1
0
Fork 0
libreoffice/tools/source/generic/bigint.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

731 lines
18 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <osl/diagnose.h>
#include <tools/bigint.hxx>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <limits>
#include <span>
/**
* The range in which we can perform add/sub without fear of overflow
*/
const sal_Int32 MY_MAXLONG = 0x3fffffff;
const sal_Int32 MY_MINLONG = -MY_MAXLONG;
/*
* The algorithms for Addition, Subtraction, Multiplication and Division
* of large numbers originate from SEMINUMERICAL ALGORITHMS by
* DONALD E. KNUTH in the series The Art of Computer Programming:
* chapter 4.3.1. The Classical Algorithms.
*/
BigInt BigInt::MakeBig() const
{
if (IsBig())
{
BigInt ret(*this);
while ( ret.nLen > 1 && ret.nNum[ret.nLen-1] == 0 )
ret.nLen--;
return ret;
}
BigInt ret;
if (nVal < 0)
{
ret.bIsNeg = true;
ret.nNum[0] = -static_cast<sal_Int64>(nVal);
}
else
{
ret.bIsNeg = false;
ret.nNum[0] = nVal;
}
ret.nLen = 1;
return ret;
}
void BigInt::Normalize()
{
if (IsBig())
{
while ( nLen > 1 && nNum[nLen-1] == 0 )
nLen--;
if (nLen < 2)
{
static constexpr sal_uInt32 maxForPosInt32 = std::numeric_limits<sal_Int32>::max();
static constexpr sal_uInt32 maxForNegInt32 = -sal_Int64(std::numeric_limits<sal_Int32>::min());
sal_uInt32 nNum0 = nNum[0];
if (bIsNeg && nNum0 <= maxForNegInt32)
{
nVal = -sal_Int64(nNum0);
nLen = 0;
}
else if (!bIsNeg && nNum0 <= maxForPosInt32)
{
nVal = nNum0;
nLen = 0;
}
}
}
}
// Normalization in DivLong requires that dividend is multiplied by a number, and the resulting
// value has 1 more 32-bit "digits". 'ret' provides enough room for that. Use of std::span gives
// run-time index checking in debug builds.
static std::span<sal_uInt32> Mult(std::span<const sal_uInt32> aNum, sal_uInt32 nMul, std::span<sal_uInt32> retBuf)
{
assert(retBuf.size() >= aNum.size());
sal_uInt64 nK = 0;
for (size_t i = 0; i < aNum.size(); i++)
{
sal_uInt64 nTmp = static_cast<sal_uInt64>(aNum[i]) * nMul + nK;
nK = nTmp >> 32;
retBuf[i] = static_cast<sal_uInt32>(nTmp);
}
if ( nK )
{
assert(retBuf.size() > aNum.size());
retBuf[aNum.size()] = nK;
return retBuf.subspan(0, aNum.size() + 1);
}
return retBuf.subspan(0, aNum.size());
}
static size_t DivInPlace(std::span<sal_uInt32> aNum, sal_uInt32 nDiv, sal_uInt32& rRem)
{
assert(aNum.size() > 0);
sal_uInt64 nK = 0;
for (int i = aNum.size() - 1; i >= 0; i--)
{
sal_uInt64 nTmp = aNum[i] + (nK << 32);
aNum[i] = nTmp / nDiv;
nK = nTmp % nDiv;
}
rRem = nK;
if (aNum[aNum.size() - 1] == 0)
return aNum.size() - 1;
return aNum.size();
}
bool BigInt::ABS_IsLessBig(const BigInt& rVal) const
{
assert(IsBig() && rVal.IsBig());
if ( rVal.nLen < nLen)
return false;
if ( rVal.nLen > nLen )
return true;
int i = nLen - 1;
while (i > 0 && nNum[i] == rVal.nNum[i])
--i;
return nNum[i] < rVal.nNum[i];
}
void BigInt::AddBig(BigInt& rB, BigInt& rRes)
{
assert(IsBig() && rB.IsBig());
if ( bIsNeg == rB.bIsNeg )
{
int i;
char len;
// if length of the two values differ, fill remaining positions
// of the smaller value with zeros.
if (nLen >= rB.nLen)
{
len = nLen;
for (i = rB.nLen; i < len; i++)
rB.nNum[i] = 0;
}
else
{
len = rB.nLen;
for (i = nLen; i < len; i++)
nNum[i] = 0;
}
// Add numerals, starting from the back
sal_Int64 k = 0;
for (i = 0; i < len; i++) {
sal_Int64 nZ = static_cast<sal_Int64>(nNum[i]) + static_cast<sal_Int64>(rB.nNum[i]) + k;
if (nZ > sal_Int64(std::numeric_limits<sal_uInt32>::max()))
k = 1;
else
k = 0;
rRes.nNum[i] = static_cast<sal_uInt32>(nZ);
}
// If an overflow occurred, add to solution
if (k)
{
assert(i < MAX_DIGITS);
rRes.nNum[i] = 1;
len++;
}
// Set length and sign
rRes.nLen = len;
rRes.bIsNeg = bIsNeg;
}
// If one of the values is negative, perform subtraction instead
else
{
bIsNeg = !bIsNeg;
rB.SubBig(*this, rRes);
bIsNeg = !bIsNeg;
}
}
void BigInt::SubBig(BigInt& rB, BigInt& rRes)
{
assert(IsBig() && rB.IsBig());
if ( bIsNeg == rB.bIsNeg )
{
char len;
// if length of the two values differ, fill remaining positions
// of the smaller value with zeros.
if (nLen >= rB.nLen)
{
len = nLen;
for (int i = rB.nLen; i < len; i++)
rB.nNum[i] = 0;
}
else
{
len = rB.nLen;
for (int i = nLen; i < len; i++)
nNum[i] = 0;
}
const bool bThisIsLess = ABS_IsLessBig(rB);
BigInt& rGreater = bThisIsLess ? rB : *this;
BigInt& rSmaller = bThisIsLess ? *this : rB;
sal_Int64 k = 0;
for (int i = 0; i < len; i++)
{
sal_Int64 nZ = static_cast<sal_Int64>(rGreater.nNum[i]) - static_cast<sal_Int64>(rSmaller.nNum[i]) + k;
if (nZ < 0)
k = -1;
else
k = 0;
rRes.nNum[i] = static_cast<sal_uInt32>(nZ);
}
// if a < b, revert sign
rRes.bIsNeg = bThisIsLess ? !bIsNeg : bIsNeg;
rRes.nLen = len;
}
// If one of the values is negative, perform addition instead
else
{
bIsNeg = !bIsNeg;
AddBig(rB, rRes);
bIsNeg = !bIsNeg;
rRes.bIsNeg = bIsNeg;
}
}
void BigInt::MultBig(const BigInt& rB, BigInt& rRes) const
{
assert(IsBig() && rB.IsBig());
rRes.bIsNeg = bIsNeg != rB.bIsNeg;
rRes.nLen = nLen + rB.nLen;
assert(rRes.nLen <= MAX_DIGITS);
for (int i = 0; i < rRes.nLen; i++)
rRes.nNum[i] = 0;
for (int j = 0; j < rB.nLen; j++)
{
sal_uInt64 k = 0;
int i;
for (i = 0; i < nLen; i++)
{
sal_uInt64 nZ = static_cast<sal_uInt64>(nNum[i]) * static_cast<sal_uInt64>(rB.nNum[j]) +
static_cast<sal_uInt64>(rRes.nNum[i + j]) + k;
rRes.nNum[i + j] = static_cast<sal_uInt32>(nZ);
k = nZ >> 32;
}
rRes.nNum[i + j] = k;
}
}
void BigInt::DivModBig(const BigInt& rB, BigInt* pDiv, BigInt* pMod) const
{
assert(IsBig() && rB.IsBig());
assert(nLen >= rB.nLen);
assert(rB.nNum[rB.nLen - 1] != 0);
sal_uInt32 nMult = static_cast<sal_uInt32>(0x100000000 / (static_cast<sal_Int64>(rB.nNum[rB.nLen - 1]) + 1));
sal_uInt32 numBuf[MAX_DIGITS + 1]; // normalized dividend
auto num = Mult({ nNum, nLen }, nMult, numBuf);
if (num.size() == nLen)
{
num = std::span(numBuf, nLen + 1);
num[nLen] = 0;
}
sal_uInt32 denBuf[MAX_DIGITS + 1]; // normalized divisor
const auto den = Mult({ rB.nNum, rB.nLen }, nMult, denBuf);
assert(den.size() == rB.nLen);
const sal_uInt64 nDenMostSig = den[rB.nLen - 1];
assert(nDenMostSig >= 0x100000000 / 2);
const sal_uInt64 nDen2ndSig = rB.nLen > 1 ? den[rB.nLen - 2] : 0;
BigInt aTmp;
BigInt& rRes = pDiv ? *pDiv : aTmp;
for (size_t j = num.size() - 1; j >= den.size(); j--)
{ // guess divisor
assert(num[j] < nDenMostSig || (num[j] == nDenMostSig && num[j - 1] == 0));
sal_uInt64 nTmp = ( static_cast<sal_uInt64>(num[j]) << 32 ) + num[j - 1];
sal_uInt32 nQ;
if (num[j] == nDenMostSig)
nQ = 0xFFFFFFFF;
else
nQ = static_cast<sal_uInt32>(nTmp / nDenMostSig);
if (nDen2ndSig && (nDen2ndSig * nQ) > ((nTmp - nDenMostSig * nQ) << 32) + num[j - 2])
nQ--;
// Start division
sal_uInt32 nK = 0;
size_t i;
for (i = 0; i < den.size(); i++)
{
nTmp = static_cast<sal_uInt64>(num[j - den.size() + i])
- (static_cast<sal_uInt64>(den[i]) * nQ)
- nK;
num[j - den.size() + i] = static_cast<sal_uInt32>(nTmp);
nK = static_cast<sal_uInt32>(nTmp >> 32);
if ( nK )
nK = static_cast<sal_uInt32>(0x100000000 - nK);
}
sal_uInt32& rNum(num[j - den.size() + i]);
rNum -= nK;
if (num[j - den.size() + i] == 0)
rRes.nNum[j - den.size()] = nQ;
else
{
rRes.nNum[j - den.size()] = nQ - 1;
nK = 0;
for (i = 0; i < den.size(); i++)
{
nTmp = num[j - den.size() + i] + den[i] + nK;
num[j - den.size() + i] = static_cast<sal_uInt32>(nTmp & 0xFFFFFFFF);
if (nTmp > std::numeric_limits<sal_uInt32>::max())
nK = 1;
else
nK = 0;
}
}
}
if (pMod)
{
pMod->nLen = DivInPlace(num, nMult, nMult);
assert(pMod->nLen <= MAX_DIGITS);
pMod->bIsNeg = bIsNeg;
std::copy_n(num.begin(), pMod->nLen, pMod->nNum);
pMod->Normalize();
}
if (pDiv) // rRes references pDiv
{
pDiv->bIsNeg = bIsNeg != rB.bIsNeg;
pDiv->nLen = nLen - rB.nLen + 1;
pDiv->Normalize();
}
}
BigInt::BigInt( std::u16string_view rString )
: nLen(0)
{
bIsNeg = false;
nVal = 0;
bool bNeg = false;
auto p = rString.begin();
auto pEnd = rString.end();
if (p == pEnd)
return;
if ( *p == '-' )
{
bNeg = true;
p++;
}
if (p == pEnd)
return;
while( p != pEnd && *p >= '0' && *p <= '9' )
{
*this *= 10;
*this += *p - '0';
p++;
}
if (IsBig())
bIsNeg = bNeg;
else if( bNeg )
nVal = -nVal;
}
BigInt::BigInt( double nValue )
: nVal(0)
{
if ( nValue < 0 )
{
nValue *= -1;
bIsNeg = true;
}
else
{
bIsNeg = false;
}
if ( nValue < 1 )
{
nVal = 0;
nLen = 0;
}
else
{
int i=0;
while ( ( nValue > 0x100000000 ) && ( i < MAX_DIGITS ) )
{
nNum[i] = static_cast<sal_uInt32>(fmod( nValue, 0x100000000 ));
nValue -= nNum[i];
nValue /= 0x100000000;
i++;
}
if ( i < MAX_DIGITS )
nNum[i++] = static_cast<sal_uInt32>(nValue);
nLen = i;
if ( i < 2 )
Normalize();
}
}
BigInt::BigInt( sal_uInt32 nValue )
: nVal(0)
, bIsNeg(false)
{
if ( nValue & 0x80000000U )
{
nNum[0] = nValue;
nLen = 1;
}
else
{
nVal = nValue;
nLen = 0;
}
}
BigInt::BigInt( sal_Int64 nValue )
: nVal(0)
{
bIsNeg = nValue < 0;
nLen = 0;
if ((nValue >= SAL_MIN_INT32) && (nValue <= SAL_MAX_INT32))
{
nVal = static_cast<sal_Int32>(nValue);
}
else
{
for (sal_uInt64 n = static_cast<sal_uInt64>(
(bIsNeg && nValue != std::numeric_limits<sal_Int64>::min()) ? -nValue : nValue);
n != 0; n >>= 32)
nNum[nLen++] = static_cast<sal_uInt32>(n);
}
}
BigInt::operator double() const
{
if (!IsBig())
return static_cast<double>(nVal);
else
{
int i = nLen-1;
double nRet = static_cast<double>(nNum[i]);
while ( i )
{
nRet *= 0x100000000;
i--;
nRet += static_cast<double>(nNum[i]);
}
if ( bIsNeg )
nRet *= -1;
return nRet;
}
}
BigInt& BigInt::operator=( const BigInt& rBigInt )
{
if (this == &rBigInt)
return *this;
if (rBigInt.IsBig())
memcpy( static_cast<void*>(this), static_cast<const void*>(&rBigInt), sizeof( BigInt ) );
else
{
nLen = 0;
nVal = rBigInt.nVal;
}
return *this;
}
BigInt& BigInt::operator+=( const BigInt& rVal )
{
if (!IsBig() && !rVal.IsBig())
{
if( nVal <= MY_MAXLONG && rVal.nVal <= MY_MAXLONG
&& nVal >= MY_MINLONG && rVal.nVal >= MY_MINLONG )
{ // No overflows may occur here
nVal += rVal.nVal;
return *this;
}
if( (nVal < 0) != (rVal.nVal < 0) )
{ // No overflows may occur here
nVal += rVal.nVal;
return *this;
}
}
BigInt aTmp2 = rVal.MakeBig();
MakeBig().AddBig(aTmp2, *this);
Normalize();
return *this;
}
BigInt& BigInt::operator-=( const BigInt& rVal )
{
if (!IsBig() && !rVal.IsBig())
{
if ( nVal <= MY_MAXLONG && rVal.nVal <= MY_MAXLONG &&
nVal >= MY_MINLONG && rVal.nVal >= MY_MINLONG )
{ // No overflows may occur here
nVal -= rVal.nVal;
return *this;
}
if ( (nVal < 0) == (rVal.nVal < 0) )
{ // No overflows may occur here
nVal -= rVal.nVal;
return *this;
}
}
BigInt aTmp2 = rVal.MakeBig();
MakeBig().SubBig(aTmp2, *this);
Normalize();
return *this;
}
BigInt& BigInt::operator*=( const BigInt& rVal )
{
static const sal_Int32 MY_MAXSHORT = 0x00007fff;
static const sal_Int32 MY_MINSHORT = -MY_MAXSHORT;
if (!IsBig() && !rVal.IsBig()
&& nVal <= MY_MAXSHORT && rVal.nVal <= MY_MAXSHORT
&& nVal >= MY_MINSHORT && rVal.nVal >= MY_MINSHORT )
// TODO: not optimal !!! W.P.
{ // No overflows may occur here
nVal *= rVal.nVal;
}
else
{
rVal.MakeBig().MultBig(MakeBig(), *this);
Normalize();
}
return *this;
}
void BigInt::DivMod(const BigInt& rVal, BigInt* pDiv, BigInt* pMod) const
{
assert(pDiv || pMod); // Avoid useless calls
if (!rVal.IsBig())
{
if ( rVal.nVal == 0 )
{
OSL_FAIL( "BigInt::operator/ --> divide by zero" );
return;
}
if (rVal.nVal == 1)
{
if (pDiv)
{
*pDiv = *this;
pDiv->Normalize();
}
if (pMod)
*pMod = 0;
return;
}
if (!IsBig())
{
// No overflows may occur here
const sal_Int32 nDiv = nVal / rVal.nVal; // Compilers usually optimize adjacent
const sal_Int32 nMod = nVal % rVal.nVal; // / and % into a single instruction
if (pDiv)
*pDiv = nDiv;
if (pMod)
*pMod = nMod;
return;
}
if ( rVal.nVal == -1 )
{
if (pDiv)
{
*pDiv = *this;
pDiv->bIsNeg = !bIsNeg;
pDiv->Normalize();
}
if (pMod)
*pMod = 0;
return;
}
// Divide BigInt with an sal_uInt32
sal_uInt32 nTmp;
bool bNegate;
if ( rVal.nVal < 0 )
{
nTmp = static_cast<sal_uInt32>(-rVal.nVal);
bNegate = true;
}
else
{
nTmp = static_cast<sal_uInt32>(rVal.nVal);
bNegate = false;
}
BigInt aTmp;
BigInt& rDiv = pDiv ? *pDiv : aTmp;
rDiv = *this;
rDiv.nLen = DivInPlace({ rDiv.nNum, rDiv.nLen }, nTmp, nTmp);
if (pDiv)
{
if (bNegate)
pDiv->bIsNeg = !pDiv->bIsNeg;
pDiv->Normalize();
}
if (pMod)
{
*pMod = BigInt(nTmp);
}
return;
}
BigInt tmpA = MakeBig(), tmpB = rVal.MakeBig();
if (tmpA.ABS_IsLessBig(tmpB))
{
// First store *this to *pMod, then nullify *pDiv, to handle 'pDiv == this' case
if (pMod)
{
*pMod = *this;
pMod->Normalize();
}
if (pDiv)
*pDiv = 0;
return;
}
// Divide BigInt with BigInt
tmpA.DivModBig(tmpB, pDiv, pMod);
}
BigInt& BigInt::operator/=( const BigInt& rVal )
{
DivMod(rVal, this, nullptr);
return *this;
}
BigInt& BigInt::operator%=( const BigInt& rVal )
{
DivMod(rVal, nullptr, this);
return *this;
}
bool operator==( const BigInt& rVal1, const BigInt& rVal2 )
{
if (!rVal1.IsBig() && !rVal2.IsBig())
return rVal1.nVal == rVal2.nVal;
BigInt nA = rVal1.MakeBig(), nB = rVal2.MakeBig();
return nA.bIsNeg == nB.bIsNeg && nA.nLen == nB.nLen
&& std::equal(nA.nNum, nA.nNum + nA.nLen, nB.nNum);
}
std::strong_ordering operator<=>(const BigInt& rVal1, const BigInt& rVal2)
{
if (!rVal1.IsBig() && !rVal2.IsBig())
return rVal1.nVal <=> rVal2.nVal;
BigInt nA = rVal1.MakeBig(), nB = rVal2.MakeBig();
if (nA.bIsNeg != nB.bIsNeg)
return nB.bIsNeg ? std::strong_ordering::less : std::strong_ordering::greater;
if (nA.nLen < nB.nLen)
return nB.bIsNeg ? std::strong_ordering::greater : std::strong_ordering::less;
if (nA.nLen > nB.nLen)
return nB.bIsNeg ? std::strong_ordering::less : std::strong_ordering::greater;
int i = nA.nLen - 1;
while (i > 0 && nA.nNum[i] == nB.nNum[i])
--i;
return nB.bIsNeg ? (nB.nNum[i] <=> nA.nNum[i]) : (nA.nNum[i] <=> nB.nNum[i]);
}
tools::Long BigInt::Scale( tools::Long nVal, tools::Long nMul, tools::Long nDiv )
{
BigInt aVal( nVal );
aVal *= nMul;
if ( aVal.IsNeg() != ( nDiv < 0 ) )
aVal -= nDiv / 2; // for correct rounding
else
aVal += nDiv / 2; // for correct rounding
aVal /= nDiv;
return tools::Long( aVal );
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */