1
0
Fork 0
libreoffice/svx/source/sdr/primitive2d/sdrframeborderprimitive2d.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

923 lines
37 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <svx/sdr/primitive2d/sdrframeborderprimitive2d.hxx>
#include <drawinglayer/primitive2d/borderlineprimitive2d.hxx>
#include <drawinglayer/primitive2d/groupprimitive2d.hxx>
#include <drawinglayer/geometry/viewinformation2d.hxx>
#include <svx/sdr/primitive2d/svx_primitivetypes2d.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <svtools/borderhelper.hxx>
namespace
{
double snapToDiscreteUnit(
double fValue,
double fMinimalDiscreteUnit)
{
if(0.0 != fValue)
{
fValue = std::max(fValue, fMinimalDiscreteUnit);
}
return fValue;
}
class StyleVectorCombination
{
private:
struct OffsetAndHalfWidthAndColor
{
double mfOffset;
double mfHalfWidth;
Color maColor;
OffsetAndHalfWidthAndColor(double offset, double halfWidth, Color color) :
mfOffset(offset),
mfHalfWidth(halfWidth),
maColor(color)
{}
};
double mfRefModeOffset;
basegfx::B2DVector maB2DVector;
double mfAngle;
std::vector< OffsetAndHalfWidthAndColor > maOffsets;
public:
StyleVectorCombination(
const svx::frame::Style& rStyle,
const basegfx::B2DVector& rB2DVector,
double fAngle,
bool bMirrored,
const Color* pForceColor,
double fMinimalDiscreteUnit)
: mfRefModeOffset(0.0),
maB2DVector(rB2DVector),
mfAngle(fAngle)
{
if (!rStyle.IsUsed())
return;
svx::frame::RefMode aRefMode(rStyle.GetRefMode());
Color aPrim(rStyle.GetColorPrim());
Color aSecn(rStyle.GetColorSecn());
const bool bSecnUsed(0.0 != rStyle.Secn());
// Get the single segment line widths. This is the point where the
// minimal discrete unit will be used if given (fMinimalDiscreteUnit). If
// not given it's 0.0 and thus will have no influence.
double fPrim(snapToDiscreteUnit(rStyle.Prim(), fMinimalDiscreteUnit));
const double fDist(snapToDiscreteUnit(rStyle.Dist(), fMinimalDiscreteUnit));
double fSecn(snapToDiscreteUnit(rStyle.Secn(), fMinimalDiscreteUnit));
// Of course also do not use svx::frame::Style::GetWidth() for obvious
// reasons.
const double fStyleWidth(fPrim + fDist + fSecn);
if(bMirrored)
{
switch(aRefMode)
{
case svx::frame::RefMode::Begin: aRefMode = svx::frame::RefMode::End; break;
case svx::frame::RefMode::End: aRefMode = svx::frame::RefMode::Begin; break;
default: break;
}
if(bSecnUsed)
{
std::swap(aPrim, aSecn);
std::swap(fPrim, fSecn);
}
}
if (svx::frame::RefMode::Centered != aRefMode)
{
const double fHalfWidth(fStyleWidth * 0.5);
if (svx::frame::RefMode::Begin == aRefMode)
{
// move aligned below vector
mfRefModeOffset = fHalfWidth;
}
else if (svx::frame::RefMode::End == aRefMode)
{
// move aligned above vector
mfRefModeOffset = -fHalfWidth;
}
}
if (bSecnUsed)
{
// both or all three lines used
const bool bPrimTransparent(rStyle.GetColorPrim().IsFullyTransparent());
const bool bDistTransparent(!rStyle.UseGapColor() || rStyle.GetColorGap().IsFullyTransparent());
const bool bSecnTransparent(aSecn.IsFullyTransparent());
if(!bPrimTransparent || !bDistTransparent || !bSecnTransparent)
{
const double a(mfRefModeOffset - (fStyleWidth * 0.5));
const double b(a + fPrim);
const double c(b + fDist);
const double d(c + fSecn);
maOffsets.push_back(
OffsetAndHalfWidthAndColor(
(a + b) * 0.5,
fPrim * 0.5,
nullptr != pForceColor ? *pForceColor : aPrim));
maOffsets.push_back(
OffsetAndHalfWidthAndColor(
(b + c) * 0.5,
fDist * 0.5,
rStyle.UseGapColor()
? (nullptr != pForceColor ? *pForceColor : rStyle.GetColorGap())
: COL_TRANSPARENT));
maOffsets.push_back(
OffsetAndHalfWidthAndColor(
(c + d) * 0.5,
fSecn * 0.5,
nullptr != pForceColor ? *pForceColor : aSecn));
}
}
else
{
// one line used, push two values, from outer to inner
if(!rStyle.GetColorPrim().IsFullyTransparent())
{
maOffsets.push_back(
OffsetAndHalfWidthAndColor(
mfRefModeOffset,
fPrim * 0.5,
nullptr != pForceColor ? *pForceColor : aPrim));
}
}
}
double getRefModeOffset() const { return mfRefModeOffset; }
const basegfx::B2DVector& getB2DVector() const { return maB2DVector; }
double getAngle() const { return mfAngle; }
bool empty() const { return maOffsets.empty(); }
size_t size() const { return maOffsets.size(); }
void getColorAndOffsetAndHalfWidth(size_t nIndex, Color& rColor, double& rfOffset, double& rfHalfWidth) const
{
if(nIndex >= maOffsets.size())
return;
const OffsetAndHalfWidthAndColor& rCandidate(maOffsets[nIndex]);
rfOffset = rCandidate.mfOffset;
rfHalfWidth = rCandidate.mfHalfWidth;
rColor = rCandidate.maColor;
}
};
class StyleVectorTable
{
private:
std::vector< StyleVectorCombination > maEntries;
public:
StyleVectorTable()
{
}
void add(
const svx::frame::Style& rStyle,
const basegfx::B2DVector& rMyVector,
const basegfx::B2DVector& rOtherVector,
bool bMirrored,
double fMinimalDiscreteUnit)
{
if(!rStyle.IsUsed() || basegfx::areParallel(rMyVector, rOtherVector))
return;
// create angle between both. angle() needs vectors pointing away from the same point,
// so take the mirrored one. Add M_PI to get from -pi..+pi to [0..M_PI_2] for sorting
const double fAngle(basegfx::B2DVector(-rMyVector.getX(), -rMyVector.getY()).angle(rOtherVector) + M_PI);
maEntries.emplace_back(
rStyle,
rOtherVector,
fAngle,
bMirrored,
nullptr,
fMinimalDiscreteUnit);
}
void sort()
{
// sort inverse from highest to lowest
std::sort(
maEntries.begin(),
maEntries.end(),
[](const StyleVectorCombination& a, const StyleVectorCombination& b)
{ return a.getAngle() > b.getAngle(); });
}
bool empty() const { return maEntries.empty(); }
const std::vector< StyleVectorCombination >& getEntries() const{ return maEntries; }
};
struct CutSet
{
double mfOLML;
double mfORML;
double mfOLMR;
double mfORMR;
CutSet() : mfOLML(0.0), mfORML(0.0), mfOLMR(0.0), mfORMR(0.0)
{
}
bool operator<( const CutSet& rOther) const
{
const double fA(mfOLML + mfORML + mfOLMR + mfORMR);
const double fB(rOther.mfOLML + rOther.mfORML + rOther.mfOLMR + rOther.mfORMR);
return fA < fB;
}
double getSum() const { return mfOLML + mfORML + mfOLMR + mfORMR; }
};
void getCutSet(
CutSet& rCutSet,
const basegfx::B2DPoint& rLeft,
const basegfx::B2DPoint& rRight,
const basegfx::B2DVector& rX,
const basegfx::B2DPoint& rOtherLeft,
const basegfx::B2DPoint& rOtherRight,
const basegfx::B2DVector& rOtherX)
{
basegfx::utils::findCut(
rLeft,
rX,
rOtherLeft,
rOtherX,
CutFlagValue::LINE,
&rCutSet.mfOLML);
basegfx::utils::findCut(
rRight,
rX,
rOtherLeft,
rOtherX,
CutFlagValue::LINE,
&rCutSet.mfOLMR);
basegfx::utils::findCut(
rLeft,
rX,
rOtherRight,
rOtherX,
CutFlagValue::LINE,
&rCutSet.mfORML);
basegfx::utils::findCut(
rRight,
rX,
rOtherRight,
rOtherX,
CutFlagValue::LINE,
&rCutSet.mfORMR);
}
struct ExtendSet
{
double mfExtLeft;
double mfExtRight;
ExtendSet() : mfExtLeft(0.0), mfExtRight(0.0) {}
};
void getExtends(
std::vector<ExtendSet>& rExtendSet, // target Left/Right values to fill
const basegfx::B2DPoint& rOrigin, // own vector start
const StyleVectorCombination& rCombination, // own vector and offsets for lines
const basegfx::B2DVector& rPerpendX, // normalized perpendicular to own vector
const std::vector< StyleVectorCombination >& rStyleVector) // other vectors emerging in this point
{
if(!(!rCombination.empty() && !rStyleVector.empty() && rCombination.size() == rExtendSet.size()))
return;
const size_t nOffsetA(rCombination.size());
if(1 == nOffsetA)
{
Color aMyColor; double fMyOffset(0.0); double fMyHalfWidth(0.0);
rCombination.getColorAndOffsetAndHalfWidth(0, aMyColor, fMyOffset, fMyHalfWidth);
if(!aMyColor.IsFullyTransparent())
{
const basegfx::B2DPoint aLeft(rOrigin + (rPerpendX * (fMyOffset - fMyHalfWidth)));
const basegfx::B2DPoint aRight(rOrigin + (rPerpendX * (fMyOffset + fMyHalfWidth)));
std::vector< CutSet > aCutSets;
for(const auto& rStyleCandidate : rStyleVector)
{
const basegfx::B2DVector aOtherPerpend(basegfx::getNormalizedPerpendicular(rStyleCandidate.getB2DVector()));
const size_t nOffsetB(rStyleCandidate.size());
for(size_t other(0); other < nOffsetB; other++)
{
Color aOtherColor; double fOtherOffset(0.0); double fOtherHalfWidth(0.0);
rStyleCandidate.getColorAndOffsetAndHalfWidth(other, aOtherColor, fOtherOffset, fOtherHalfWidth);
if(!aOtherColor.IsFullyTransparent())
{
const basegfx::B2DPoint aOtherLeft(rOrigin + (aOtherPerpend * (fOtherOffset - fOtherHalfWidth)));
const basegfx::B2DPoint aOtherRight(rOrigin + (aOtherPerpend * (fOtherOffset + fOtherHalfWidth)));
CutSet aNewCutSet;
getCutSet(aNewCutSet, aLeft, aRight, rCombination.getB2DVector(), aOtherLeft, aOtherRight, rStyleCandidate.getB2DVector());
aCutSets.push_back(aNewCutSet);
}
}
}
if(!aCutSets.empty())
{
CutSet aCutSet(aCutSets[0]);
const size_t nNumCutSets(aCutSets.size());
if(1 != nNumCutSets)
{
double fCutSet(aCutSet.getSum());
for(size_t a(1); a < nNumCutSets; a++)
{
const CutSet& rCandidate(aCutSets[a]);
const double fCandidate(rCandidate.getSum());
if(basegfx::fTools::equalZero(fCandidate - fCutSet))
{
// both have equal center point, use medium cut
const double fNewOLML(std::max(std::min(rCandidate.mfOLML, rCandidate.mfORML), std::min(aCutSet.mfOLML, aCutSet.mfORML)));
const double fNewORML(std::min(std::max(rCandidate.mfOLML, rCandidate.mfORML), std::max(aCutSet.mfOLML, aCutSet.mfORML)));
const double fNewOLMR(std::max(std::min(rCandidate.mfOLMR, rCandidate.mfORMR), std::min(aCutSet.mfOLMR, aCutSet.mfORMR)));
const double fNewORMR(std::min(std::max(rCandidate.mfOLMR, rCandidate.mfORMR), std::max(aCutSet.mfOLMR, aCutSet.mfORMR)));
aCutSet.mfOLML = fNewOLML;
aCutSet.mfORML = fNewORML;
aCutSet.mfOLMR = fNewOLMR;
aCutSet.mfORMR = fNewORMR;
fCutSet = aCutSet.getSum();
}
else if(fCandidate < fCutSet)
{
// get minimum
fCutSet = fCandidate;
aCutSet = rCandidate;
}
}
}
ExtendSet& rExt(rExtendSet[0]);
rExt.mfExtLeft = std::min(aCutSet.mfOLML, aCutSet.mfORML);
rExt.mfExtRight = std::min(aCutSet.mfOLMR, aCutSet.mfORMR);
}
}
}
else
{
size_t nVisEdgeUp(0);
size_t nVisEdgeDn(0);
for(size_t my(0); my < nOffsetA; my++)
{
Color aMyColor; double fMyOffset(0.0); double fMyHalfWidth(0.0);
rCombination.getColorAndOffsetAndHalfWidth(my, aMyColor, fMyOffset, fMyHalfWidth);
if(!aMyColor.IsFullyTransparent())
{
const basegfx::B2DPoint aLeft(rOrigin + (rPerpendX * (fMyOffset - fMyHalfWidth)));
const basegfx::B2DPoint aRight(rOrigin + (rPerpendX * (fMyOffset + fMyHalfWidth)));
const bool bUpper(my <= (nOffsetA >> 1));
const StyleVectorCombination& rStyleCandidate(bUpper ? rStyleVector.front() : rStyleVector.back());
const basegfx::B2DVector aOtherPerpend(basegfx::getNormalizedPerpendicular(rStyleCandidate.getB2DVector()));
const size_t nOffsetB(rStyleCandidate.size());
std::vector< CutSet > aCutSets;
for(size_t other(0); other < nOffsetB; other++)
{
Color aOtherColor; double fOtherOffset(0.0); double fOtherHalfWidth(0.0);
rStyleCandidate.getColorAndOffsetAndHalfWidth(other, aOtherColor, fOtherOffset, fOtherHalfWidth);
if(!aOtherColor.IsFullyTransparent())
{
const basegfx::B2DPoint aOtherLeft(rOrigin + (aOtherPerpend * (fOtherOffset - fOtherHalfWidth)));
const basegfx::B2DPoint aOtherRight(rOrigin + (aOtherPerpend * (fOtherOffset + fOtherHalfWidth)));
CutSet aCutSet;
getCutSet(aCutSet, aLeft, aRight, rCombination.getB2DVector(), aOtherLeft, aOtherRight, rStyleCandidate.getB2DVector());
aCutSets.push_back(aCutSet);
}
}
if(!aCutSets.empty())
{
// sort: min to start, max to end
std::sort(aCutSets.begin(), aCutSets.end());
const bool bOtherUpper(rStyleCandidate.getAngle() > M_PI);
// check if we need min or max
// bUpper bOtherUpper MinMax
// t t max
// t f min
// f f max
// f t min
const bool bMax(bUpper == bOtherUpper);
size_t nBaseIndex(0);
const size_t nNumCutSets(aCutSets.size());
if(bMax)
{
// access at end
nBaseIndex = nNumCutSets - 1 - (bUpper ? nVisEdgeUp : nVisEdgeDn);
}
else
{
// access at start
nBaseIndex = bUpper ? nVisEdgeUp : nVisEdgeDn;
}
const size_t nSecuredIndex(std::clamp(nBaseIndex, size_t(0), size_t(nNumCutSets - 1)));
const CutSet& rCutSet(aCutSets[nSecuredIndex]);
ExtendSet& rExt(rExtendSet[my]);
rExt.mfExtLeft = std::min(rCutSet.mfOLML, rCutSet.mfORML);
rExt.mfExtRight = std::min(rCutSet.mfOLMR, rCutSet.mfORMR);
}
if(bUpper)
{
nVisEdgeUp++;
}
else
{
nVisEdgeDn++;
}
}
}
}
}
/**
* Helper method to create the correct drawinglayer::primitive2d::BorderLinePrimitive2D
* for the given data, especially the correct drawinglayer::primitive2d::BorderLine entries
* including the correctly solved/created LineStartEnd extends
*
* rTarget : Here the evtl. created BorderLinePrimitive2D will be appended
* rOrigin : StartPoint of the Borderline
* rX : Vector of the Borderline
* rBorder : svx::frame::Style of the of the Borderline
* rStartStyleVectorTable : All other Borderlines which have to be taken into account because
* they have the same StartPoint as the current Borderline. These will be used to calculate
* the correct LineStartEnd extends tor the BorderLinePrimitive2D. The definition should be
* built up using svx::frame::StyleVectorTable and StyleVectorTable::add and includes:
* rStyle : the svx::frame::Style of one other BorderLine
* rMyVector : the Vector of the *new* to-be-defined BorderLine, identical to rX
* rOtherVector: the Vector of one other BorderLine (may be, but does not need to be normalized),
* always *pointing away* from the common StartPoint rOrigin
* bMirrored : define if rStyle of one other BorderLine shall be mirrored (e.g. bottom-right edges)
* With multiple BorderLines the definitions have to be CounterClockWise. This will be
* ensured by StyleVectorTable sorting the entries, but knowing this may allow more efficient
* data creation.
* rEndStyleVectorTable: All other BorderLines that have the same EndPoint. There are differences to
* the Start definitions:
* - do not forget to consequently use -rX for rMyVector
* - definitions have to be ClockWise for the EndBorderLines, will be ensured by sorting
*
* If you take all this into account, you will get correctly extended BorderLinePrimitive2D
* representations for the new to be defined BorderLine. That extensions will overlap nicely
* with the corresponding BorderLines and take all multiple line definitions in the ::Style into
* account.
* The internal solver is *not limited* to ::Style(s) with three parts (Left/Gap/Right), this is
* just due to svx::frame::Style's definitions. A new solver based on this one can be created
* anytime using more mulötiple borders based on the more flexible
* std::vector< drawinglayer::primitive2d::BorderLine > if needed.
*/
void CreateBorderPrimitives(
drawinglayer::primitive2d::Primitive2DContainer& rTarget, /// target for created primitives
const basegfx::B2DPoint& rOrigin, /// start point of borderline
const basegfx::B2DVector& rX, /// X-Axis of borderline with length
const svx::frame::Style& rBorder, /// Style of borderline
const StyleVectorTable& rStartStyleVectorTable, /// Styles and vectors (pointing away) at borderline start, ccw
const StyleVectorTable& rEndStyleVectorTable, /// Styles and vectors (pointing away) at borderline end, cw
const Color* pForceColor, /// If specified, overrides frame border color.
double fMinimalDiscreteUnit) /// minimal discrete unit to use for svx::frame::Style width values
{
// get offset color pairs for style, one per visible line
const StyleVectorCombination aCombination(
rBorder,
rX,
0.0,
false,
pForceColor,
fMinimalDiscreteUnit);
if(aCombination.empty())
return;
const basegfx::B2DVector aPerpendX(basegfx::getNormalizedPerpendicular(rX));
const bool bHasStartStyles(!rStartStyleVectorTable.empty());
const bool bHasEndStyles(!rEndStyleVectorTable.empty());
const size_t nOffsets(aCombination.size());
std::vector<ExtendSet> aExtendSetStart(nOffsets);
std::vector<ExtendSet> aExtendSetEnd(nOffsets);
if(bHasStartStyles)
{
// create extends for line starts, use given point/vector and offsets
getExtends(aExtendSetStart, rOrigin, aCombination, aPerpendX, rStartStyleVectorTable.getEntries());
}
if(bHasEndStyles)
{
// Create extends for line ends, create inverse point/vector and inverse offsets.
const StyleVectorCombination aMirroredCombination(
rBorder,
-rX,
0.0,
true,
pForceColor,
fMinimalDiscreteUnit);
getExtends(aExtendSetEnd, rOrigin + rX, aMirroredCombination, -aPerpendX, rEndStyleVectorTable.getEntries());
// also need to inverse the result to apply to the correct lines
std::reverse(aExtendSetEnd.begin(), aExtendSetEnd.end());
}
std::vector< drawinglayer::primitive2d::BorderLine > aBorderlines;
const double fNegLength(-rX.getLength());
for(size_t a(0); a < nOffsets; a++)
{
Color aMyColor;
double fMyOffset(0.0);
double fMyHalfWidth(0.0);
aCombination.getColorAndOffsetAndHalfWidth(a, aMyColor, fMyOffset, fMyHalfWidth);
const ExtendSet& rExtStart(aExtendSetStart[a]);
const ExtendSet& rExtEnd(aExtendSetEnd[a]);
if(aMyColor.IsFullyTransparent())
{
aBorderlines.push_back(
drawinglayer::primitive2d::BorderLine(
fMyHalfWidth * 2.0));
}
else
{
aBorderlines.push_back(
drawinglayer::primitive2d::BorderLine(
drawinglayer::attribute::LineAttribute(
aMyColor.getBColor(),
fMyHalfWidth * 2.0),
fNegLength * rExtStart.mfExtLeft,
fNegLength * rExtStart.mfExtRight,
fNegLength * rExtEnd.mfExtRight,
fNegLength * rExtEnd.mfExtLeft));
}
}
static const double fPatScFact(10.0); // 10.0 multiply, see old code
std::vector<double> aDashing(svtools::GetLineDashing(rBorder.Type(), rBorder.PatternScale() * fPatScFact));
drawinglayer::attribute::StrokeAttribute aStrokeAttribute(std::move(aDashing));
const basegfx::B2DPoint aStart(rOrigin + (aPerpendX * aCombination.getRefModeOffset()));
rTarget.append(
new drawinglayer::primitive2d::BorderLinePrimitive2D(
aStart,
aStart + rX,
std::move(aBorderlines),
std::move(aStrokeAttribute)));
}
double getMinimalNonZeroValue(double fCurrent, double fNew)
{
if(0.0 != fNew)
{
if(0.0 != fCurrent)
{
fCurrent = std::min(fNew, fCurrent);
}
else
{
fCurrent = fNew;
}
}
return fCurrent;
}
double getMinimalNonZeroBorderWidthFromStyle(double fCurrent, const svx::frame::Style& rStyle)
{
if(rStyle.IsUsed())
{
fCurrent = getMinimalNonZeroValue(fCurrent, rStyle.Prim());
fCurrent = getMinimalNonZeroValue(fCurrent, rStyle.Dist());
fCurrent = getMinimalNonZeroValue(fCurrent, rStyle.Secn());
}
return fCurrent;
}
}
namespace drawinglayer::primitive2d
{
SdrFrameBorderData::SdrConnectStyleData::SdrConnectStyleData(
const svx::frame::Style& rStyle,
const basegfx::B2DVector& rNormalizedPerpendicular,
bool bStyleMirrored)
: maStyle(rStyle),
maNormalizedPerpendicular(rNormalizedPerpendicular),
mbStyleMirrored(bStyleMirrored)
{
}
bool SdrFrameBorderData::SdrConnectStyleData::operator==(const SdrFrameBorderData::SdrConnectStyleData& rCompare) const
{
return mbStyleMirrored == rCompare.mbStyleMirrored
&& maStyle == rCompare.maStyle
&& maNormalizedPerpendicular == rCompare.maNormalizedPerpendicular;
}
SdrFrameBorderData::SdrFrameBorderData(
const basegfx::B2DPoint& rOrigin,
const basegfx::B2DVector& rX,
const svx::frame::Style& rStyle,
const Color* pForceColor)
: maOrigin(rOrigin),
maX(rX),
maStyle(rStyle),
maColor(nullptr != pForceColor ? *pForceColor : Color()),
mbForceColor(nullptr != pForceColor)
{
}
void SdrFrameBorderData::addSdrConnectStyleData(
bool bStart,
const svx::frame::Style& rStyle,
const basegfx::B2DVector& rNormalizedPerpendicular,
bool bStyleMirrored)
{
if(rStyle.IsUsed())
{
if(bStart)
{
maStart.emplace_back(rStyle, rNormalizedPerpendicular, bStyleMirrored);
}
else
{
maEnd.emplace_back(rStyle, rNormalizedPerpendicular, bStyleMirrored);
}
}
}
void SdrFrameBorderData::create2DDecomposition(
Primitive2DContainer& rContainer,
double fMinimalDiscreteUnit) const
{
StyleVectorTable aStartVector;
StyleVectorTable aEndVector;
const basegfx::B2DVector aAxis(-maX);
for(const auto& rStart : maStart)
{
aStartVector.add(
rStart.getStyle(),
maX,
rStart.getNormalizedPerpendicular(),
rStart.getStyleMirrored(),
fMinimalDiscreteUnit);
}
for(const auto& rEnd : maEnd)
{
aEndVector.add(
rEnd.getStyle(),
aAxis,
rEnd.getNormalizedPerpendicular(),
rEnd.getStyleMirrored(),
fMinimalDiscreteUnit);
}
aStartVector.sort();
aEndVector.sort();
CreateBorderPrimitives(
rContainer,
maOrigin,
maX,
maStyle,
aStartVector,
aEndVector,
mbForceColor ? &maColor : nullptr,
fMinimalDiscreteUnit);
}
double SdrFrameBorderData::getMinimalNonZeroBorderWidth() const
{
double fRetval(getMinimalNonZeroBorderWidthFromStyle(0.0, maStyle));
for(const auto& rStart : maStart)
{
fRetval = getMinimalNonZeroBorderWidthFromStyle(fRetval, rStart.getStyle());
}
for(const auto& rEnd : maEnd)
{
fRetval = getMinimalNonZeroBorderWidthFromStyle(fRetval, rEnd.getStyle());
}
return fRetval;
}
bool SdrFrameBorderData::operator==(const SdrFrameBorderData& rCompare) const
{
return maOrigin == rCompare.maOrigin
&& maX == rCompare.maX
&& maStyle == rCompare.maStyle
&& maColor == rCompare.maColor
&& mbForceColor == rCompare.mbForceColor
&& maStart == rCompare.maStart
&& maEnd == rCompare.maEnd;
}
Primitive2DReference SdrFrameBorderPrimitive2D::create2DDecomposition(
const geometry::ViewInformation2D& /*aViewInformation*/) const
{
if(getFrameBorders().empty())
{
return nullptr;
}
Primitive2DContainer aRetval;
// Check and use the minimal non-zero BorderWidth for decompose
// if that is set and wanted
const double fMinimalDiscreteUnit(doForceToSingleDiscreteUnit()
? mfMinimalNonZeroBorderWidthUsedForDecompose
: 0.0);
// decompose all buffered SdrFrameBorderData entries and try to merge them
// to reduce existing number of BorderLinePrimitive2D(s)
for(const auto& rCandidate : getFrameBorders())
{
// get decomposition on one SdrFrameBorderData entry
Primitive2DContainer aPartial;
rCandidate.create2DDecomposition(
aPartial,
fMinimalDiscreteUnit);
for(const auto& aCandidatePartial : aPartial)
{
if(aRetval.empty())
{
// no local data yet, just add as 1st entry, done
aRetval.append(aCandidatePartial);
}
else
{
bool bDidMerge(false);
for(auto& aCandidateRetval : aRetval)
{
// try to merge by appending new data to existing data
const drawinglayer::primitive2d::Primitive2DReference aMergeRetvalPartial(
drawinglayer::primitive2d::tryMergeBorderLinePrimitive2D(
static_cast<BorderLinePrimitive2D*>(aCandidateRetval.get()),
static_cast<BorderLinePrimitive2D*>(aCandidatePartial.get())));
if(aMergeRetvalPartial.is())
{
// could append, replace existing data with merged data, done
aCandidateRetval = aMergeRetvalPartial;
bDidMerge = true;
break;
}
// try to merge by appending existing data to new data
const drawinglayer::primitive2d::Primitive2DReference aMergePartialRetval(
drawinglayer::primitive2d::tryMergeBorderLinePrimitive2D(
static_cast<BorderLinePrimitive2D*>(aCandidatePartial.get()),
static_cast<BorderLinePrimitive2D*>(aCandidateRetval.get())));
if(aMergePartialRetval.is())
{
// could append, replace existing data with merged data, done
aCandidateRetval = aMergePartialRetval;
bDidMerge = true;
break;
}
}
if(!bDidMerge)
{
// no merge after checking all existing data, append as new segment
aRetval.append(aCandidatePartial);
}
}
}
}
return new GroupPrimitive2D(std::move(aRetval));
}
SdrFrameBorderPrimitive2D::SdrFrameBorderPrimitive2D(
SdrFrameBorderDataVector&& rFrameBorders,
bool bForceToSingleDiscreteUnit)
: maFrameBorders(std::move(rFrameBorders)),
mfMinimalNonZeroBorderWidth(0.0),
mfMinimalNonZeroBorderWidthUsedForDecompose(0.0),
mbForceToSingleDiscreteUnit(bForceToSingleDiscreteUnit)
{
if(!getFrameBorders().empty() && doForceToSingleDiscreteUnit())
{
// detect used minimal non-zero partial border width
for(const auto& rCandidate : getFrameBorders())
{
mfMinimalNonZeroBorderWidth = getMinimalNonZeroValue(
mfMinimalNonZeroBorderWidth,
rCandidate.getMinimalNonZeroBorderWidth());
}
}
}
bool SdrFrameBorderPrimitive2D::operator==(const BasePrimitive2D& rPrimitive) const
{
if(BufferedDecompositionPrimitive2D::operator==(rPrimitive))
{
const SdrFrameBorderPrimitive2D& rCompare = static_cast<const SdrFrameBorderPrimitive2D&>(rPrimitive);
return getFrameBorders() == rCompare.getFrameBorders()
&& doForceToSingleDiscreteUnit() == rCompare.doForceToSingleDiscreteUnit();
}
return false;
}
void SdrFrameBorderPrimitive2D::get2DDecomposition(
Primitive2DDecompositionVisitor& rVisitor,
const geometry::ViewInformation2D& rViewInformation) const
{
if(doForceToSingleDiscreteUnit())
{
// Get the current DiscreteUnit, look at X and Y and use the maximum
const basegfx::B2DVector aDiscreteVector(rViewInformation.getInverseObjectToViewTransformation() * basegfx::B2DVector(1.0, 1.0));
double fDiscreteUnit(std::min(fabs(aDiscreteVector.getX()), fabs(aDiscreteVector.getY())));
if(fDiscreteUnit <= mfMinimalNonZeroBorderWidth)
{
// no need to use it, reset
fDiscreteUnit = 0.0;
}
if(fDiscreteUnit != mfMinimalNonZeroBorderWidthUsedForDecompose)
{
// conditions of last local decomposition have changed, delete
// possible content
if(getBuffered2DDecomposition())
{
const_cast< SdrFrameBorderPrimitive2D* >(this)->setBuffered2DDecomposition(nullptr);
}
// remember new conditions
const_cast< SdrFrameBorderPrimitive2D* >(this)->mfMinimalNonZeroBorderWidthUsedForDecompose = fDiscreteUnit;
}
}
// call parent. This will call back ::create2DDecomposition above
// where mfMinimalNonZeroBorderWidthUsedForDecompose will be used
// when doForceToSingleDiscreteUnit() is true
BufferedDecompositionPrimitive2D::get2DDecomposition(rVisitor, rViewInformation);
}
// provide unique ID
sal_uInt32 SdrFrameBorderPrimitive2D::getPrimitive2DID() const
{
return PRIMITIVE2D_ID_SDRFRAMEBORDERTPRIMITIVE2D;
}
} // end of namespace
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */