_aUsedPageNumbers.reserve(m_nSize/m_nPageSize);
|
|
}
|
|
|
|
bool bError = false;
|
|
sal_Int32 nBgn = m_nStart;
|
|
sal_Int32 nOptSize = 0;
|
|
|
|
// Track already scanned PageNumbers here and use them to
|
|
// see if an already counted page is re-visited
|
|
while( nBgn >= 0 && !bError )
|
|
{
|
|
m_aPagesCache.push_back(nBgn);
|
|
nBgn = m_pFat->GetNextPage( nBgn );
|
|
|
|
//returned second is false if it already exists
|
|
if (!m_aUsedPageNumbers.insert(nBgn).second)
|
|
{
|
|
SAL_WARN ("sot", "Error: page number " << nBgn << " already in chain for stream");
|
|
bError = true;
|
|
}
|
|
|
|
nOptSize += m_nPageSize;
|
|
}
|
|
if (bError)
|
|
{
|
|
SAL_WARN("sot", "returning wrong format error");
|
|
m_rIo.SetError( ERRCODE_IO_WRONGFORMAT );
|
|
m_aPagesCache.clear();
|
|
m_aUsedPageNumbers.clear();
|
|
}
|
|
return nOptSize;
|
|
}
|
|
|
|
// Compute page number and offset for the given byte position.
|
|
// If the position is behind the size, set the stream right
|
|
// behind the EOF.
|
|
bool StgStrm::Pos2Page( sal_Int32 nBytePos )
|
|
{
|
|
if ( !m_pFat )
|
|
return false;
|
|
|
|
// Values < 0 seek to the end
|
|
if( nBytePos < 0 || nBytePos >= m_nSize )
|
|
nBytePos = m_nSize;
|
|
// Adjust the position back to offset 0
|
|
m_nPos -= m_nOffset;
|
|
sal_Int32 nMask = ~( m_nPageSize - 1 );
|
|
sal_Int32 nOld = m_nPos & nMask;
|
|
sal_Int32 nNew = nBytePos & nMask;
|
|
m_nOffset = static_cast<short>( nBytePos & ~nMask );
|
|
m_nPos = nBytePos;
|
|
if (nOld == nNew)
|
|
return m_bBytePosValid;
|
|
|
|
// See fdo#47644 for a .doc with a vast amount of pages where seeking around the
|
|
// document takes a colossal amount of time
|
|
|
|
// Please Note: we build the pagescache incrementally as we go if necessary,
|
|
// so that a corrupted FAT doesn't poison the stream state for earlier reads
|
|
size_t nIdx = nNew / m_nPageSize;
|
|
if( nIdx >= m_aPagesCache.size() )
|
|
{
|
|
// Extend the FAT cache ! ...
|
|
size_t nToAdd = nIdx + 1;
|
|
|
|
if (m_aPagesCache.empty())
|
|
{
|
|
m_aPagesCache.push_back( m_nStart );
|
|
assert(m_aUsedPageNumbers.empty());
|
|
m_aUsedPageNumbers.insert(m_nStart);
|
|
}
|
|
|
|
nToAdd -= m_aPagesCache.size();
|
|
|
|
sal_Int32 nBgn = m_aPagesCache.back();
|
|
|
|
// Start adding pages while we can
|
|
while (nToAdd > 0 && nBgn >= 0)
|
|
{
|
|
sal_Int32 nOldBgn = nBgn;
|
|
nBgn = m_pFat->GetNextPage(nOldBgn);
|
|
if( nBgn >= 0 )
|
|
{
|
|
//returned second is false if it already exists
|
|
if (!m_aUsedPageNumbers.insert(nBgn).second)
|
|
{
|
|
SAL_WARN ("sot", "Error: page number " << nBgn << " already in chain for stream");
|
|
break;
|
|
}
|
|
|
|
//very much the normal case
|
|
m_aPagesCache.push_back(nBgn);
|
|
--nToAdd;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( nIdx > m_aPagesCache.size() )
|
|
{
|
|
SAL_WARN("sot", "seek to index " << nIdx <<
|
|
" beyond page cache size " << m_aPagesCache.size());
|
|
// fdo#84229 - handle seek to end and back as eg. XclImpStream expects
|
|
m_nPage = STG_EOF;
|
|
m_nOffset = 0;
|
|
// Intriguingly in the past we didn't reset nPos to match the real
|
|
// length of the stream thus:
|
|
// nIdx = m_aPagesCache.size();
|
|
// nPos = nPageSize * nIdx;
|
|
// so retain this behavior for now.
|
|
m_bBytePosValid = false;
|
|
return false;
|
|
}
|
|
|
|
// special case: seek to 1st byte of new, unallocated page
|
|
// (in case the file size is a multiple of the page size)
|
|
if( nBytePos == m_nSize && !m_nOffset && nIdx > 0 && nIdx == m_aPagesCache.size() )
|
|
{
|
|
nIdx--;
|
|
m_nOffset = m_nPageSize;
|
|
}
|
|
else if ( nIdx == m_aPagesCache.size() )
|
|
{
|
|
m_nPage = STG_EOF;
|
|
m_bBytePosValid = false;
|
|
return false;
|
|
}
|
|
|
|
m_nPage = m_aPagesCache[ nIdx ];
|
|
|
|
m_bBytePosValid = m_nPage >= 0;
|
|
return m_bBytePosValid;
|
|
}
|
|
|
|
// Copy an entire stream. Both streams are allocated in the FAT.
|
|
// The target stream is this stream.
|
|
|
|
bool StgStrm::Copy( sal_Int32 nFrom, sal_Int32 nBytes )
|
|
{
|
|
if ( !m_pFat )
|
|
return false;
|
|
|
|
m_aPagesCache.clear();
|
|
m_aUsedPageNumbers.clear();
|
|
|
|
sal_Int32 nTo = m_nStart;
|
|
sal_Int32 nPgs = ( nBytes + m_nPageSize - 1 ) / m_nPageSize;
|
|
while( nPgs-- )
|
|
{
|
|
if( nTo < 0 )
|
|
{
|
|
m_rIo.SetError( SVSTREAM_FILEFORMAT_ERROR );
|
|
return false;
|
|
}
|
|
m_rIo.Copy( nTo, nFrom );
|
|
if( nFrom >= 0 )
|
|
{
|
|
nFrom = m_pFat->GetNextPage( nFrom );
|
|
if( nFrom < 0 )
|
|
{
|
|
m_rIo.SetError( SVSTREAM_FILEFORMAT_ERROR );
|
|
return false;
|
|
}
|
|
}
|
|
nTo = m_pFat->GetNextPage( nTo );
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool StgStrm::SetSize( sal_Int32 nBytes )
|
|
{
|
|
if ( nBytes < 0 || !m_pFat )
|
|
return false;
|
|
|
|
m_aPagesCache.clear();
|
|
m_aUsedPageNumbers.clear();
|
|
|
|
// round up to page size
|
|
sal_Int32 nOld = ( ( m_nSize + m_nPageSize - 1 ) / m_nPageSize ) * m_nPageSize;
|
|
sal_Int32 nNew = ( ( nBytes + m_nPageSize - 1 ) / m_nPageSize ) * m_nPageSize;
|
|
if( nNew > nOld )
|
|
{
|
|
if( !Pos2Page( m_nSize ) )
|
|
return false;
|
|
sal_Int32 nBgn = m_pFat->AllocPages( m_nPage, ( nNew - nOld ) / m_nPageSize );
|
|
if( nBgn == STG_EOF )
|
|
return false;
|
|
if( m_nStart == STG_EOF )
|
|
m_nStart = m_nPage = nBgn;
|
|
}
|
|
else if( nNew < nOld )
|
|
{
|
|
bool bAll = ( nBytes == 0 );
|
|
if( !Pos2Page( nBytes ) || !m_pFat->FreePages( m_nPage, bAll ) )
|
|
return false;
|
|
if( bAll )
|
|
m_nStart = m_nPage = STG_EOF;
|
|
}
|
|
if( m_pEntry )
|
|
{
|
|
// change the dir entry?
|
|
if( !m_nSize || !nBytes )
|
|
m_pEntry->m_aEntry.SetLeaf( STG_DATA, m_nStart );
|
|
m_pEntry->m_aEntry.SetSize( nBytes );
|
|
m_pEntry->SetDirty();
|
|
}
|
|
m_nSize = nBytes;
|
|
m_pFat->SetLimit( GetPages() );
|
|
return true;
|
|
}
|
|
|
|
// Return the # of allocated pages
|
|
|
|
|
|
//////////////////////////// class StgFATStrm
|
|
|
|
// The FAT stream class provides physical access to the master FAT.
|
|
// Since this access is implemented as a StgStrm, we can use the
|
|
// FAT allocator.
|
|
|
|
StgFATStrm::StgFATStrm(StgIo& r, sal_Int32 nFatStrmSize) : StgStrm( r )
|
|
{
|
|
m_pFat.reset( new StgFAT( *this, true ) );
|
|
m_nSize = nFatStrmSize;
|
|
}
|
|
|
|
bool StgFATStrm::Pos2Page( sal_Int32 nBytePos )
|
|
{
|
|
// Values < 0 seek to the end
|
|
if( nBytePos < 0 || nBytePos >= m_nSize )
|
|
nBytePos = m_nSize ? m_nSize - 1 : 0;
|
|
m_nPage = nBytePos / m_nPageSize;
|
|
m_nOffset = static_cast<short>( nBytePos % m_nPageSize );
|
|
m_nPage = GetPage(m_nPage, false);
|
|
bool bValid = m_nPage >= 0;
|
|
SetPos(nBytePos, bValid);
|
|
return bValid;
|
|
}
|
|
|
|
// Get the page number entry for the given page offset.
|
|
|
|
sal_Int32 StgFATStrm::GetPage(sal_Int32 nOff, bool bMake, sal_uInt16 *pnMasterAlloc)
|
|
{
|
|
OSL_ENSURE( nOff >= 0, "The offset may not be negative!" );
|
|
if( pnMasterAlloc ) *pnMasterAlloc = 0;
|
|
if( nOff < StgHeader::GetFAT1Size() )
|
|
return m_rIo.m_aHdr.GetFATPage( nOff );
|
|
sal_Int32 nMaxPage = m_nSize >> 2;
|
|
nOff = nOff - StgHeader::GetFAT1Size();
|
|
// number of master pages that we need to iterate through
|
|
sal_uInt16 nMasterCount = ( m_nPageSize >> 2 ) - 1;
|
|
sal_uInt16 nBlocks = nOff / nMasterCount;
|
|
// offset in the last master page
|
|
nOff = nOff % nMasterCount;
|
|
|
|
rtl::Reference< StgPage > pOldPage;
|
|
rtl::Reference< StgPage > pMaster;
|
|
sal_Int32 nFAT = m_rIo.m_aHdr.GetFATChain();
|
|
for( sal_uInt16 nCount = 0; nCount <= nBlocks; nCount++ )
|
|
{
|
|
if( nFAT == STG_EOF || nFAT == STG_FREE )
|
|
{
|
|
if( bMake )
|
|
{
|
|
m_aPagesCache.clear();
|
|
m_aUsedPageNumbers.clear();
|
|
|
|
// create a new master page
|
|
nFAT = nMaxPage++;
|
|
pMaster = m_rIo.Copy( nFAT );
|
|
if ( pMaster.is() )
|
|
{
|
|
for( short k = 0; k < static_cast<short>( m_nPageSize >> 2 ); k++ )
|
|
m_rIo.SetToPage( pMaster, k, STG_FREE );
|
|
// chaining
|
|
if( !pOldPage.is() )
|
|
m_rIo.m_aHdr.SetFATChain( nFAT );
|
|
else
|
|
m_rIo.SetToPage( pOldPage, nMasterCount, nFAT );
|
|
if( nMaxPage >= m_rIo.GetPhysPages() )
|
|
if( !m_rIo.SetSize( nMaxPage ) )
|
|
return STG_EOF;
|
|
// mark the page as used
|
|
// make space for Masterpage
|
|
if( !pnMasterAlloc ) // create space oneself
|
|
{
|
|
if( !Pos2Page( nFAT << 2 ) )
|
|
return STG_EOF;
|
|
rtl::Reference< StgPage > pPg = m_rIo.Get( m_nPage, true );
|
|
if( !pPg.is() )
|
|
return STG_EOF;
|
|
m_rIo.SetToPage( pPg, m_nOffset >> 2, STG_MASTER );
|
|
}
|
|
else
|
|
(*pnMasterAlloc)++;
|
|
m_rIo.m_aHdr.SetMasters( nCount + 1 );
|
|
pOldPage = pMaster;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
pMaster = m_rIo.Get( nFAT, true );
|
|
if ( pMaster.is() )
|
|
{
|
|
nFAT = StgCache::GetFromPage( pMaster, nMasterCount );
|
|
pOldPage = pMaster;
|
|
}
|
|
}
|
|
}
|
|
if( pMaster.is() )
|
|
return StgCache::GetFromPage( pMaster, nOff );
|
|
m_rIo.SetError( SVSTREAM_GENERALERROR );
|
|
return STG_EOF;
|
|
}
|
|
|
|
|
|
// Set the page number entry for the given page offset.
|
|
|
|
bool StgFATStrm::SetPage( short nOff, sal_Int32 nNewPage )
|
|
{
|
|
OSL_ENSURE( nOff >= 0, "The offset may not be negative!" );
|
|
m_aPagesCache.clear();
|
|
m_aUsedPageNumbers.clear();
|
|
|
|
bool bRes = true;
|
|
if( nOff < StgHeader::GetFAT1Size() )
|
|
m_rIo.m_aHdr.SetFATPage( nOff, nNewPage );
|
|
else
|
|
{
|
|
nOff = nOff - StgHeader::GetFAT1Size();
|
|
// number of master pages that we need to iterate through
|
|
sal_uInt16 nMasterCount = ( m_nPageSize >> 2 ) - 1;
|
|
sal_uInt16 nBlocks = nOff / nMasterCount;
|
|
// offset in the last master page
|
|
nOff = nOff % nMasterCount;
|
|
|
|
rtl::Reference< StgPage > pMaster;
|
|
sal_Int32 nFAT = m_rIo.m_aHdr.GetFATChain();
|
|
for( sal_uInt16 nCount = 0; nCount <= nBlocks; nCount++ )
|
|
{
|
|
if( nFAT == STG_EOF || nFAT == STG_FREE )
|
|
{
|
|
pMaster = nullptr;
|
|
break;
|
|
}
|
|
pMaster = m_rIo.Get( nFAT, true );
|
|
if ( pMaster.is() )
|
|
nFAT = StgCache::GetFromPage( pMaster, nMasterCount );
|
|
}
|
|
if( pMaster.is() )
|
|
m_rIo.SetToPage( pMaster, nOff, nNewPage );
|
|
else
|
|
{
|
|
m_rIo.SetError( SVSTREAM_GENERALERROR );
|
|
bRes = false;
|
|
}
|
|
}
|
|
|
|
// lock the page against access
|
|
if( bRes )
|
|
{
|
|
Pos2Page( nNewPage << 2 );
|
|
rtl::Reference< StgPage > pPg = m_rIo.Get( m_nPage, true );
|
|
if( pPg.is() )
|
|
m_rIo.SetToPage( pPg, m_nOffset >> 2, STG_FAT );
|
|
else
|
|
bRes = false;
|
|
}
|
|
return bRes;
|
|
}
|
|
|
|
bool StgFATStrm::SetSize( sal_Int32 nBytes )
|
|
{
|
|
if ( nBytes < 0 )
|
|
return false;
|
|
|
|
m_aPagesCache.clear();
|
|
m_aUsedPageNumbers.clear();
|
|
|
|
// Set the number of entries to a multiple of the page size
|
|
short nOld = static_cast<short>( ( m_nSize + ( m_nPageSize - 1 ) ) / m_nPageSize );
|
|
short nNew = static_cast<short>(
|
|
( nBytes + ( m_nPageSize - 1 ) ) / m_nPageSize ) ;
|
|
if( nNew < nOld )
|
|
{
|
|
// release master pages
|
|
for( short i = nNew; i < nOld; i++ )
|
|
SetPage( i, STG_FREE );
|
|
}
|
|
else
|
|
{
|
|
while( nOld < nNew )
|
|
{
|
|
// allocate master pages
|
|
// find a free master page slot
|
|
sal_Int32 nPg = 0;
|
|
sal_uInt16 nMasterAlloc = 0;
|
|
nPg = GetPage( nOld, true, &nMasterAlloc );
|
|
if( nPg == STG_EOF )
|
|
return false;
|
|
// 4 Bytes have been used for Allocation of each MegaMasterPage
|
|
nBytes += nMasterAlloc << 2;
|
|
|
|
// find a free page using the FAT allocator
|
|
sal_Int32 n = 1;
|
|
OSL_ENSURE( m_pFat, "The pointer is always initializer here!" );
|
|
sal_Int32 nNewPage = m_pFat->FindBlock( n );
|
|
if( nNewPage == STG_EOF )
|
|
{
|
|
// no free pages found; create a new page
|
|
// Since all pages are allocated, extend
|
|
// the file size for the next page!
|
|
nNewPage = m_nSize >> 2;
|
|
// if a MegaMasterPage was created avoid taking
|
|
// the same Page
|
|
nNewPage += nMasterAlloc;
|
|
// adjust the file size if necessary
|
|
if( nNewPage >= m_rIo.GetPhysPages() )
|
|
if( !m_rIo.SetSize( nNewPage + 1 ) )
|
|
return false;
|
|
}
|
|
// Set up the page with empty entries
|
|
rtl::Reference< StgPage > pPg = m_rIo.Copy( nNewPage );
|
|
if ( !pPg.is() )
|
|
return false;
|
|
for( short j = 0; j < static_cast<short>( m_nPageSize >> 2 ); j++ )
|
|
m_rIo.SetToPage( pPg, j, STG_FREE );
|
|
|
|
// store the page number into the master FAT
|
|
// Set the size before so the correct FAT can be found
|
|
m_nSize = ( nOld + 1 ) * m_nPageSize;
|
|
SetPage( nOld, nNewPage );
|
|
|
|
// MegaMasterPages were created, mark it them as used
|
|
|
|
sal_uInt32 nMax = m_rIo.m_aHdr.GetMasters( );
|
|
sal_uInt32 nFAT = m_rIo.m_aHdr.GetFATChain();
|
|
if( nMasterAlloc )
|
|
for( sal_uInt32 nCount = 0; nCount < nMax; nCount++ )
|
|
{
|
|
if( !Pos2Page( nFAT << 2 ) )
|
|
return false;
|
|
if( nMax - nCount <= nMasterAlloc )
|
|
{
|
|
rtl::Reference< StgPage > piPg = m_rIo.Get( m_nPage, true );
|
|
if( !piPg.is() )
|
|
return false;
|
|
m_rIo.SetToPage( piPg, m_nOffset >> 2, STG_MASTER );
|
|
}
|
|
rtl::Reference< StgPage > pPage = m_rIo.Get( nFAT, true );
|
|
if( !pPage.is() ) return false;
|
|
nFAT = StgCache::GetFromPage( pPage, (m_nPageSize >> 2 ) - 1 );
|
|
}
|
|
|
|
nOld++;
|
|
// We have used up 4 bytes for the STG_FAT entry
|
|
nBytes += 4;
|
|
nNew = static_cast<short>(
|
|
( nBytes + ( m_nPageSize - 1 ) ) / m_nPageSize );
|
|
}
|
|
}
|
|
m_nSize = nNew * m_nPageSize;
|
|
m_rIo.m_aHdr.SetFATSize( nNew );
|
|
return true;
|
|
}
|
|
|
|
/////////////////////////// class StgDataStrm
|
|
|
|
// This class is a normal physical stream which can be initialized
|
|
// either with an existing dir entry or an existing FAT chain.
|
|
// The stream has a size increment which normally is 1, but which can be
|
|
// set to any value is you want the size to be incremented by certain values.
|
|
|
|
StgDataStrm::StgDataStrm( StgIo& r, sal_Int32 nBgn, sal_Int32 nLen ) : StgStrm( r )
|
|
{
|
|
Init( nBgn, nLen );
|
|
}
|
|
|
|
StgDataStrm::StgDataStrm( StgIo& r, StgDirEntry& p ) : StgStrm( r )
|
|
{
|
|
m_pEntry = &p;
|
|
Init( p.m_aEntry.GetLeaf( STG_DATA ),
|
|
p.m_aEntry.GetSize() );
|
|
}
|
|
|
|
void StgDataStrm::Init( sal_Int32 nBgn, sal_Int32 nLen )
|
|
{
|
|
if ( m_rIo.m_pFAT )
|
|
m_pFat.reset( new StgFAT( *m_rIo.m_pFAT, true ) );
|
|
|
|
OSL_ENSURE( m_pFat, "The pointer should not be empty!" );
|
|
|
|
m_nStart = m_nPage = nBgn;
|
|
m_nSize = nLen;
|
|
m_nIncr = 1;
|
|
m_nOffset = 0;
|
|
if( nLen < 0 && m_pFat )
|
|
{
|
|
// determine the actual size of the stream by scanning
|
|
// the FAT chain and counting the # of pages allocated
|
|
m_nSize = scanBuildPageChainCache();
|
|
}
|
|
}
|
|
|
|
// Set the size of a physical stream.
|
|
|
|
bool StgDataStrm::SetSize( sal_Int32 nBytes )
|
|
{
|
|
if ( !m_pFat )
|
|
return false;
|
|
|
|
nBytes = ( ( nBytes + m_nIncr - 1 ) / m_nIncr ) * m_nIncr;
|
|
sal_Int32 nOldSz = m_nSize;
|
|
if( nOldSz != nBytes )
|
|
{
|
|
if( !StgStrm::SetSize( nBytes ) )
|
|
return false;
|
|
sal_Int32 nMaxPage = m_pFat->GetMaxPage();
|
|
if( nMaxPage > m_rIo.GetPhysPages() )
|
|
if( !m_rIo.SetSize( nMaxPage ) )
|
|
return false;
|
|
// If we only allocated one page or less, create this
|
|
// page in the cache for faster throughput. The current
|
|
// position is the former EOF point.
|
|
if( ( m_nSize - 1 ) / m_nPageSize - ( nOldSz - 1 ) / m_nPageSize == 1 )
|
|
{
|
|
Pos2Page( nBytes );
|
|
if( m_nPage >= 0 )
|
|
m_rIo.Copy( m_nPage );
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Get the address of the data byte at a specified offset.
|
|
// If bForce = true, a read of non-existent data causes
|
|
// a read fault.
|
|
|
|
void* StgDataStrm::GetPtr( sal_Int32 Pos, bool bDirty )
|
|
{
|
|
if( Pos2Page( Pos ) )
|
|
{
|
|
rtl::Reference< StgPage > pPg = m_rIo.Get( m_nPage, true/*bForce*/ );
|
|
if (pPg.is() && m_nOffset < pPg->GetSize())
|
|
{
|
|
if( bDirty )
|
|
m_rIo.SetDirty( pPg );
|
|
return static_cast<sal_uInt8 *>(pPg->GetData()) + m_nOffset;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// This could easily be adapted to a better algorithm by determining
|
|
// the amount of consecutable blocks before doing a read. The result
|
|
// is the number of bytes read. No error is generated on EOF.
|
|
|
|
sal_Int32 StgDataStrm::Read( void* pBuf, sal_Int32 n )
|
|
{
|
|
if ( n < 0 )
|
|
return 0;
|
|
|
|
const auto nAvailable = m_nSize - GetPos();
|
|
if (n > nAvailable)
|
|
n = nAvailable;
|
|
sal_Int32 nDone = 0;
|
|
while( n )
|
|
{
|
|
short nBytes = m_nPageSize - m_nOffset;
|
|
rtl::Reference< StgPage > pPg;
|
|
if( static_cast<sal_Int32>(nBytes) > n )
|
|
nBytes = static_cast<short>(n);
|
|
if( nBytes )
|
|
{
|
|
short nRes;
|
|
void *p = static_cast<sal_uInt8 *>(pBuf) + nDone;
|
|
if( nBytes == m_nPageSize )
|
|
{
|
|
pPg = m_rIo.Find( m_nPage );
|
|
if( pPg.is() )
|
|
{
|
|
// data is present, so use the cached data
|
|
memcpy( p, pPg->GetData(), nBytes );
|
|
nRes = nBytes;
|
|
}
|
|
else
|
|
// do a direct (unbuffered) read
|
|
nRes = static_cast<short>(m_rIo.Read( m_nPage, p )) * m_nPageSize;
|
|
}
|
|
else
|
|
{
|
|
// partial block read through the cache.
|
|
pPg = m_rIo.Get( m_nPage, false );
|
|
if( !pPg.is() )
|
|
break;
|
|
memcpy( p, static_cast<sal_uInt8*>(pPg->GetData()) + m_nOffset, nBytes );
|
|
nRes = nBytes;
|
|
}
|
|
nDone += nRes;
|
|
SetPos(GetPos() + nRes, true);
|
|
n -= nRes;
|
|
m_nOffset = m_nOffset + nRes;
|
|
if( nRes != nBytes )
|
|
break; // read error or EOF
|
|
}
|
|
// Switch to next page if necessary
|
|
if (m_nOffset >= m_nPageSize && !Pos2Page(GetPos()))
|
|
break;
|
|
}
|
|
return nDone;
|
|
}
|
|
|
|
sal_Int32 StgDataStrm::Write( const void* pBuf, sal_Int32 n )
|
|
{
|
|
if ( n < 0 )
|
|
return 0;
|
|
|
|
sal_Int32 nDone = 0;
|
|
if( ( GetPos() + n ) > m_nSize )
|
|
{
|
|
sal_Int32 nOld = GetPos();
|
|
if( !SetSize( nOld + n ) )
|
|
return 0;
|
|
Pos2Page( nOld );
|
|
}
|
|
while( n )
|
|
{
|
|
short nBytes = m_nPageSize - m_nOffset;
|
|
rtl::Reference< StgPage > pPg;
|
|
if( static_cast<sal_Int32>(nBytes) > n )
|
|
nBytes = static_cast<short>(n);
|
|
if( nBytes )
|
|
{
|
|
short nRes;
|
|
const void *p = static_cast<const sal_uInt8 *>(pBuf) + nDone;
|
|
if( nBytes == m_nPageSize )
|
|
{
|
|
pPg = m_rIo.Find( m_nPage );
|
|
if( pPg.is() )
|
|
{
|
|
// data is present, so use the cached data
|
|
memcpy( pPg->GetData(), p, nBytes );
|
|
m_rIo.SetDirty( pPg );
|
|
nRes = nBytes;
|
|
}
|
|
else
|
|
// do a direct (unbuffered) write
|
|
nRes = static_cast<short>(m_rIo.Write( m_nPage, p )) * m_nPageSize;
|
|
}
|
|
else
|
|
{
|
|
// partial block read through the cache.
|
|
pPg = m_rIo.Get( m_nPage, false );
|
|
if( !pPg.is() )
|
|
break;
|
|
memcpy( static_cast<sal_uInt8*>(pPg->GetData()) + m_nOffset, p, nBytes );
|
|
m_rIo.SetDirty( pPg );
|
|
nRes = nBytes;
|
|
}
|
|
nDone += nRes;
|
|
SetPos(GetPos() + nRes, true);
|
|
n -= nRes;
|
|
m_nOffset = m_nOffset + nRes;
|
|
if( nRes != nBytes )
|
|
break; // read error
|
|
}
|
|
// Switch to next page if necessary
|
|
if( m_nOffset >= m_nPageSize && !Pos2Page(GetPos()) )
|
|
break;
|
|
}
|
|
return nDone;
|
|
}
|
|
|
|
//////////////////////////// class StgSmallStream
|
|
|
|
// The small stream class provides access to streams with a size < 4096 bytes.
|
|
// This stream is a StgStream containing small pages. The FAT for this stream
|
|
// is also a StgStream. The start of the FAT is in the header at DataRootPage,
|
|
// the stream itself is pointed to by the root entry (it holds start & size).
|
|
|
|
StgSmallStrm::StgSmallStrm( StgIo& r, sal_Int32 nBgn ) : StgStrm( r )
|
|
{
|
|
Init( nBgn, 0 );
|
|
}
|
|
|
|
StgSmallStrm::StgSmallStrm( StgIo& r, StgDirEntry& p ) : StgStrm( r )
|
|
{
|
|
m_pEntry = &p;
|
|
Init( p.m_aEntry.GetLeaf( STG_DATA ),
|
|
p.m_aEntry.GetSize() );
|
|
}
|
|
|
|
void StgSmallStrm::Init( sal_Int32 nBgn, sal_Int32 nLen )
|
|
{
|
|
if ( m_rIo.m_pDataFAT )
|
|
m_pFat.reset( new StgFAT( *m_rIo.m_pDataFAT, false ) );
|
|
m_pData = m_rIo.m_pDataStrm;
|
|
OSL_ENSURE( m_pFat && m_pData, "The pointers should not be empty!" );
|
|
|
|
m_nPageSize = m_rIo.GetDataPageSize();
|
|
m_nStart =
|
|
m_nPage = nBgn;
|
|
m_nSize = nLen;
|
|
}
|
|
|
|
// This could easily be adapted to a better algorithm by determining
|
|
// the amount of consecutable blocks before doing a read. The result
|
|
// is the number of bytes read. No error is generated on EOF.
|
|
|
|
sal_Int32 StgSmallStrm::Read( void* pBuf, sal_Int32 n )
|
|
{
|
|
// We can safely assume that reads are not huge, since the
|
|
// small stream is likely to be < 64 KBytes.
|
|
sal_Int32 nBytePos = GetPos();
|
|
if( ( nBytePos + n ) > m_nSize )
|
|
n = m_nSize - nBytePos;
|
|
sal_Int32 nDone = 0;
|
|
while( n )
|
|
{
|
|
short nBytes = m_nPageSize - m_nOffset;
|
|
if( static_cast<sal_Int32>(nBytes) > n )
|
|
nBytes = static_cast<short>(n);
|
|
if( nBytes )
|
|
{
|
|
if (!m_pData)
|
|
break;
|
|
sal_Int32 nPos;
|
|
if (o3tl::checked_multiply<sal_Int32>(m_nPage, m_nPageSize, nPos))
|
|
break;
|
|
if (!m_pData->Pos2Page(nPos + m_nOffset))
|
|
break;
|
|
// all reading through the stream
|
|
short nRes = static_cast<short>(m_pData->Read( static_cast<sal_uInt8*>(pBuf) + nDone, nBytes ));
|
|
nDone += nRes;
|
|
SetPos(GetPos() + nRes, true);
|
|
n -= nRes;
|
|
m_nOffset = m_nOffset + nRes;
|
|
// read problem?
|
|
if( nRes != nBytes )
|
|
break;
|
|
}
|
|
// Switch to next page if necessary
|
|
if (m_nOffset >= m_nPageSize && !Pos2Page(GetPos()))
|
|
break;
|
|
}
|
|
return nDone;
|
|
}
|
|
|
|
sal_Int32 StgSmallStrm::Write( const void* pBuf, sal_Int32 n )
|
|
{
|
|
// you can safely assume that reads are not huge, since the
|
|
// small stream is likely to be < 64 KBytes.
|
|
sal_Int32 nDone = 0;
|
|
sal_Int32 nOldPos = GetPos();
|
|
if( ( nOldPos + n ) > m_nSize )
|
|
{
|
|
if (!SetSize(nOldPos + n))
|
|
return 0;
|
|
Pos2Page(nOldPos);
|
|
}
|
|
while( n )
|
|
{
|
|
short nBytes = m_nPageSize - m_nOffset;
|
|
if( static_cast<sal_Int32>(nBytes) > n )
|
|
nBytes = static_cast<short>(n);
|
|
if( nBytes )
|
|
{
|
|
// all writing goes through the stream
|
|
sal_Int32 nDataPos = m_nPage * m_nPageSize + m_nOffset;
|
|
if ( !m_pData
|
|
|| ( m_pData->GetSize() < ( nDataPos + nBytes )
|
|
&& !m_pData->SetSize( nDataPos + nBytes ) ) )
|
|
break;
|
|
if( !m_pData->Pos2Page( nDataPos ) )
|
|
break;
|
|
short nRes = static_cast<short>(m_pData->Write( static_cast<sal_uInt8 const *>(pBuf) + nDone, nBytes ));
|
|
nDone += nRes;
|
|
SetPos(GetPos() + nRes, true);
|
|
n -= nRes;
|
|
m_nOffset = m_nOffset + nRes;
|
|
// write problem?
|
|
if( nRes != nBytes )
|
|
break;
|
|
}
|
|
// Switch to next page if necessary
|
|
if( m_nOffset >= m_nPageSize && !Pos2Page(GetPos()) )
|
|
break;
|
|
}
|
|
return nDone;
|
|
}
|
|
|
|
/////////////////////////// class StgTmpStrm
|
|
|
|
// The temporary stream uses a memory stream if < 32K, otherwise a
|
|
// temporary file.
|
|
|
|
#define THRESHOLD 32768L
|
|
|
|
StgTmpStrm::StgTmpStrm( sal_uInt64 nInitSize )
|
|
: SvMemoryStream( nInitSize > THRESHOLD
|
|
? 16
|
|
: ( nInitSize ? nInitSize : 16 ), 4096 )
|
|
{
|
|
m_pStrm = nullptr;
|
|
// this calls FlushData, so all members should be set by this time
|
|
SetBufferSize( 0 );
|
|
if( nInitSize > THRESHOLD )
|
|
SetSize( nInitSize );
|
|
}
|
|
|
|
bool StgTmpStrm::Copy( StgTmpStrm& rSrc )
|
|
{
|
|
sal_uInt64 n = rSrc.GetSize();
|
|
const sal_uInt64 nCur = rSrc.Tell();
|
|
SetSize( n );
|
|
if( GetError() == ERRCODE_NONE )
|
|
{
|
|
std::unique_ptr<sal_uInt8[]> p(new sal_uInt8[ 4096 ]);
|
|
rSrc.Seek( 0 );
|
|
Seek( 0 );
|
|
while( n )
|
|
{
|
|
const sal_uInt64 nn = std::min<sal_uInt64>(n, 4096);
|
|
if (rSrc.ReadBytes( p.get(), nn ) != nn)
|
|
break;
|
|
if (WriteBytes( p.get(), nn ) != nn)
|
|
break;
|
|
n -= nn;
|
|
}
|
|
p.reset();
|
|
rSrc.Seek( nCur );
|
|
Seek( nCur );
|
|
return n == 0;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
StgTmpStrm::~StgTmpStrm()
|
|
{
|
|
if( m_pStrm )
|
|
{
|
|
m_pStrm->Close();
|
|
osl::File::remove( m_aName );
|
|
m_pStrm.reset();
|
|
}
|
|
}
|
|
|
|
sal_uInt64 StgTmpStrm::GetSize() const
|
|
{
|
|
sal_uInt64 n;
|
|
if( m_pStrm )
|
|
{
|
|
n = m_pStrm->TellEnd();
|
|
}
|
|
else
|
|
n = nEndOfData;
|
|
return n;
|
|
}
|
|
|
|
void StgTmpStrm::SetSize(sal_uInt64 n)
|
|
{
|
|
if( m_pStrm )
|
|
m_pStrm->SetStreamSize( n );
|
|
else
|
|
{
|
|
if( n > THRESHOLD )
|
|
{
|
|
m_aName = utl::CreateTempURL();
|
|
std::unique_ptr<SvFileStream> s(new SvFileStream( m_aName, StreamMode::READWRITE ));
|
|
const sal_uInt64 nCur = Tell();
|
|
sal_uInt64 i = nEndOfData;
|
|
std::unique_ptr<sal_uInt8[]> p(new sal_uInt8[ 4096 ]);
|
|
if( i )
|
|
{
|
|
Seek( 0 );
|
|
while( i )
|
|
{
|
|
const sal_uInt64 nb = std::min<sal_uInt64>(i, 4096);
|
|
if (ReadBytes(p.get(), nb) == nb
|
|
&& s->WriteBytes(p.get(), nb) == nb)
|
|
i -= nb;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
if( !i && n > nEndOfData )
|
|
{
|
|
// We have to write one byte at the end of the file
|
|
// if the file is bigger than the memstream to see
|
|
// if it fits on disk
|
|
s->Seek(nEndOfData);
|
|
memset(p.get(), 0x00, 4096);
|
|
i = n - nEndOfData;
|
|
while (i)
|
|
{
|
|
const sal_uInt64 nb = std::min<sal_uInt64>(i, 4096);
|
|
if (s->WriteBytes(p.get(), nb) == nb)
|
|
i -= nb;
|
|
else
|
|
break; // error
|
|
}
|
|
s->Flush();
|
|
if( s->GetError() != ERRCODE_NONE )
|
|
i = 1;
|
|
}
|
|
Seek( nCur );
|
|
s->Seek( nCur );
|
|
if( i )
|
|
{
|
|
SetError( s->GetError() );
|
|
return;
|
|
}
|
|
m_pStrm = std::move(s);
|
|
// Shrink the memory to 16 bytes, which seems to be the minimum
|
|
ReAllocateMemory( - ( static_cast<tools::Long>(nEndOfData) - 16 ) );
|
|
}
|
|
else
|
|
{
|
|
if( n > nEndOfData )
|
|
{
|
|
SvMemoryStream::SetSize(n);
|
|
}
|
|
else
|
|
nEndOfData = n;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::size_t StgTmpStrm::GetData( void* pData, std::size_t n )
|
|
{
|
|
if( m_pStrm )
|
|
{
|
|
n = m_pStrm->ReadBytes( pData, n );
|
|
SetError( m_pStrm->GetError() );
|
|
return n;
|
|
}
|
|
else
|
|
return SvMemoryStream::GetData( pData, n );
|
|
}
|
|
|
|
std::size_t StgTmpStrm::PutData( const void* pData, std::size_t n )
|
|
{
|
|
sal_uInt64 nCur = Tell();
|
|
sal_uInt64 nNew = nCur + n;
|
|
if( nNew > THRESHOLD && !m_pStrm )
|
|
{
|
|
SetSize( nNew );
|
|
if( GetError() != ERRCODE_NONE )
|
|
return 0;
|
|
}
|
|
if( m_pStrm )
|
|
{
|
|
nNew = m_pStrm->WriteBytes( pData, n );
|
|
SetError( m_pStrm->GetError() );
|
|
}
|
|
else
|
|
nNew = SvMemoryStream::PutData( pData, n );
|
|
return nNew;
|
|
}
|
|
|
|
sal_uInt64 StgTmpStrm::SeekPos(sal_uInt64 n)
|
|
{
|
|
// check if a truncated STREAM_SEEK_TO_END was passed
|
|
assert(n != SAL_MAX_UINT32);
|
|
if( n == STREAM_SEEK_TO_END )
|
|
n = GetSize();
|
|
if( n > THRESHOLD && !m_pStrm )
|
|
{
|
|
SetSize( n );
|
|
if( GetError() != ERRCODE_NONE )
|
|
return Tell();
|
|
else
|
|
return n;
|
|
}
|
|
else if( m_pStrm )
|
|
{
|
|
n = m_pStrm->Seek( n );
|
|
SetError( m_pStrm->GetError() );
|
|
return n;
|
|
}
|
|
else
|
|
return SvMemoryStream::SeekPos( n );
|
|
}
|
|
|
|
void StgTmpStrm::FlushData()
|
|
{
|
|
if( m_pStrm )
|
|
{
|
|
m_pStrm->Flush();
|
|
SetError( m_pStrm->GetError() );
|
|
}
|
|
else
|
|
SvMemoryStream::FlushData();
|
|
}
|
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|