1
0
Fork 0
libreoffice/vcl/source/bitmap/dibtools.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

1769 lines
56 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <sal/log.hxx>
#include <cassert>
#include <o3tl/safeint.hxx>
#include <vcl/dibtools.hxx>
#include <comphelper/fileformat.h>
#include <tools/zcodec.hxx>
#include <tools/stream.hxx>
#include <tools/fract.hxx>
#include <tools/helpers.hxx>
#include <tools/GenericTypeSerializer.hxx>
#include <comphelper/configuration.hxx>
#include <vcl/bitmapex.hxx>
#include <vcl/outdev.hxx>
#include <vcl/BitmapWriteAccess.hxx>
#include <memory>
#define DIBCOREHEADERSIZE ( 12UL )
#define DIBINFOHEADERSIZE ( sizeof(DIBInfoHeader) )
#define DIBV5HEADERSIZE ( sizeof(DIBV5Header) )
// - DIBInfoHeader and DIBV5Header
typedef sal_Int32 FXPT2DOT30;
namespace
{
struct CIEXYZ
{
FXPT2DOT30 aXyzX;
FXPT2DOT30 aXyzY;
FXPT2DOT30 aXyzZ;
CIEXYZ()
: aXyzX(0),
aXyzY(0),
aXyzZ(0)
{}
};
struct CIEXYZTriple
{
CIEXYZ aXyzRed;
CIEXYZ aXyzGreen;
CIEXYZ aXyzBlue;
CIEXYZTriple()
{}
};
struct DIBInfoHeader
{
sal_uInt32 nSize;
sal_Int32 nWidth;
sal_Int32 nHeight;
sal_uInt16 nPlanes;
sal_uInt16 nBitCount;
sal_uInt32 nCompression;
sal_uInt32 nSizeImage;
sal_Int32 nXPelsPerMeter;
sal_Int32 nYPelsPerMeter;
sal_uInt32 nColsUsed;
sal_uInt32 nColsImportant;
DIBInfoHeader()
: nSize(0),
nWidth(0),
nHeight(0),
nPlanes(0),
nBitCount(0),
nCompression(0),
nSizeImage(0),
nXPelsPerMeter(0),
nYPelsPerMeter(0),
nColsUsed(0),
nColsImportant(0)
{}
};
struct DIBV5Header : public DIBInfoHeader
{
sal_uInt32 nV5RedMask;
sal_uInt32 nV5GreenMask;
sal_uInt32 nV5BlueMask;
sal_uInt32 nV5AlphaMask;
sal_uInt32 nV5CSType;
CIEXYZTriple aV5Endpoints;
sal_uInt32 nV5GammaRed;
sal_uInt32 nV5GammaGreen;
sal_uInt32 nV5GammaBlue;
sal_uInt32 nV5Intent;
sal_uInt32 nV5ProfileData;
sal_uInt32 nV5ProfileSize;
sal_uInt32 nV5Reserved;
DIBV5Header()
: nV5RedMask(0),
nV5GreenMask(0),
nV5BlueMask(0),
nV5AlphaMask(0),
nV5CSType(0),
nV5GammaRed(0),
nV5GammaGreen(0),
nV5GammaBlue(0),
nV5Intent(0),
nV5ProfileData(0),
nV5ProfileSize(0),
nV5Reserved(0)
{}
};
vcl::PixelFormat convertToBPP(sal_uInt16 nCount)
{
return (nCount <= 8) ? vcl::PixelFormat::N8_BPP :
vcl::PixelFormat::N24_BPP;
}
bool isBitfieldCompression( ScanlineFormat nScanlineFormat )
{
return ScanlineFormat::N32BitTcMask == nScanlineFormat;
}
bool ImplReadDIBInfoHeader(SvStream& rIStm, DIBV5Header& rHeader, bool& bTopDown, bool bMSOFormat)
{
if (rIStm.remainingSize() <= 4)
return false;
// BITMAPINFOHEADER or BITMAPCOREHEADER or BITMAPV5HEADER
sal_uInt64 const aStartPos(rIStm.Tell());
rIStm.ReadUInt32( rHeader.nSize );
// BITMAPCOREHEADER
if ( rHeader.nSize == DIBCOREHEADERSIZE )
{
sal_Int16 nTmp16;
rIStm.ReadInt16( nTmp16 ); rHeader.nWidth = nTmp16;
rIStm.ReadInt16( nTmp16 ); rHeader.nHeight = nTmp16;
rIStm.ReadUInt16( rHeader.nPlanes );
rIStm.ReadUInt16( rHeader.nBitCount );
}
else if ( bMSOFormat && rHeader.nSize == DIBINFOHEADERSIZE )
{
sal_Int16 nTmp16(0);
rIStm.ReadInt16(nTmp16);
rHeader.nWidth = nTmp16;
rIStm.ReadInt16(nTmp16);
rHeader.nHeight = nTmp16;
sal_uInt8 nTmp8(0);
rIStm.ReadUChar(nTmp8);
rHeader.nPlanes = nTmp8;
rIStm.ReadUChar(nTmp8);
rHeader.nBitCount = nTmp8;
rIStm.ReadInt16(nTmp16);
rHeader.nSizeImage = nTmp16;
rIStm.ReadInt16(nTmp16);
rHeader.nCompression = nTmp16;
if ( !rHeader.nSizeImage ) // uncompressed?
rHeader.nSizeImage = ((rHeader.nWidth * rHeader.nBitCount + 31) & ~31) / 8 * rHeader.nHeight;
rIStm.ReadInt32( rHeader.nXPelsPerMeter );
rIStm.ReadInt32( rHeader.nYPelsPerMeter );
rIStm.ReadUInt32( rHeader.nColsUsed );
rIStm.ReadUInt32( rHeader.nColsImportant );
}
else
{
// BITMAPCOREHEADER, BITMAPV5HEADER or unknown. Read as far as possible
std::size_t nUsed(sizeof(rHeader.nSize));
auto readUInt16 = [&nUsed, &rHeader, &rIStm](sal_uInt16 & v) {
if (nUsed < rHeader.nSize) {
rIStm.ReadUInt16(v);
nUsed += sizeof(v);
}
};
auto readInt32 = [&nUsed, &rHeader, &rIStm](sal_Int32 & v) {
if (nUsed < rHeader.nSize) {
rIStm.ReadInt32(v);
nUsed += sizeof(v);
}
};
auto readUInt32 = [&nUsed, &rHeader, &rIStm](sal_uInt32 & v) {
if (nUsed < rHeader.nSize) {
rIStm.ReadUInt32(v);
nUsed += sizeof(v);
}
};
// read DIBInfoHeader entries
readInt32( rHeader.nWidth );
readInt32( rHeader.nHeight );
readUInt16( rHeader.nPlanes );
readUInt16( rHeader.nBitCount );
readUInt32( rHeader.nCompression );
readUInt32( rHeader.nSizeImage );
readInt32( rHeader.nXPelsPerMeter );
readInt32( rHeader.nYPelsPerMeter );
readUInt32( rHeader.nColsUsed );
readUInt32( rHeader.nColsImportant );
// read DIBV5HEADER members
readUInt32( rHeader.nV5RedMask );
readUInt32( rHeader.nV5GreenMask );
readUInt32( rHeader.nV5BlueMask );
readUInt32( rHeader.nV5AlphaMask );
readUInt32( rHeader.nV5CSType );
// read contained CIEXYZTriple's
readInt32( rHeader.aV5Endpoints.aXyzRed.aXyzX );
readInt32( rHeader.aV5Endpoints.aXyzRed.aXyzY );
readInt32( rHeader.aV5Endpoints.aXyzRed.aXyzZ );
readInt32( rHeader.aV5Endpoints.aXyzGreen.aXyzX );
readInt32( rHeader.aV5Endpoints.aXyzGreen.aXyzY );
readInt32( rHeader.aV5Endpoints.aXyzGreen.aXyzZ );
readInt32( rHeader.aV5Endpoints.aXyzBlue.aXyzX );
readInt32( rHeader.aV5Endpoints.aXyzBlue.aXyzY );
readInt32( rHeader.aV5Endpoints.aXyzBlue.aXyzZ );
readUInt32( rHeader.nV5GammaRed );
readUInt32( rHeader.nV5GammaGreen );
readUInt32( rHeader.nV5GammaBlue );
readUInt32( rHeader.nV5Intent );
readUInt32( rHeader.nV5ProfileData );
readUInt32( rHeader.nV5ProfileSize );
readUInt32( rHeader.nV5Reserved );
// Read color mask. An additional 12 bytes of color bitfields follow the info header (WinBMPv3-NT)
sal_uInt32 nColorMask = 0;
if (BITFIELDS == rHeader.nCompression && DIBINFOHEADERSIZE == rHeader.nSize)
{
rIStm.ReadUInt32( rHeader.nV5RedMask );
rIStm.ReadUInt32( rHeader.nV5GreenMask );
rIStm.ReadUInt32( rHeader.nV5BlueMask );
nColorMask = 12;
}
// seek to EndPos
if (!checkSeek(rIStm, aStartPos + rHeader.nSize + nColorMask))
return false;
}
if (!rIStm.good() || rHeader.nHeight == SAL_MIN_INT32)
return false;
if ( rHeader.nHeight < 0 )
{
bTopDown = true;
rHeader.nHeight *= -1;
}
else
{
bTopDown = false;
}
if ( rHeader.nWidth < 0 || rHeader.nXPelsPerMeter < 0 || rHeader.nYPelsPerMeter < 0 )
{
rIStm.SetError( SVSTREAM_FILEFORMAT_ERROR );
}
// #144105# protect a little against damaged files
assert(rHeader.nHeight >= 0);
if (rHeader.nHeight != 0 && rHeader.nWidth >= 0
&& (rHeader.nSizeImage / 16 / static_cast<sal_uInt32>(rHeader.nHeight)
> o3tl::make_unsigned(rHeader.nWidth)))
{
rHeader.nSizeImage = 0;
}
if (rHeader.nPlanes != 1)
return false;
if (rHeader.nBitCount != 0 && rHeader.nBitCount != 1 &&
rHeader.nBitCount != 4 && rHeader.nBitCount != 8 &&
rHeader.nBitCount != 16 && rHeader.nBitCount != 24 &&
rHeader.nBitCount != 32)
{
return false;
}
return rIStm.good();
}
bool ImplReadDIBPalette(SvStream& rIStm, BitmapPalette& rPal, bool bQuad)
{
const sal_uInt16 nColors = rPal.GetEntryCount();
const sal_uLong nPalSize = nColors * ( bQuad ? 4UL : 3UL );
BitmapColor aPalColor;
std::unique_ptr<sal_uInt8[]> pEntries(new sal_uInt8[ nPalSize ]);
if (rIStm.ReadBytes(pEntries.get(), nPalSize) != nPalSize)
{
return false;
}
sal_uInt8* pTmpEntry = pEntries.get();
for( sal_uInt16 i = 0; i < nColors; i++ )
{
aPalColor.SetBlue( *pTmpEntry++ );
aPalColor.SetGreen( *pTmpEntry++ );
aPalColor.SetRed( *pTmpEntry++ );
if( bQuad )
pTmpEntry++;
rPal[i] = aPalColor;
}
return rIStm.GetError() == ERRCODE_NONE;
}
BitmapColor SanitizePaletteIndex(sal_uInt8 nIndex, BitmapPalette& rPalette)
{
const sal_uInt16 nPaletteEntryCount = rPalette.GetEntryCount();
if (nPaletteEntryCount && nIndex >= nPaletteEntryCount)
{
auto nSanitizedIndex = nIndex % nPaletteEntryCount;
SAL_WARN_IF(nIndex != nSanitizedIndex, "vcl", "invalid colormap index: "
<< static_cast<unsigned int>(nIndex) << ", colormap len is: "
<< nPaletteEntryCount);
nIndex = nSanitizedIndex;
}
return BitmapColor(nIndex);
}
bool ImplDecodeRLE(sal_uInt8* pBuffer, DIBV5Header const & rHeader, BitmapWriteAccess& rAcc, BitmapPalette& rPalette, bool bRLE4)
{
Scanline pRLE = pBuffer;
Scanline pEndRLE = pBuffer + rHeader.nSizeImage;
tools::Long nY = rHeader.nHeight - 1;
const sal_uLong nWidth = rAcc.Width();
sal_uLong nCountByte;
sal_uLong nRunByte;
sal_uLong nX = 0;
sal_uInt8 cTmp;
bool bEndDecoding = false;
do
{
if (pRLE == pEndRLE)
return false;
if( ( nCountByte = *pRLE++ ) == 0 )
{
if (pRLE == pEndRLE)
return false;
nRunByte = *pRLE++;
if( nRunByte > 2 )
{
Scanline pScanline = rAcc.GetScanline(nY);
if( bRLE4 )
{
nCountByte = nRunByte >> 1;
for( sal_uLong i = 0; i < nCountByte; i++ )
{
if (pRLE == pEndRLE)
return false;
cTmp = *pRLE++;
if( nX < nWidth )
rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(cTmp >> 4, rPalette));
if( nX < nWidth )
rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(cTmp & 0x0f, rPalette));
}
if( nRunByte & 1 )
{
if (pRLE == pEndRLE)
return false;
if( nX < nWidth )
rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(*pRLE >> 4, rPalette));
pRLE++;
}
if( ( ( nRunByte + 1 ) >> 1 ) & 1 )
{
if (pRLE == pEndRLE)
return false;
pRLE++;
}
}
else
{
for( sal_uLong i = 0; i < nRunByte; i++ )
{
if (pRLE == pEndRLE)
return false;
if( nX < nWidth )
rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(*pRLE, rPalette));
pRLE++;
}
if( nRunByte & 1 )
{
if (pRLE == pEndRLE)
return false;
pRLE++;
}
}
}
else if( !nRunByte )
{
nY--;
nX = 0;
}
else if( nRunByte == 1 )
bEndDecoding = true;
else
{
if (pRLE == pEndRLE)
return false;
nX += *pRLE++;
if (pRLE == pEndRLE)
return false;
nY -= *pRLE++;
}
}
else
{
if (pRLE == pEndRLE)
return false;
cTmp = *pRLE++;
Scanline pScanline = rAcc.GetScanline(nY);
if( bRLE4 )
{
nRunByte = nCountByte >> 1;
for (sal_uLong i = 0; i < nRunByte && nX < nWidth; ++i)
{
rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(cTmp >> 4, rPalette));
if( nX < nWidth )
rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(cTmp & 0x0f, rPalette));
}
if( ( nCountByte & 1 ) && ( nX < nWidth ) )
rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(cTmp >> 4, rPalette));
}
else
{
for (sal_uLong i = 0; i < nCountByte && nX < nWidth; ++i)
rAcc.SetPixelOnData(pScanline, nX++, SanitizePaletteIndex(cTmp, rPalette));
}
}
}
while (!bEndDecoding && (nY >= 0));
return true;
}
bool ImplReadDIBBits(SvStream& rIStm, DIBV5Header& rHeader, BitmapWriteAccess& rAcc, BitmapPalette& rPalette, BitmapWriteAccess* pAccAlpha,
bool bTopDown, bool& rAlphaUsed, const sal_uInt64 nAlignedWidth)
{
sal_uInt32 nRMask(( rHeader.nBitCount == 16 ) ? 0x00007c00UL : 0x00ff0000UL);
sal_uInt32 nGMask(( rHeader.nBitCount == 16 ) ? 0x000003e0UL : 0x0000ff00UL);
sal_uInt32 nBMask(( rHeader.nBitCount == 16 ) ? 0x0000001fUL : 0x000000ffUL);
bool bNative(false);
bool bTCMask(!pAccAlpha && ((16 == rHeader.nBitCount) || (32 == rHeader.nBitCount)));
bool bRLE((RLE_8 == rHeader.nCompression && 8 == rHeader.nBitCount) || (RLE_4 == rHeader.nCompression && 4 == rHeader.nBitCount));
// Is native format?
switch(rAcc.GetScanlineFormat())
{
case ScanlineFormat::N1BitMsbPal:
case ScanlineFormat::N24BitTcBgr:
{
// we can't trust arbitrary-sourced index based formats to have correct indexes, so we exclude the pal formats
// from raw read and force checking their colormap indexes
bNative = ( ( rAcc.IsBottomUp() != bTopDown ) && !bRLE && !bTCMask && ( rAcc.GetScanlineSize() == nAlignedWidth ) );
break;
}
default:
{
break;
}
}
// Read data
if (bNative)
{
if (nAlignedWidth
> std::numeric_limits<std::size_t>::max() / rHeader.nHeight)
{
return false;
}
std::size_t n = nAlignedWidth * rHeader.nHeight;
if (rIStm.ReadBytes(rAcc.GetBuffer(), n) != n)
{
return false;
}
}
else
{
if (rHeader.nV5RedMask > 0)
nRMask = rHeader.nV5RedMask;
if (rHeader.nV5GreenMask > 0)
nGMask = rHeader.nV5GreenMask;
if (rHeader.nV5BlueMask > 0)
nBMask = rHeader.nV5BlueMask;
const tools::Long nWidth(rHeader.nWidth);
const tools::Long nHeight(rHeader.nHeight);
tools::Long nResult = 0;
if (comphelper::IsFuzzing() && (o3tl::checked_multiply(nWidth, nHeight, nResult) || nResult > 4000000))
return false;
if (bRLE)
{
if(!rHeader.nSizeImage)
{
rHeader.nSizeImage = rIStm.remainingSize();
}
if (rHeader.nSizeImage > rIStm.remainingSize())
return false;
std::vector<sal_uInt8> aBuffer(rHeader.nSizeImage);
if (rIStm.ReadBytes(aBuffer.data(), rHeader.nSizeImage) != rHeader.nSizeImage)
return false;
if (!ImplDecodeRLE(aBuffer.data(), rHeader, rAcc, rPalette, RLE_4 == rHeader.nCompression))
return false;
}
else
{
if (nAlignedWidth > rIStm.remainingSize())
{
// ofz#11188 avoid timeout
// all following paths will enter a case statement, and nCount
// is always at least 1, so we can check here before allocation
// if at least one row can be read
return false;
}
std::vector<sal_uInt8> aBuf(nAlignedWidth);
const tools::Long nI(bTopDown ? 1 : -1);
tools::Long nY(bTopDown ? 0 : nHeight - 1);
tools::Long nCount(nHeight);
switch(rHeader.nBitCount)
{
case 1:
{
for( ; nCount--; nY += nI )
{
sal_uInt8 * pTmp = aBuf.data();
if (rIStm.ReadBytes(pTmp, nAlignedWidth)
!= nAlignedWidth)
{
return false;
}
sal_uInt8 cTmp = *pTmp++;
Scanline pScanline = rAcc.GetScanline(nY);
for( tools::Long nX = 0, nShift = 8; nX < nWidth; nX++ )
{
if( !nShift )
{
nShift = 8;
cTmp = *pTmp++;
}
auto nIndex = (cTmp >> --nShift) & 1;
rAcc.SetPixelOnData(pScanline, nX, SanitizePaletteIndex(nIndex, rPalette));
}
}
}
break;
case 4:
{
for( ; nCount--; nY += nI )
{
sal_uInt8 * pTmp = aBuf.data();
if (rIStm.ReadBytes(pTmp, nAlignedWidth)
!= nAlignedWidth)
{
return false;
}
sal_uInt8 cTmp = *pTmp++;
Scanline pScanline = rAcc.GetScanline(nY);
for( tools::Long nX = 0, nShift = 2; nX < nWidth; nX++ )
{
if( !nShift )
{
nShift = 2;
cTmp = *pTmp++;
}
auto nIndex = (cTmp >> ( --nShift << 2 ) ) & 0x0f;
rAcc.SetPixelOnData(pScanline, nX, SanitizePaletteIndex(nIndex, rPalette));
}
}
}
break;
case 8:
{
for( ; nCount--; nY += nI )
{
sal_uInt8 * pTmp = aBuf.data();
if (rIStm.ReadBytes(pTmp, nAlignedWidth)
!= nAlignedWidth)
{
return false;
}
Scanline pScanline = rAcc.GetScanline(nY);
for( tools::Long nX = 0; nX < nWidth; nX++ )
{
auto nIndex = *pTmp++;
rAcc.SetPixelOnData(pScanline, nX, SanitizePaletteIndex(nIndex, rPalette));
}
}
}
break;
case 16:
{
ColorMaskElement aRedMask(nRMask);
if (!aRedMask.CalcMaskShift())
return false;
ColorMaskElement aGreenMask(nGMask);
if (!aGreenMask.CalcMaskShift())
return false;
ColorMaskElement aBlueMask(nBMask);
if (!aBlueMask.CalcMaskShift())
return false;
ColorMask aMask(aRedMask, aGreenMask, aBlueMask);
BitmapColor aColor;
for( ; nCount--; nY += nI )
{
sal_uInt16 * pTmp16 = reinterpret_cast<sal_uInt16*>(aBuf.data());
if (rIStm.ReadBytes(pTmp16, nAlignedWidth)
!= nAlignedWidth)
{
return false;
}
Scanline pScanline = rAcc.GetScanline(nY);
for( tools::Long nX = 0; nX < nWidth; nX++ )
{
aMask.GetColorFor16BitLSB( aColor, reinterpret_cast<sal_uInt8*>(pTmp16++) );
rAcc.SetPixelOnData(pScanline, nX, aColor);
}
}
}
break;
case 24:
{
BitmapColor aPixelColor;
for( ; nCount--; nY += nI )
{
sal_uInt8* pTmp = aBuf.data();
if (rIStm.ReadBytes(pTmp, nAlignedWidth)
!= nAlignedWidth)
{
return false;
}
Scanline pScanline = rAcc.GetScanline(nY);
for( tools::Long nX = 0; nX < nWidth; nX++ )
{
aPixelColor.SetBlue( *pTmp++ );
aPixelColor.SetGreen( *pTmp++ );
aPixelColor.SetRed( *pTmp++ );
rAcc.SetPixelOnData(pScanline, nX, aPixelColor);
}
}
}
break;
case 32:
{
ColorMaskElement aRedMask(nRMask);
if (!aRedMask.CalcMaskShift())
return false;
ColorMaskElement aGreenMask(nGMask);
if (!aGreenMask.CalcMaskShift())
return false;
ColorMaskElement aBlueMask(nBMask);
if (!aBlueMask.CalcMaskShift())
return false;
ColorMask aMask(aRedMask, aGreenMask, aBlueMask);
BitmapColor aColor;
sal_uInt32* pTmp32;
if(pAccAlpha)
{
sal_uInt8 aAlpha;
for( ; nCount--; nY += nI )
{
pTmp32 = reinterpret_cast<sal_uInt32*>(aBuf.data());
if (rIStm.ReadBytes(pTmp32, nAlignedWidth)
!= nAlignedWidth)
{
return false;
}
Scanline pScanline = rAcc.GetScanline(nY);
Scanline pAlphaScanline = pAccAlpha->GetScanline(nY);
for( tools::Long nX = 0; nX < nWidth; nX++ )
{
aMask.GetColorAndAlphaFor32Bit( aColor, aAlpha, reinterpret_cast<sal_uInt8*>(pTmp32++) );
rAcc.SetPixelOnData(pScanline, nX, aColor);
pAccAlpha->SetPixelOnData(pAlphaScanline, nX, BitmapColor(sal_uInt8(0xff) - aAlpha));
rAlphaUsed |= 0xff != aAlpha;
}
}
}
else
{
for( ; nCount--; nY += nI )
{
pTmp32 = reinterpret_cast<sal_uInt32*>(aBuf.data());
if (rIStm.ReadBytes(pTmp32, nAlignedWidth)
!= nAlignedWidth)
{
return false;
}
Scanline pScanline = rAcc.GetScanline(nY);
for( tools::Long nX = 0; nX < nWidth; nX++ )
{
aMask.GetColorFor32Bit( aColor, reinterpret_cast<sal_uInt8*>(pTmp32++) );
rAcc.SetPixelOnData(pScanline, nX, aColor);
}
}
}
}
}
}
}
return rIStm.GetError() == ERRCODE_NONE;
}
bool ImplReadDIBBody(SvStream& rIStm, Bitmap& rBmp, AlphaMask* pBmpAlpha, sal_uInt64 nOffset, bool bMSOFormat)
{
DIBV5Header aHeader;
const sal_uInt64 nStmPos = rIStm.Tell();
bool bTopDown(false);
if (!ImplReadDIBInfoHeader(rIStm, aHeader, bTopDown, bMSOFormat))
return false;
//BI_BITCOUNT_0 jpeg/png is unsupported
if (aHeader.nBitCount == 0)
return false;
if (aHeader.nWidth <= 0 || aHeader.nHeight <= 0)
return false;
// In case ImplReadDIB() didn't call ImplReadDIBFileHeader() before
// this method, nOffset is 0, that's OK.
if (nOffset && aHeader.nSize > nOffset)
{
// Header size claims to extend into the image data.
// Looks like an error.
return false;
}
sal_uInt16 nColors(0);
SvStream* pIStm;
std::unique_ptr<SvMemoryStream> pMemStm;
std::vector<sal_uInt8> aData;
if (aHeader.nBitCount <= 8)
{
if(aHeader.nColsUsed)
{
nColors = static_cast<sal_uInt16>(aHeader.nColsUsed);
}
else
{
nColors = ( 1 << aHeader.nBitCount );
}
}
if (ZCOMPRESS == aHeader.nCompression)
{
sal_uInt32 nCodedSize(0);
sal_uInt32 nUncodedSize(0);
// read coding information
rIStm.ReadUInt32( nCodedSize ).ReadUInt32( nUncodedSize ).ReadUInt32( aHeader.nCompression );
if (nCodedSize > rIStm.remainingSize())
nCodedSize = sal_uInt32(rIStm.remainingSize());
pMemStm.reset(new SvMemoryStream);
// There may be bytes left over or the codec might read more than
// necessary. So to preserve the correctness of the source stream copy
// the encoded block
pMemStm->WriteStream(rIStm, nCodedSize);
pMemStm->Seek(0);
size_t nSizeInc(4 * pMemStm->remainingSize());
if (nUncodedSize < nSizeInc)
nSizeInc = nUncodedSize;
if (nSizeInc > 0)
{
// decode buffer
ZCodec aCodec;
aCodec.BeginCompression();
aData.resize(nSizeInc);
size_t nDataPos(0);
while (nUncodedSize > nDataPos)
{
assert(aData.size() > nDataPos);
const size_t nToRead(std::min<size_t>(nUncodedSize - nDataPos, aData.size() - nDataPos));
assert(nToRead > 0);
assert(!aData.empty());
const tools::Long nRead = aCodec.Read(*pMemStm, aData.data() + nDataPos, sal_uInt32(nToRead));
if (nRead > 0)
{
nDataPos += static_cast<tools::ULong>(nRead);
// we haven't read everything yet: resize buffer and continue
if (nDataPos < nUncodedSize)
aData.resize(aData.size() + nSizeInc);
}
else
{
break;
}
}
// truncate the data buffer to actually read size
aData.resize(nDataPos);
// set the real uncoded size
nUncodedSize = sal_uInt32(aData.size());
aCodec.EndCompression();
}
if (aData.empty())
{
// add something so we can take address of the first element
aData.resize(1);
nUncodedSize = 0;
}
// set decoded bytes to memory stream,
// from which we will read the bitmap data
pMemStm.reset(new SvMemoryStream);
pIStm = pMemStm.get();
assert(!aData.empty());
pMemStm->SetBuffer(aData.data(), nUncodedSize, nUncodedSize);
nOffset = 0;
}
else
{
pIStm = &rIStm;
}
// read palette
BitmapPalette aPalette;
if (nColors)
{
aPalette.SetEntryCount(nColors);
ImplReadDIBPalette(*pIStm, aPalette, aHeader.nSize != DIBCOREHEADERSIZE);
}
if (pIStm->GetError())
return false;
if (nOffset)
{
// It is problematic to seek backwards. We are at the
// end of BITMAPINFOHEADER or 12 bytes further in case
// of WinBMPv3-NT format. It is possible to seek forward
// though because a gap may be there.
sal_Int64 nSeekRel = nOffset - (pIStm->Tell() - nStmPos);
if (nSeekRel > 0)
pIStm->SeekRel(nSeekRel);
}
const sal_Int64 nBitsPerLine (static_cast<sal_Int64>(aHeader.nWidth) * static_cast<sal_Int64>(aHeader.nBitCount));
if (nBitsPerLine > SAL_MAX_UINT32)
return false;
const sal_uInt64 nAlignedWidth(AlignedWidth4Bytes(static_cast<sal_uLong>(nBitsPerLine)));
switch (aHeader.nCompression)
{
case RLE_8:
{
if (aHeader.nBitCount != 8)
return false;
// (partially) check the image dimensions to avoid potential large bitmap allocation if the input is damaged
sal_uInt64 nMaxWidth = pIStm->remainingSize();
nMaxWidth *= 256; //assume generous compression ratio
nMaxWidth /= aHeader.nHeight;
if (nMaxWidth < o3tl::make_unsigned(aHeader.nWidth))
return false;
break;
}
case RLE_4:
{
if (aHeader.nBitCount != 4)
return false;
sal_uInt64 nMaxWidth = pIStm->remainingSize();
nMaxWidth *= 512; //assume generous compression ratio
nMaxWidth /= aHeader.nHeight;
if (nMaxWidth < o3tl::make_unsigned(aHeader.nWidth))
return false;
break;
}
default:
// tdf#122958 invalid compression value used
if (aHeader.nCompression & 0x000F)
{
// let's assume that there was an error in the generating application
// and allow through as COMPRESS_NONE if the bottom byte is 0
SAL_WARN( "vcl", "bad bmp compression scheme: " << aHeader.nCompression << ", rejecting bmp");
return false;
}
else
SAL_WARN( "vcl", "bad bmp compression scheme: " << aHeader.nCompression << ", assuming meant to be COMPRESS_NONE");
[[fallthrough]];
case BITFIELDS:
case ZCOMPRESS:
case COMPRESS_NONE:
{
// (partially) check the image dimensions to avoid potential large bitmap allocation if the input is damaged
sal_uInt64 nMaxWidth = pIStm->remainingSize();
nMaxWidth /= aHeader.nHeight;
if (nMaxWidth < nAlignedWidth)
return false;
break;
}
}
const Size aSizePixel(aHeader.nWidth, aHeader.nHeight);
AlphaMask aNewBmpAlpha;
BitmapScopedWriteAccess pAccAlpha;
bool bAlphaPossible(pBmpAlpha && aHeader.nBitCount == 32);
if (bAlphaPossible)
{
const bool bRedSet(0 != aHeader.nV5RedMask);
const bool bGreenSet(0 != aHeader.nV5GreenMask);
const bool bBlueSet(0 != aHeader.nV5BlueMask);
// some clipboard entries have alpha mask on zero to say that there is
// no alpha; do only use this when the other masks are set. The MS docu
// says that masks are only to be set when bV5Compression is set to
// BI_BITFIELDS, but there seem to exist a wild variety of usages...
if((bRedSet || bGreenSet || bBlueSet) && (0 == aHeader.nV5AlphaMask))
{
bAlphaPossible = false;
}
}
if (bAlphaPossible)
{
aNewBmpAlpha = AlphaMask(aSizePixel);
pAccAlpha = aNewBmpAlpha;
}
vcl::PixelFormat ePixelFormat(convertToBPP(aHeader.nBitCount));
const BitmapPalette* pPal = &aPalette;
//ofz#948 match the surrounding logic of case TransparentType::Bitmap of
//ReadDIBBitmapEx but do it while reading for performance
Bitmap aNewBmp(aSizePixel, ePixelFormat, pPal);
BitmapScopedWriteAccess pAcc(aNewBmp);
if (!pAcc)
return false;
if (pAcc->Width() != aHeader.nWidth || pAcc->Height() != aHeader.nHeight)
{
return false;
}
// read bits
bool bAlphaUsed(false);
bool bRet = ImplReadDIBBits(*pIStm, aHeader, *pAcc, aPalette, pAccAlpha.get(), bTopDown, bAlphaUsed, nAlignedWidth);
if (bRet && aHeader.nXPelsPerMeter && aHeader.nYPelsPerMeter)
{
MapMode aMapMode(
MapUnit::MapMM,
Point(),
Fraction(1000, aHeader.nXPelsPerMeter),
Fraction(1000, aHeader.nYPelsPerMeter));
aNewBmp.SetPrefMapMode(aMapMode);
aNewBmp.SetPrefSize(Size(aHeader.nWidth, aHeader.nHeight));
}
pAcc.reset();
if (bAlphaPossible)
{
pAccAlpha.reset();
if(!bAlphaUsed)
{
bAlphaPossible = false;
}
}
if (bRet)
{
rBmp = std::move(aNewBmp);
if(bAlphaPossible)
{
*pBmpAlpha = std::move(aNewBmpAlpha);
}
}
return bRet;
}
bool ImplReadDIBFileHeader( SvStream& rIStm, sal_uLong& rOffset )
{
bool bRet = false;
const sal_uInt64 nStreamLength = rIStm.TellEnd();
sal_uInt16 nTmp16 = 0;
rIStm.ReadUInt16( nTmp16 );
if ( ( 0x4D42 == nTmp16 ) || ( 0x4142 == nTmp16 ) )
{
sal_uInt32 nTmp32(0);
if ( 0x4142 == nTmp16 )
{
rIStm.SeekRel( 12 );
rIStm.ReadUInt16( nTmp16 );
rIStm.SeekRel( 8 );
rIStm.ReadUInt32( nTmp32 );
rOffset = nTmp32 - 28;
bRet = ( 0x4D42 == nTmp16 );
}
else // 0x4D42 == nTmp16, 'MB' from BITMAPFILEHEADER
{
rIStm.SeekRel( 8 ); // we are on bfSize member of BITMAPFILEHEADER, forward to bfOffBits
rIStm.ReadUInt32( nTmp32 ); // read bfOffBits
rOffset = nTmp32 - 14; // adapt offset by sizeof(BITMAPFILEHEADER)
bRet = rIStm.GetError() == ERRCODE_NONE;
}
if ( rOffset >= nStreamLength )
{
// Offset claims that image starts past the end of the
// stream. Unlikely.
rIStm.SetError( SVSTREAM_FILEFORMAT_ERROR );
bRet = false;
}
}
else
rIStm.SetError( SVSTREAM_FILEFORMAT_ERROR );
return bRet;
}
bool ImplWriteDIBPalette( SvStream& rOStm, BitmapReadAccess const & rAcc )
{
const sal_uInt16 nColors = rAcc.GetPaletteEntryCount();
const sal_uLong nPalSize = nColors * 4UL;
std::unique_ptr<sal_uInt8[]> pEntries(new sal_uInt8[ nPalSize ]);
sal_uInt8* pTmpEntry = pEntries.get();
for( sal_uInt16 i = 0; i < nColors; i++ )
{
const BitmapColor& rPalColor = rAcc.GetPaletteColor( i );
*pTmpEntry++ = rPalColor.GetBlue();
*pTmpEntry++ = rPalColor.GetGreen();
*pTmpEntry++ = rPalColor.GetRed();
*pTmpEntry++ = 0;
}
rOStm.WriteBytes( pEntries.get(), nPalSize );
return rOStm.GetError() == ERRCODE_NONE;
}
bool ImplWriteRLE( SvStream& rOStm, BitmapReadAccess const & rAcc, bool bRLE4 )
{
const sal_uLong nWidth = rAcc.Width();
const sal_uLong nHeight = rAcc.Height();
sal_uLong nX;
sal_uLong nSaveIndex;
sal_uLong nCount;
sal_uLong nBufCount;
std::vector<sal_uInt8> aBuf(( nWidth << 1 ) + 2);
sal_uInt8 cPix;
sal_uInt8 cLast;
bool bFound;
for ( tools::Long nY = nHeight - 1; nY >= 0; nY-- )
{
sal_uInt8* pTmp = aBuf.data();
nX = nBufCount = 0;
Scanline pScanline = rAcc.GetScanline( nY );
while( nX < nWidth )
{
nCount = 1;
cPix = rAcc.GetIndexFromData( pScanline, nX++ );
while( ( nX < nWidth ) && ( nCount < 255 )
&& ( cPix == rAcc.GetIndexFromData( pScanline, nX ) ) )
{
nX++;
nCount++;
}
if ( nCount > 1 )
{
*pTmp++ = static_cast<sal_uInt8>(nCount);
*pTmp++ = ( bRLE4 ? ( ( cPix << 4 ) | cPix ) : cPix );
nBufCount += 2;
}
else
{
cLast = cPix;
nSaveIndex = nX - 1;
bFound = false;
while( ( nX < nWidth ) && ( nCount < 256 ) )
{
cPix = rAcc.GetIndexFromData( pScanline, nX );
if (cPix == cLast)
break;
nX++; nCount++;
cLast = cPix;
bFound = true;
}
if ( bFound )
nX--;
if ( nCount > 3 )
{
*pTmp++ = 0;
*pTmp++ = static_cast<sal_uInt8>(--nCount);
if( bRLE4 )
{
for ( sal_uLong i = 0; i < nCount; i++, pTmp++ )
{
*pTmp = rAcc.GetIndexFromData( pScanline, nSaveIndex++ ) << 4;
if ( ++i < nCount )
*pTmp |= rAcc.GetIndexFromData( pScanline, nSaveIndex++ );
}
nCount = ( nCount + 1 ) >> 1;
}
else
{
for( sal_uLong i = 0; i < nCount; i++ )
*pTmp++ = rAcc.GetIndexFromData( pScanline, nSaveIndex++ );
}
if ( nCount & 1 )
{
*pTmp++ = 0;
nBufCount += ( nCount + 3 );
}
else
nBufCount += ( nCount + 2 );
}
else
{
*pTmp++ = 1;
*pTmp++ = rAcc.GetIndexFromData( pScanline, nSaveIndex ) << (bRLE4 ? 4 : 0);
if ( nCount == 3 )
{
*pTmp++ = 1;
*pTmp++ = rAcc.GetIndexFromData( pScanline, ++nSaveIndex ) << ( bRLE4 ? 4 : 0 );
nBufCount += 4;
}
else
nBufCount += 2;
}
}
}
aBuf[ nBufCount++ ] = 0;
aBuf[ nBufCount++ ] = 0;
rOStm.WriteBytes(aBuf.data(), nBufCount);
}
rOStm.WriteUChar( 0 );
rOStm.WriteUChar( 1 );
return rOStm.GetError() == ERRCODE_NONE;
}
bool ImplWriteDIBBits(SvStream& rOStm, BitmapReadAccess const & rAcc, sal_uLong nCompression, sal_uInt32& rImageSize)
{
if(BITFIELDS == nCompression)
{
const ColorMask& rMask = rAcc.GetColorMask();
SVBT32 aVal32;
UInt32ToSVBT32( rMask.GetRedMask(), aVal32 );
rOStm.WriteBytes( aVal32, 4UL );
UInt32ToSVBT32( rMask.GetGreenMask(), aVal32 );
rOStm.WriteBytes( aVal32, 4UL );
UInt32ToSVBT32( rMask.GetBlueMask(), aVal32 );
rOStm.WriteBytes( aVal32, 4UL );
rImageSize = rOStm.Tell();
if( rAcc.IsBottomUp() )
rOStm.WriteBytes(rAcc.GetBuffer(), rAcc.Height() * rAcc.GetScanlineSize());
else
{
for( tools::Long nY = rAcc.Height() - 1, nScanlineSize = rAcc.GetScanlineSize(); nY >= 0; nY-- )
rOStm.WriteBytes( rAcc.GetScanline(nY), nScanlineSize );
}
}
else if((RLE_4 == nCompression) || (RLE_8 == nCompression))
{
rImageSize = rOStm.Tell();
ImplWriteRLE( rOStm, rAcc, RLE_4 == nCompression );
}
else if(!nCompression)
{
// #i5xxx# Limit bitcount to 24bit, the 32 bit cases are not
// handled properly below (would have to set color masks, and
// nCompression=BITFIELDS - but color mask is not set for
// formats != *_TC_*). Note that this very problem might cause
// trouble at other places - the introduction of 32 bit RGBA
// bitmaps is relatively recent.
// #i59239# discretize bitcount for aligned width to 1,8,24
// (other cases are not written below)
const auto ePixelFormat(convertToBPP(rAcc.GetBitCount()));
const sal_uLong nAlignedWidth(AlignedWidth4Bytes(rAcc.Width() * sal_Int32(ePixelFormat)));
bool bNative(false);
switch(rAcc.GetScanlineFormat())
{
case ScanlineFormat::N1BitMsbPal:
case ScanlineFormat::N8BitPal:
case ScanlineFormat::N24BitTcBgr:
{
if(rAcc.IsBottomUp() && (rAcc.GetScanlineSize() == nAlignedWidth))
{
bNative = true;
}
break;
}
default:
{
break;
}
}
rImageSize = rOStm.Tell();
if(bNative)
{
rOStm.WriteBytes(rAcc.GetBuffer(), nAlignedWidth * rAcc.Height());
}
else
{
const tools::Long nWidth(rAcc.Width());
const tools::Long nHeight(rAcc.Height());
std::vector<sal_uInt8> aBuf(nAlignedWidth);
switch(ePixelFormat)
{
case vcl::PixelFormat::N8_BPP:
{
for( tools::Long nY = nHeight - 1; nY >= 0; nY-- )
{
sal_uInt8* pTmp = aBuf.data();
Scanline pScanline = rAcc.GetScanline( nY );
for( tools::Long nX = 0; nX < nWidth; nX++ )
*pTmp++ = rAcc.GetIndexFromData( pScanline, nX );
rOStm.WriteBytes(aBuf.data(), nAlignedWidth);
}
}
break;
case vcl::PixelFormat::N24_BPP:
{
//valgrind, zero out the trailing unused alignment bytes
size_t nUnusedBytes = nAlignedWidth - nWidth * 3;
memset(aBuf.data() + nAlignedWidth - nUnusedBytes, 0, nUnusedBytes);
}
[[fallthrough]];
// #i59239# fallback to 24 bit format, if bitcount is non-default
default:
{
BitmapColor aPixelColor;
for( tools::Long nY = nHeight - 1; nY >= 0; nY-- )
{
sal_uInt8* pTmp = aBuf.data();
for( tools::Long nX = 0; nX < nWidth; nX++ )
{
// when alpha is used, this may be non-24bit main bitmap, so use GetColor
// instead of GetPixel to ensure RGB value
aPixelColor = rAcc.GetColor( nY, nX );
*pTmp++ = aPixelColor.GetBlue();
*pTmp++ = aPixelColor.GetGreen();
*pTmp++ = aPixelColor.GetRed();
}
rOStm.WriteBytes(aBuf.data(), nAlignedWidth);
}
}
break;
}
}
}
rImageSize = rOStm.Tell() - rImageSize;
return (!rOStm.GetError());
}
bool ImplWriteDIBBody(const Bitmap& rBitmap, SvStream& rOStm, BitmapReadAccess const & rAcc, bool bCompressed)
{
const MapMode aMapPixel(MapUnit::MapPixel);
DIBV5Header aHeader;
sal_uInt64 nImageSizePos(0);
sal_uInt64 nEndPos(0);
sal_uInt32 nCompression(COMPRESS_NONE);
bool bRet(false);
aHeader.nSize = DIBINFOHEADERSIZE; // size dependent on CF_DIB type to use
aHeader.nWidth = rAcc.Width();
aHeader.nHeight = rAcc.Height();
aHeader.nPlanes = 1;
if(isBitfieldCompression(rAcc.GetScanlineFormat()))
{
aHeader.nBitCount = 32;
aHeader.nSizeImage = rAcc.Height() * rAcc.GetScanlineSize();
nCompression = BITFIELDS;
}
else
{
// #i5xxx# Limit bitcount to 24bit, the 32 bit cases are
// not handled properly below (would have to set color
// masks, and nCompression=BITFIELDS - but color mask is
// not set for formats != *_TC_*). Note that this very
// problem might cause trouble at other places - the
// introduction of 32 bit RGBA bitmaps is relatively
// recent.
// #i59239# discretize bitcount to 1,8,24 (other cases
// are not written below)
const auto ePixelFormat(convertToBPP(rAcc.GetBitCount()));
aHeader.nBitCount = sal_uInt16(ePixelFormat);
aHeader.nSizeImage = rAcc.Height() * AlignedWidth4Bytes(rAcc.Width() * aHeader.nBitCount);
if (bCompressed)
{
if (ePixelFormat == vcl::PixelFormat::N8_BPP)
nCompression = RLE_8;
}
}
if((rOStm.GetCompressMode() & SvStreamCompressFlags::ZBITMAP) && (rOStm.GetVersion() >= SOFFICE_FILEFORMAT_40))
{
aHeader.nCompression = ZCOMPRESS;
}
else
{
aHeader.nCompression = nCompression;
}
if(rBitmap.GetPrefSize().Width() && rBitmap.GetPrefSize().Height() && (rBitmap.GetPrefMapMode() != aMapPixel))
{
// #i48108# Try to recover xpels/ypels as previously stored on
// disk. The problem with just converting maPrefSize to 100th
// mm and then relating that to the bitmap pixel size is that
// MapMode is integer-based, and suffers from roundoffs,
// especially if maPrefSize is small. Trying to circumvent
// that by performing part of the math in floating point.
const Size aScale100000(OutputDevice::LogicToLogic(Size(100000, 100000), MapMode(MapUnit::Map100thMM), rBitmap.GetPrefMapMode()));
const double fBmpWidthM(static_cast<double>(rBitmap.GetPrefSize().Width()) / aScale100000.Width());
const double fBmpHeightM(static_cast<double>(rBitmap.GetPrefSize().Height()) / aScale100000.Height());
if(!basegfx::fTools::equalZero(fBmpWidthM) && !basegfx::fTools::equalZero(fBmpHeightM))
{
aHeader.nXPelsPerMeter = basegfx::fround(rAcc.Width() / fabs(fBmpWidthM));
aHeader.nYPelsPerMeter = basegfx::fround(rAcc.Height() / fabs(fBmpHeightM));
}
}
aHeader.nColsUsed = ((aHeader.nBitCount <= 8) ? rAcc.GetPaletteEntryCount() : 0);
aHeader.nColsImportant = 0;
rOStm.WriteUInt32( aHeader.nSize );
rOStm.WriteInt32( aHeader.nWidth );
rOStm.WriteInt32( aHeader.nHeight );
rOStm.WriteUInt16( aHeader.nPlanes );
rOStm.WriteUInt16( aHeader.nBitCount );
rOStm.WriteUInt32( aHeader.nCompression );
nImageSizePos = rOStm.Tell();
rOStm.SeekRel( sizeof( aHeader.nSizeImage ) );
rOStm.WriteInt32( aHeader.nXPelsPerMeter );
rOStm.WriteInt32( aHeader.nYPelsPerMeter );
rOStm.WriteUInt32( aHeader.nColsUsed );
rOStm.WriteUInt32( aHeader.nColsImportant );
if(ZCOMPRESS == aHeader.nCompression)
{
ZCodec aCodec;
SvMemoryStream aMemStm(aHeader.nSizeImage + 4096, 65535);
sal_uInt64 nCodedPos(rOStm.Tell());
sal_uInt64 nLastPos(0);
sal_uInt32 nCodedSize(0);
sal_uInt32 nUncodedSize(0);
// write uncoded data palette
if(aHeader.nColsUsed)
{
ImplWriteDIBPalette(aMemStm, rAcc);
}
// write uncoded bits
bRet = ImplWriteDIBBits(aMemStm, rAcc, nCompression, aHeader.nSizeImage);
// get uncoded size
nUncodedSize = aMemStm.Tell();
// seek over compress info
rOStm.SeekRel(12);
// write compressed data
aCodec.BeginCompression(3);
aCodec.Write(rOStm, static_cast<sal_uInt8 const *>(aMemStm.GetData()), nUncodedSize);
aCodec.EndCompression();
// update compress info ( coded size, uncoded size, uncoded compression )
nLastPos = rOStm.Tell();
nCodedSize = nLastPos - nCodedPos - 12;
rOStm.Seek(nCodedPos);
rOStm.WriteUInt32( nCodedSize ).WriteUInt32( nUncodedSize ).WriteUInt32( nCompression );
rOStm.Seek(nLastPos);
if(bRet)
{
bRet = (ERRCODE_NONE == rOStm.GetError());
}
}
else
{
if(aHeader.nColsUsed)
{
ImplWriteDIBPalette(rOStm, rAcc);
}
bRet = ImplWriteDIBBits(rOStm, rAcc, aHeader.nCompression, aHeader.nSizeImage);
}
nEndPos = rOStm.Tell();
rOStm.Seek(nImageSizePos);
rOStm.WriteUInt32( aHeader.nSizeImage );
rOStm.Seek(nEndPos);
return bRet;
}
bool ImplWriteDIBFileHeader(SvStream& rOStm, BitmapReadAccess const & rAcc)
{
const sal_uInt32 nPalCount((rAcc.HasPalette() ? rAcc.GetPaletteEntryCount() : isBitfieldCompression(rAcc.GetScanlineFormat()) ? 3UL : 0UL));
const sal_uInt32 nOffset(14 + DIBINFOHEADERSIZE + nPalCount * 4UL);
rOStm.WriteUInt16( 0x4D42 ); // 'MB' from BITMAPFILEHEADER
rOStm.WriteUInt32( nOffset + (rAcc.Height() * rAcc.GetScanlineSize()) );
rOStm.WriteUInt16( 0 );
rOStm.WriteUInt16( 0 );
rOStm.WriteUInt32( nOffset );
return rOStm.GetError() == ERRCODE_NONE;
}
bool ImplReadDIB(
Bitmap& rTarget,
AlphaMask* pTargetAlpha,
SvStream& rIStm,
bool bFileHeader,
bool bMSOFormat=false)
{
const SvStreamEndian nOldFormat(rIStm.GetEndian());
const auto nOldPos(rIStm.Tell());
sal_uLong nOffset(0);
bool bRet(false);
rIStm.SetEndian(SvStreamEndian::LITTLE);
if(bFileHeader)
{
if(ImplReadDIBFileHeader(rIStm, nOffset))
{
bRet = ImplReadDIBBody(rIStm, rTarget, nOffset >= DIBV5HEADERSIZE ? pTargetAlpha : nullptr, nOffset, bMSOFormat);
}
}
else
{
bRet = ImplReadDIBBody(rIStm, rTarget, nullptr, nOffset, bMSOFormat);
}
if(!bRet)
{
if(!rIStm.GetError()) // Set error and stop processing whole stream due to security reason
{
rIStm.SetError(SVSTREAM_GENERALERROR);
}
rIStm.Seek(nOldPos);
}
rIStm.SetEndian(nOldFormat);
return bRet;
}
bool ImplWriteDIB(
const Bitmap& rSource,
SvStream& rOStm,
bool bCompressed,
bool bFileHeader)
{
const Size aSizePix(rSource.GetSizePixel());
bool bRet(false);
if(!aSizePix.Width() || !aSizePix.Height())
return false;
BitmapScopedReadAccess pAcc(rSource);
const SvStreamEndian nOldFormat(rOStm.GetEndian());
const sal_uInt64 nOldPos(rOStm.Tell());
rOStm.SetEndian(SvStreamEndian::LITTLE);
if (pAcc)
{
if(bFileHeader)
{
if(ImplWriteDIBFileHeader(rOStm, *pAcc))
{
bRet = ImplWriteDIBBody(rSource, rOStm, *pAcc, bCompressed);
}
}
else
{
bRet = ImplWriteDIBBody(rSource, rOStm, *pAcc, bCompressed);
}
pAcc.reset();
}
if(!bRet)
{
rOStm.SetError(SVSTREAM_GENERALERROR);
rOStm.Seek(nOldPos);
}
rOStm.SetEndian(nOldFormat);
return bRet;
}
} // unnamed namespace
bool ReadDIB(
Bitmap& rTarget,
SvStream& rIStm,
bool bFileHeader,
bool bMSOFormat)
{
return ImplReadDIB(rTarget, nullptr, rIStm, bFileHeader, bMSOFormat);
}
bool ReadDIBBitmapEx(
BitmapEx& rTarget,
SvStream& rIStm,
bool bFileHeader,
bool bMSOFormat)
{
Bitmap aBmp;
bool bRetval(ImplReadDIB(aBmp, nullptr, rIStm, bFileHeader, bMSOFormat) && !rIStm.GetError());
if(bRetval)
{
// base bitmap was read, set as return value and try to read alpha extra-data
const sal_uInt64 nStmPos(rIStm.Tell());
sal_uInt32 nMagic1(0);
sal_uInt32 nMagic2(0);
rTarget = BitmapEx(aBmp);
if (rIStm.remainingSize() >= 4)
rIStm.ReadUInt32( nMagic1 ).ReadUInt32( nMagic2 );
bRetval = (0x25091962 == nMagic1) && (0xACB20201 == nMagic2) && !rIStm.GetError();
if(bRetval)
{
sal_uInt8 tmp = 0;
rIStm.ReadUChar( tmp );
bRetval = !rIStm.GetError();
if(bRetval)
{
switch (tmp)
{
case 2: // TransparentType::Bitmap
{
Bitmap aMask;
bRetval = ImplReadDIB(aMask, nullptr, rIStm, true);
if(bRetval && !aMask.IsEmpty())
rTarget = BitmapEx(aBmp, aMask);
break;
}
case 1: // backwards compat for old option TransparentType::Color
{
Color aTransparentColor;
tools::GenericTypeSerializer aSerializer(rIStm);
aSerializer.readColor(aTransparentColor);
bRetval = rIStm.good();
if(bRetval)
{
rTarget = BitmapEx(aBmp, aTransparentColor);
}
break;
}
default: break;
}
}
}
if(!bRetval)
{
// alpha extra data could not be read; reset, but use base bitmap as result
rIStm.ResetError();
rIStm.Seek(nStmPos);
bRetval = true;
}
}
return bRetval;
}
bool ReadDIBV5(
Bitmap& rTarget,
AlphaMask& rTargetAlpha,
SvStream& rIStm)
{
bool rv = ImplReadDIB(rTarget, &rTargetAlpha, rIStm, true);
// convert transparency->alpha
if (rv)
rTargetAlpha.Invert();
return rv;
}
bool ReadRawDIB(
BitmapEx& rTarget,
const unsigned char* pBuf,
const ScanlineFormat nFormat,
const int nHeight,
const int nStride)
{
BitmapScopedWriteAccess pWriteAccess(rTarget.maBitmap);
for (int nRow = 0; nRow < nHeight; ++nRow)
{
pWriteAccess->CopyScanline(nRow, pBuf + (nStride * nRow), nFormat, nStride);
}
return true;
}
bool WriteDIB(
const Bitmap& rSource,
SvStream& rOStm,
bool bCompressed,
bool bFileHeader)
{
return ImplWriteDIB(rSource, rOStm, bCompressed, bFileHeader);
}
bool WriteDIB(
const BitmapEx& rSource,
SvStream& rOStm,
bool bCompressed)
{
return ImplWriteDIB(rSource.GetBitmap(), rOStm, bCompressed, /*bFileHeader*/true);
}
bool WriteDIBBitmapEx(
const BitmapEx& rSource,
SvStream& rOStm)
{
if(ImplWriteDIB(rSource.GetBitmap(), rOStm, true, true))
{
rOStm.WriteUInt32( 0x25091962 );
rOStm.WriteUInt32( 0xACB20201 );
rOStm.WriteUChar( rSource.IsAlpha() ? 2 : 0 ); // Used to be TransparentType enum
if(rSource.IsAlpha())
{
// invert the alpha because the other routines actually want transparency
AlphaMask tmpAlpha = rSource.maAlphaMask;
tmpAlpha.Invert();
return ImplWriteDIB(tmpAlpha.GetBitmap(), rOStm, true, true);
}
}
return false;
}
sal_uInt32 getDIBV5HeaderSize()
{
return DIBV5HEADERSIZE;
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */