1
0
Fork 0
libreoffice/vcl/source/gdi/CommonSalLayout.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

1130 lines
43 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <sal/config.h>
#include <sal/log.hxx>
#include <comphelper/configuration.hxx>
#include <o3tl/temporary.hxx>
#include <vcl/unohelp.hxx>
#include <vcl/font/Feature.hxx>
#include <vcl/font/FeatureParser.hxx>
#include <vcl/svapp.hxx>
#include <ImplLayoutArgs.hxx>
#include <TextLayoutCache.hxx>
#include <font/FontSelectPattern.hxx>
#include <salgdi.hxx>
#include <sallayout.hxx>
#include <com/sun/star/i18n/CharacterIteratorMode.hpp>
#include <unicode/uchar.h>
#include <hb-ot.h>
#include <hb-graphite2.h>
#include <hb-icu.h>
#include <hb-aat.h>
#include <map>
#include <memory>
#include <set>
GenericSalLayout::GenericSalLayout(LogicalFontInstance &rFont)
: m_GlyphItems(rFont)
, mpVertGlyphs(nullptr)
, mbFuzzing(comphelper::IsFuzzing())
{
}
GenericSalLayout::~GenericSalLayout()
{
if (mpVertGlyphs)
hb_set_destroy(mpVertGlyphs);
}
void GenericSalLayout::ParseFeatures(std::u16string_view aName)
{
vcl::font::FeatureParser aParser(aName);
const OUString& sLanguage = aParser.getLanguage();
if (!sLanguage.isEmpty())
msLanguage = OUStringToOString(sLanguage, RTL_TEXTENCODING_ASCII_US);
for (auto const &rFeat : aParser.getFeatures())
{
hb_feature_t aFeature { rFeat.m_nTag, rFeat.m_nValue, rFeat.m_nStart, rFeat.m_nEnd };
maFeatures.push_back(aFeature);
}
}
namespace {
struct SubRun
{
int32_t mnMin;
int32_t mnEnd;
hb_script_t maScript;
hb_direction_t maDirection;
};
struct UnclusteredGlyphData
{
sal_Int32 m_nGlyphId;
bool m_bUsed = false;
explicit UnclusteredGlyphData(sal_Int32 nGlyphId)
: m_nGlyphId(nGlyphId)
{
}
};
// This is a helper class to enable correct styling and glyph placement when a grapheme cluster is
// split across multiple adjoining layouts.
//
// In order to justify text, we need glyphs grouped into grapheme clusters so diacritics will stay
// attached to characters under adjustment. However, in order to correctly position and style
// grapheme clusters that span multiple layouts, we need best-effort character-level position data.
//
// At time of writing, HarfBuzz cannot provide both types of information simultaneously. As a work-
// around, this helper class runs HarfBuzz a second time to get the missing information. Should a
// future version of HarfBuzz support this use case directly, this helper code should be deleted.
//
// See tdf#61444, tdf#71956, tdf#124116
class UnclusteredGlyphMapper
{
private:
hb_buffer_t* m_pHbBuffer = nullptr;
std::multimap<sal_Int32, UnclusteredGlyphData> m_aGlyphs;
bool m_bEnable = false;
public:
UnclusteredGlyphMapper(bool bEnable, int nGlyphCapacity)
: m_bEnable(bEnable)
{
if (!m_bEnable)
{
return;
}
m_pHbBuffer = hb_buffer_create();
hb_buffer_pre_allocate(m_pHbBuffer, nGlyphCapacity);
}
~UnclusteredGlyphMapper()
{
if (m_bEnable)
{
hb_buffer_destroy(m_pHbBuffer);
}
}
[[nodiscard]] sal_Int32 RemapGlyph(sal_Int32 nClusterId, sal_Int32 nGlyphId)
{
if (auto it = m_aGlyphs.lower_bound(nClusterId); it != m_aGlyphs.end())
{
for (; it != m_aGlyphs.end(); ++it)
{
if (it->second.m_nGlyphId == nGlyphId && !it->second.m_bUsed)
{
it->second.m_bUsed = true;
return it->first;
}
}
}
return nClusterId;
}
void Reset()
{
for (auto& rElement : m_aGlyphs)
{
rElement.second.m_bUsed = false;
}
}
void ShapeSubRun(const sal_Unicode* pStr, const int nLength, const SubRun& aSubRun,
hb_font_t* pHbFont, const std::vector<hb_feature_t>& maFeatures,
hb_language_t oHbLanguage)
{
if (!m_bEnable)
{
return;
}
m_aGlyphs.clear();
hb_buffer_clear_contents(m_pHbBuffer);
const int nMinRunPos = aSubRun.mnMin;
const int nEndRunPos = aSubRun.mnEnd;
const int nRunLen = nEndRunPos - nMinRunPos;
int nHbFlags = HB_BUFFER_FLAGS_DEFAULT;
nHbFlags |= HB_BUFFER_FLAG_PRODUCE_SAFE_TO_INSERT_TATWEEL;
if (nMinRunPos == 0)
{
nHbFlags |= HB_BUFFER_FLAG_BOT; /* Beginning-of-text */
}
if (nEndRunPos == nLength)
{
nHbFlags |= HB_BUFFER_FLAG_EOT; /* End-of-text */
}
hb_buffer_set_flags(m_pHbBuffer, static_cast<hb_buffer_flags_t>(nHbFlags));
hb_buffer_set_cluster_level(m_pHbBuffer, HB_BUFFER_CLUSTER_LEVEL_CHARACTERS);
hb_buffer_set_direction(m_pHbBuffer, aSubRun.maDirection);
hb_buffer_set_script(m_pHbBuffer, aSubRun.maScript);
hb_buffer_set_language(m_pHbBuffer, oHbLanguage);
hb_buffer_add_utf16(m_pHbBuffer, reinterpret_cast<uint16_t const*>(pStr), nLength,
nMinRunPos, nRunLen);
// The shapers that we want HarfBuzz to use, in the order of
// preference.
const char* const pHbShapers[] = { "graphite2", "ot", "fallback", nullptr };
bool ok
= hb_shape_full(pHbFont, m_pHbBuffer, maFeatures.data(), maFeatures.size(), pHbShapers);
assert(ok);
(void)ok;
int nRunGlyphCount = hb_buffer_get_length(m_pHbBuffer);
hb_glyph_info_t* pHbGlyphInfos = hb_buffer_get_glyph_infos(m_pHbBuffer, nullptr);
for (int i = 0; i < nRunGlyphCount; ++i)
{
int32_t nGlyphIndex = pHbGlyphInfos[i].codepoint;
int32_t nCharPos = pHbGlyphInfos[i].cluster;
m_aGlyphs.emplace(nCharPos, UnclusteredGlyphData{ nGlyphIndex });
}
}
};
}
namespace {
int32_t GetVerticalOrientation(sal_UCS4 cCh, const LanguageTag& rTag)
{
// Override orientation of fullwidth colon , semi-colon,
// and Bopomofo tonal marks.
if ((cCh == 0xff1a || cCh == 0xff1b
|| cCh == 0x2ca || cCh == 0x2cb || cCh == 0x2c7 || cCh == 0x2d9)
&& rTag.getLanguage() == "zh")
return U_VO_TRANSFORMED_UPRIGHT;
return u_getIntPropertyValue(cCh, UCHAR_VERTICAL_ORIENTATION);
}
} // namespace
SalLayoutGlyphs GenericSalLayout::GetGlyphs() const
{
SalLayoutGlyphs glyphs;
glyphs.AppendImpl(m_GlyphItems.clone());
return glyphs;
}
void GenericSalLayout::SetNeedFallback(vcl::text::ImplLayoutArgs& rArgs, sal_Int32 nCharPos,
sal_Int32 nCharEnd, bool bRightToLeft)
{
if (nCharPos < 0 || nCharPos == nCharEnd || mbFuzzing)
return;
if (!mxBreak.is())
mxBreak = vcl::unohelper::CreateBreakIterator();
const css::lang::Locale& rLocale(rArgs.maLanguageTag.getLocale());
//if position nCharPos is missing in the font, grab the entire grapheme and
//mark all glyphs as missing so the whole thing is rendered with the same
//font
sal_Int32 nDone;
int nGraphemeEndPos = mxBreak->nextCharacters(rArgs.mrStr, nCharEnd - 1, rLocale,
css::i18n::CharacterIteratorMode::SKIPCELL, 1, nDone);
// Safely advance nCharPos in case it is a non-BMP character.
rArgs.mrStr.iterateCodePoints(&nCharPos);
int nGraphemeStartPos =
mxBreak->previousCharacters(rArgs.mrStr, nCharPos, rLocale,
css::i18n::CharacterIteratorMode::SKIPCELL, 1, nDone);
// tdf#107612
// If the start of the fallback run is Mongolian character and the previous
// character is NNBSP, we want to include the NNBSP in the fallback since
// it has special uses in Mongolian and have to be in the same text run to
// work.
sal_Int32 nTempPos = nGraphemeStartPos;
if (nGraphemeStartPos > 0)
{
auto nCurrChar = rArgs.mrStr.iterateCodePoints(&nTempPos, 0);
auto nPrevChar = rArgs.mrStr.iterateCodePoints(&nTempPos, -1);
if (nPrevChar == 0x202F
&& u_getIntPropertyValue(nCurrChar, UCHAR_SCRIPT) == USCRIPT_MONGOLIAN)
nGraphemeStartPos = nTempPos;
}
//stay inside the Layout range (e.g. with tdf124116-1.odt)
nGraphemeStartPos = std::max(rArgs.mnMinCharPos, nGraphemeStartPos);
nGraphemeEndPos = std::min(rArgs.mnEndCharPos, nGraphemeEndPos);
rArgs.AddFallbackRun(nGraphemeStartPos, nGraphemeEndPos, bRightToLeft);
}
void GenericSalLayout::AdjustLayout(vcl::text::ImplLayoutArgs& rArgs)
{
SalLayout::AdjustLayout(rArgs);
if (!rArgs.mstJustification.empty())
{
ApplyJustificationData(rArgs.mstJustification);
}
else if (rArgs.mnLayoutWidth)
{
Justify(rArgs.mnLayoutWidth);
}
else if ((rArgs.mnFlags & SalLayoutFlags::KerningAsian)
&& !(rArgs.mnFlags & SalLayoutFlags::Vertical))
{
// apply asian kerning if the glyphs are not already formatted
ApplyAsianKerning(rArgs.mrStr);
}
}
void GenericSalLayout::DrawText(SalGraphics& rSalGraphics) const
{
//call platform dependent DrawText functions
rSalGraphics.DrawTextLayout( *this );
}
// Find if the nominal glyph of the character is an input to “vert” feature.
// We dont check for a specific script or language as it shouldnt matter
// here; if the glyph would be the result from applying “vert” for any
// script/language then we want to always treat it as upright glyph.
bool GenericSalLayout::HasVerticalAlternate(sal_UCS4 aChar, sal_UCS4 aVariationSelector)
{
sal_GlyphId nGlyphIndex = GetFont().GetGlyphIndex(aChar, aVariationSelector);
if (!nGlyphIndex)
return false;
if (!mpVertGlyphs)
{
hb_face_t* pHbFace = hb_font_get_face(GetFont().GetHbFont());
mpVertGlyphs = hb_set_create();
// Find all GSUB lookups for “vert” feature.
hb_set_t* pLookups = hb_set_create();
hb_tag_t const pFeatures[] = { HB_TAG('v','e','r','t'), HB_TAG_NONE };
hb_ot_layout_collect_lookups(pHbFace, HB_OT_TAG_GSUB, nullptr, nullptr, pFeatures, pLookups);
if (!hb_set_is_empty(pLookups))
{
// Find the input glyphs in each lookup (i.e. the glyphs that
// this lookup applies to).
hb_codepoint_t nIdx = HB_SET_VALUE_INVALID;
while (hb_set_next(pLookups, &nIdx))
{
hb_set_t* pGlyphs = hb_set_create();
hb_ot_layout_lookup_collect_glyphs(pHbFace, HB_OT_TAG_GSUB, nIdx,
nullptr, // glyphs before
pGlyphs, // glyphs input
nullptr, // glyphs after
nullptr); // glyphs out
hb_set_union(mpVertGlyphs, pGlyphs);
}
}
hb_set_destroy(pLookups);
}
return hb_set_has(mpVertGlyphs, nGlyphIndex) != 0;
}
bool GenericSalLayout::LayoutText(vcl::text::ImplLayoutArgs& rArgs, const SalLayoutGlyphsImpl* pGlyphs)
{
// No need to touch m_GlyphItems at all for an empty string.
if (rArgs.mnEndCharPos - rArgs.mnMinCharPos <= 0)
return true;
ImplLayoutRuns aFallbackRuns;
if (pGlyphs)
{
// Work with pre-computed glyph items.
m_GlyphItems = *pGlyphs;
for(const GlyphItem& item : m_GlyphItems)
if(!item.glyphId())
aFallbackRuns.AddPos(item.charPos(), item.IsRTLGlyph());
for (const auto& rRun : aFallbackRuns)
{
SetNeedFallback(rArgs, rRun.m_nMinRunPos, rRun.m_nEndRunPos, rRun.m_bRTL);
}
// Some flags are set as a side effect of text layout, restore them here.
rArgs.mnFlags |= pGlyphs->GetFlags();
return true;
}
hb_font_t *pHbFont = GetFont().GetHbFont();
bool isGraphite = GetFont().IsGraphiteFont();
// tdf#163215: Identify layouts that don't have strict kashida position validation.
m_bHasFontKashidaPositions = false;
if (!(rArgs.mnFlags & SalLayoutFlags::DisableKashidaValidation))
{
hb_face_t* pHbFace = hb_font_get_face(pHbFont);
m_bHasFontKashidaPositions = !hb_aat_layout_has_substitution(pHbFace);
}
int nGlyphCapacity = 2 * (rArgs.mnEndCharPos - rArgs.mnMinCharPos);
m_GlyphItems.reserve(nGlyphCapacity);
const int nLength = rArgs.mrStr.getLength();
const sal_Unicode *pStr = rArgs.mrStr.getStr();
std::shared_ptr<const vcl::text::TextLayoutCache> pNewScriptRun;
vcl::text::TextLayoutCache const* pTextLayout;
if (rArgs.m_pTextLayoutCache)
{
pTextLayout = rArgs.m_pTextLayoutCache; // use cache!
}
else
{
// tdf#92064, tdf#162663:
// Also use the global LRU cache for full string script runs.
// This obviates O(n^2) calls to vcl::ScriptRun::next() when laying out large paragraphs.
pNewScriptRun = vcl::text::TextLayoutCache::Create(rArgs.mrStr);
pTextLayout = pNewScriptRun.get();
}
// nBaseOffset is used to align vertical text to the center of rotated
// horizontal text. That is the offset from original baseline to
// the center of EM box. Maybe we can use OpenType base table to improve this
// in the future.
double nBaseOffset = 0;
if (rArgs.mnFlags & SalLayoutFlags::Vertical)
{
hb_font_extents_t extents;
if (hb_font_get_h_extents(pHbFont, &extents))
nBaseOffset = ( extents.ascender + extents.descender ) / 2.0;
}
UnclusteredGlyphMapper stClusterMapper{
bool{ rArgs.mnFlags & SalLayoutFlags::UnclusteredGlyphs }, nGlyphCapacity
};
hb_buffer_t* pHbBuffer = hb_buffer_create();
hb_buffer_pre_allocate(pHbBuffer, nGlyphCapacity);
const vcl::font::FontSelectPattern& rFontSelData = GetFont().GetFontSelectPattern();
if (rArgs.mnFlags & SalLayoutFlags::DisableKerning)
{
SAL_INFO("vcl.harfbuzz", "Disabling kerning for font: " << rFontSelData.maTargetName);
maFeatures.push_back({ HB_TAG('k','e','r','n'), 0, 0, static_cast<unsigned int>(-1) });
}
if (rArgs.mnFlags & SalLayoutFlags::DisableLigatures)
{
SAL_INFO("vcl.harfbuzz", "Disabling ligatures for font: " << rFontSelData.maTargetName);
// Both of these are optional ligatures, enabled by default but not for
// orthographically-required ligatures.
maFeatures.push_back({ HB_TAG('l','i','g','a'), 0, 0, static_cast<unsigned int>(-1) });
maFeatures.push_back({ HB_TAG('c','l','i','g'), 0, 0, static_cast<unsigned int>(-1) });
}
ParseFeatures(rFontSelData.maTargetName);
double nXScale = 0;
double nYScale = 0;
GetFont().GetScale(&nXScale, &nYScale);
double nCurrX = 0.0;
while (true)
{
int nBidiMinRunPos, nBidiEndRunPos;
bool bRightToLeft;
if (!rArgs.GetNextRun(&nBidiMinRunPos, &nBidiEndRunPos, &bRightToLeft))
break;
// Find script subruns.
std::vector<SubRun> aSubRuns;
int nCurrentPos = nBidiMinRunPos;
size_t k = 0;
for (; k < pTextLayout->runs.size(); ++k)
{
vcl::text::Run const& rRun(pTextLayout->runs[k]);
if (rRun.nStart <= nCurrentPos && nCurrentPos < rRun.nEnd)
{
break;
}
}
if (isGraphite)
{
hb_script_t aScript = hb_icu_script_to_script(pTextLayout->runs[k].nCode);
aSubRuns.push_back({ nBidiMinRunPos, nBidiEndRunPos, aScript, bRightToLeft ? HB_DIRECTION_RTL : HB_DIRECTION_LTR });
}
else
{
while (nCurrentPos < nBidiEndRunPos && k < pTextLayout->runs.size())
{
int32_t nMinRunPos = nCurrentPos;
int32_t nEndRunPos = std::min(pTextLayout->runs[k].nEnd, nBidiEndRunPos);
hb_direction_t aDirection = bRightToLeft ? HB_DIRECTION_RTL : HB_DIRECTION_LTR;
hb_script_t aScript = hb_icu_script_to_script(pTextLayout->runs[k].nCode);
// For vertical text, further divide the runs based on character
// orientation.
if (rArgs.mnFlags & SalLayoutFlags::Vertical)
{
sal_Int32 nIdx = nMinRunPos;
while (nIdx < nEndRunPos)
{
sal_Int32 nPrevIdx = nIdx;
sal_UCS4 aChar = rArgs.mrStr.iterateCodePoints(&nIdx);
int32_t aVo = GetVerticalOrientation(aChar, rArgs.maLanguageTag);
sal_UCS4 aVariationSelector = 0;
if (nIdx < nEndRunPos)
{
sal_Int32 nNextIdx = nIdx;
sal_UCS4 aNextChar = rArgs.mrStr.iterateCodePoints(&nNextIdx);
if (u_hasBinaryProperty(aNextChar, UCHAR_VARIATION_SELECTOR))
{
nIdx = nNextIdx;
aVariationSelector = aNextChar;
}
}
// Characters with U and Tu vertical orientation should
// be shaped in vertical direction. But characters
// with Tr should be shaped in vertical direction
// only if they have vertical alternates, otherwise
// they should be shaped in horizontal direction
// and then rotated.
// See http://unicode.org/reports/tr50/#vo
if (aVo == U_VO_UPRIGHT || aVo == U_VO_TRANSFORMED_UPRIGHT ||
(aVo == U_VO_TRANSFORMED_ROTATED &&
HasVerticalAlternate(aChar, aVariationSelector)))
{
aDirection = HB_DIRECTION_TTB;
}
else
{
aDirection = bRightToLeft ? HB_DIRECTION_RTL : HB_DIRECTION_LTR;
}
if (aSubRuns.empty() || aSubRuns.back().maDirection != aDirection || aSubRuns.back().maScript != aScript)
aSubRuns.push_back({ nPrevIdx, nIdx, aScript, aDirection });
else
aSubRuns.back().mnEnd = nIdx;
}
}
else
{
aSubRuns.push_back({ nMinRunPos, nEndRunPos, aScript, aDirection });
}
nCurrentPos = nEndRunPos;
++k;
}
}
// RTL subruns should be reversed to ensure that final glyph order is
// correct.
if (bRightToLeft)
std::reverse(aSubRuns.begin(), aSubRuns.end());
for (const auto& aSubRun : aSubRuns)
{
hb_buffer_clear_contents(pHbBuffer);
const int nMinRunPos = aSubRun.mnMin;
const int nEndRunPos = aSubRun.mnEnd;
const int nRunLen = nEndRunPos - nMinRunPos;
int nHbFlags = HB_BUFFER_FLAGS_DEFAULT;
// Produce HB_GLYPH_FLAG_SAFE_TO_INSERT_TATWEEL that we use below.
nHbFlags |= HB_BUFFER_FLAG_PRODUCE_SAFE_TO_INSERT_TATWEEL;
if (nMinRunPos == 0)
nHbFlags |= HB_BUFFER_FLAG_BOT; /* Beginning-of-text */
if (nEndRunPos == nLength)
nHbFlags |= HB_BUFFER_FLAG_EOT; /* End-of-text */
hb_buffer_set_direction(pHbBuffer, aSubRun.maDirection);
hb_buffer_set_script(pHbBuffer, aSubRun.maScript);
hb_language_t oHbLanguage = nullptr;
if (!msLanguage.isEmpty())
{
oHbLanguage = hb_language_from_string(msLanguage.getStr(), msLanguage.getLength());
}
else
{
OString sLanguage
= OUStringToOString(rArgs.maLanguageTag.getBcp47(), RTL_TEXTENCODING_ASCII_US);
oHbLanguage = hb_language_from_string(sLanguage.getStr(), sLanguage.getLength());
}
hb_buffer_set_language(pHbBuffer, oHbLanguage);
hb_buffer_set_flags(pHbBuffer, static_cast<hb_buffer_flags_t>(nHbFlags));
hb_buffer_add_utf16(
pHbBuffer, reinterpret_cast<uint16_t const *>(pStr), nLength,
nMinRunPos, nRunLen);
// The shapers that we want HarfBuzz to use, in the order of
// preference.
const char*const pHbShapers[] = { "graphite2", "ot", "fallback", nullptr };
bool ok = hb_shape_full(pHbFont, pHbBuffer, maFeatures.data(), maFeatures.size(), pHbShapers);
assert(ok);
(void) ok;
// Populate glyph cluster remapping data
stClusterMapper.ShapeSubRun(pStr, nLength, aSubRun, pHbFont, maFeatures, oHbLanguage);
int nRunGlyphCount = hb_buffer_get_length(pHbBuffer);
hb_glyph_info_t *pHbGlyphInfos = hb_buffer_get_glyph_infos(pHbBuffer, nullptr);
hb_glyph_position_t *pHbPositions = hb_buffer_get_glyph_positions(pHbBuffer, nullptr);
// tdf#164106: Grapheme clusters can be split across multiple layouts. To do this,
// the complete string is laid out, and only the necessary glyphs are extracted.
// These sub-layouts are positioned side-by-side to form the complete text.
// This approach is good enough for most diacritic cases, but it cannot handle cases
// where a glyph with an advance is reordered into a different sub-layout.
bool bStartClusterOutOfOrder = false;
bool bEndClusterOutOfOrder = false;
{
double nNormalAdvance = 0.0;
double nStartAdvance = 0.0;
double nEndAdvance = 0.0;
auto fnHandleGlyph = [&](int i)
{
int32_t nGlyphIndex = pHbGlyphInfos[i].codepoint;
int32_t nCluster = pHbGlyphInfos[i].cluster;
auto nOrigCharPos = stClusterMapper.RemapGlyph(nCluster, nGlyphIndex);
double nAdvance = 0.0;
if (aSubRun.maDirection == HB_DIRECTION_TTB)
{
nAdvance = -pHbPositions[i].y_advance;
}
else
{
nAdvance = pHbPositions[i].x_advance;
}
nNormalAdvance += nAdvance;
if (nOrigCharPos < rArgs.mnDrawMinCharPos)
{
nStartAdvance += nAdvance;
if (nStartAdvance != nNormalAdvance)
{
bStartClusterOutOfOrder = true;
}
}
if (nOrigCharPos < rArgs.mnDrawEndCharPos)
{
nEndAdvance += nAdvance;
if (nEndAdvance != nNormalAdvance)
{
bEndClusterOutOfOrder = true;
}
}
};
if (bRightToLeft)
{
for (int i = nRunGlyphCount - 1; i >= 0; --i)
{
fnHandleGlyph(i);
}
}
else
{
for (int i = 0; i < nRunGlyphCount; ++i)
{
fnHandleGlyph(i);
}
}
stClusterMapper.Reset();
}
for (int i = 0; i < nRunGlyphCount; ++i) {
int32_t nGlyphIndex = pHbGlyphInfos[i].codepoint;
int32_t nCharPos = pHbGlyphInfos[i].cluster;
int32_t nCharCount = 0;
bool bInCluster = false;
bool bClusterStart = false;
// Find the number of characters that make up this glyph.
if (!bRightToLeft)
{
// If the cluster is the same as previous glyph, then this
// already consumed, skip.
if (i > 0 && pHbGlyphInfos[i].cluster == pHbGlyphInfos[i - 1].cluster)
{
nCharCount = 0;
bInCluster = true;
}
else
{
// Find the next glyph with a different cluster, or the
// end of text.
int j = i;
int32_t nNextCharPos = nCharPos;
while (nNextCharPos == nCharPos && j < nRunGlyphCount)
nNextCharPos = pHbGlyphInfos[j++].cluster;
if (nNextCharPos == nCharPos)
nNextCharPos = nEndRunPos;
nCharCount = nNextCharPos - nCharPos;
if ((i == 0 || pHbGlyphInfos[i].cluster != pHbGlyphInfos[i - 1].cluster) &&
(i < nRunGlyphCount - 1 && pHbGlyphInfos[i].cluster == pHbGlyphInfos[i + 1].cluster))
bClusterStart = true;
}
}
else
{
// If the cluster is the same as previous glyph, then this
// will be consumed later, skip.
if (i < nRunGlyphCount - 1 && pHbGlyphInfos[i].cluster == pHbGlyphInfos[i + 1].cluster)
{
nCharCount = 0;
bInCluster = true;
}
else
{
// Find the previous glyph with a different cluster, or
// the end of text.
int j = i;
int32_t nNextCharPos = nCharPos;
while (nNextCharPos == nCharPos && j >= 0)
nNextCharPos = pHbGlyphInfos[j--].cluster;
if (nNextCharPos == nCharPos)
nNextCharPos = nEndRunPos;
nCharCount = nNextCharPos - nCharPos;
if ((i == nRunGlyphCount - 1 || pHbGlyphInfos[i].cluster != pHbGlyphInfos[i + 1].cluster) &&
(i > 0 && pHbGlyphInfos[i].cluster == pHbGlyphInfos[i - 1].cluster))
bClusterStart = true;
}
}
// if needed request glyph fallback by updating LayoutArgs
auto nOrigCharPos = stClusterMapper.RemapGlyph(nCharPos, nGlyphIndex);
if (!nGlyphIndex)
{
// Only request fallback for grapheme clusters that are drawn
if (nOrigCharPos >= rArgs.mnDrawMinCharPos
&& nOrigCharPos < rArgs.mnDrawEndCharPos)
{
aFallbackRuns.AddPos(nOrigCharPos, bRightToLeft);
if (SalLayoutFlags::ForFallback & rArgs.mnFlags)
continue;
}
}
GlyphItemFlags nGlyphFlags = GlyphItemFlags::NONE;
if (bRightToLeft)
nGlyphFlags |= GlyphItemFlags::IS_RTL_GLYPH;
if (bClusterStart)
nGlyphFlags |= GlyphItemFlags::IS_CLUSTER_START;
if (bInCluster)
nGlyphFlags |= GlyphItemFlags::IS_IN_CLUSTER;
sal_UCS4 aChar
= rArgs.mrStr.iterateCodePoints(&o3tl::temporary(sal_Int32(nCharPos)), 0);
if (u_isUWhiteSpace(aChar))
nGlyphFlags |= GlyphItemFlags::IS_SPACING;
if (hb_glyph_info_get_glyph_flags(&pHbGlyphInfos[i]) & HB_GLYPH_FLAG_UNSAFE_TO_BREAK)
nGlyphFlags |= GlyphItemFlags::IS_UNSAFE_TO_BREAK;
if (!m_bHasFontKashidaPositions
|| (hb_glyph_info_get_glyph_flags(&pHbGlyphInfos[i])
& HB_GLYPH_FLAG_SAFE_TO_INSERT_TATWEEL))
nGlyphFlags |= GlyphItemFlags::IS_SAFE_TO_INSERT_KASHIDA;
double nAdvance, nXOffset, nYOffset;
if (aSubRun.maDirection == HB_DIRECTION_TTB)
{
nGlyphFlags |= GlyphItemFlags::IS_VERTICAL;
nAdvance = -pHbPositions[i].y_advance;
nXOffset = -pHbPositions[i].y_offset;
nYOffset = -pHbPositions[i].x_offset - nBaseOffset;
if (GetFont().NeedOffsetCorrection(pHbPositions[i].y_offset))
{
// We need glyph's advance, top bearing, and height to
// correct y offset.
basegfx::B2DRectangle aRect;
// Get cached bound rect value for the font,
GetFont().GetGlyphBoundRect(nGlyphIndex, aRect, true);
nXOffset = -(aRect.getMinX() / nXScale + ( pHbPositions[i].y_advance
+ ( aRect.getHeight() / nXScale ) ) / 2.0 );
}
}
else
{
nAdvance = pHbPositions[i].x_advance;
nXOffset = pHbPositions[i].x_offset;
nYOffset = -pHbPositions[i].y_offset;
}
nAdvance = nAdvance * nXScale;
nXOffset = nXOffset * nXScale;
nYOffset = nYOffset * nYScale;
if (!GetSubpixelPositioning())
{
nAdvance = std::round(nAdvance);
nXOffset = std::round(nXOffset);
nYOffset = std::round(nYOffset);
}
basegfx::B2DPoint aNewPos(nCurrX + nXOffset, nYOffset);
const GlyphItem aGI(nCharPos, nCharCount, nGlyphIndex, aNewPos, nGlyphFlags,
nAdvance, nXOffset, nYOffset, nOrigCharPos);
auto nLowerBound = (bStartClusterOutOfOrder ? aGI.charPos() : aGI.origCharPos());
auto nUpperBound = (bEndClusterOutOfOrder ? aGI.charPos() : aGI.origCharPos());
if (nLowerBound >= rArgs.mnDrawMinCharPos && nUpperBound < rArgs.mnDrawEndCharPos)
{
m_GlyphItems.push_back(aGI);
}
if (nLowerBound >= rArgs.mnDrawOriginCluster
&& nUpperBound < rArgs.mnDrawEndCharPos)
{
nCurrX += nAdvance;
}
}
}
}
hb_buffer_destroy(pHbBuffer);
for (const auto& rRun : aFallbackRuns)
{
SetNeedFallback(rArgs, rRun.m_nMinRunPos, rRun.m_nEndRunPos, rRun.m_bRTL);
}
// Some flags are set as a side effect of text layout, save them here.
if (rArgs.mnFlags & SalLayoutFlags::GlyphItemsOnly)
m_GlyphItems.SetFlags(rArgs.mnFlags);
return true;
}
void GenericSalLayout::GetCharWidths(std::vector<double>& rCharWidths, const OUString& rStr) const
{
const int nCharCount = mnEndCharPos - mnMinCharPos;
rCharWidths.clear();
rCharWidths.resize(nCharCount, 0);
css::uno::Reference<css::i18n::XBreakIterator> xBreak;
const css::lang::Locale& rLocale(maLanguageTag.getLocale());
for (auto const& aGlyphItem : m_GlyphItems)
{
if (aGlyphItem.charPos() >= mnEndCharPos)
continue;
unsigned int nGraphemeCount = 0;
if (aGlyphItem.charCount() > 1 && aGlyphItem.newWidth() != 0 && !rStr.isEmpty())
{
// We are calculating DX array for cursor positions and this is a
// ligature, find out how many grapheme clusters are in it.
if (!xBreak.is())
xBreak = mxBreak.is() ? mxBreak : vcl::unohelper::CreateBreakIterator();
// Count grapheme clusters in the ligature.
sal_Int32 nDone;
sal_Int32 nPos = aGlyphItem.charPos();
while (nPos < aGlyphItem.charPos() + aGlyphItem.charCount())
{
nPos = xBreak->nextCharacters(rStr, nPos, rLocale,
css::i18n::CharacterIteratorMode::SKIPCELL, 1, nDone);
nGraphemeCount++;
}
}
if (nGraphemeCount > 1)
{
// More than one grapheme cluster, we want to distribute the glyph
// width over them.
std::vector<double> aWidths(nGraphemeCount);
// Check if the glyph has ligature caret positions.
unsigned int nCarets = nGraphemeCount;
std::vector<hb_position_t> aCarets(nGraphemeCount);
hb_ot_layout_get_ligature_carets(GetFont().GetHbFont(),
aGlyphItem.IsRTLGlyph() ? HB_DIRECTION_RTL : HB_DIRECTION_LTR,
aGlyphItem.glyphId(), 0, &nCarets, aCarets.data());
// Carets are 1-less than the grapheme count (since the last
// position is defined by glyph width), if the count does not
// match, ignore it.
if (nCarets == nGraphemeCount - 1)
{
// Scale the carets and apply glyph offset to them since they
// are based on the default glyph metrics.
double fScale = 0;
GetFont().GetScale(&fScale, nullptr);
for (size_t i = 0; i < nCarets; i++)
aCarets[i] = (aCarets[i] * fScale) + aGlyphItem.xOffset();
// Use the glyph width for the last caret.
aCarets[nCarets] = aGlyphItem.newWidth();
// Carets are absolute from the X origin of the glyph, turn
// them to relative widths that we need below.
for (size_t i = 0; i < nGraphemeCount; i++)
aWidths[i] = aCarets[i] - (i == 0 ? 0 : aCarets[i - 1]);
// Carets are in visual order, but we want widths in logical
// order.
if (aGlyphItem.IsRTLGlyph())
std::reverse(aWidths.begin(), aWidths.end());
}
else
{
// The glyph has no carets, distribute the width evenly.
auto nWidth = aGlyphItem.newWidth() / nGraphemeCount;
std::fill(aWidths.begin(), aWidths.end(), nWidth);
// Add rounding difference to the last component to maintain
// ligature width.
aWidths[nGraphemeCount - 1] += aGlyphItem.newWidth() - (nWidth * nGraphemeCount);
}
// Set the width of each grapheme cluster.
sal_Int32 nDone;
sal_Int32 nPos = aGlyphItem.charPos();
for (auto nWidth : aWidths)
{
rCharWidths[nPos - mnMinCharPos] += nWidth;
nPos = xBreak->nextCharacters(rStr, nPos, rLocale,
css::i18n::CharacterIteratorMode::SKIPCELL, 1, nDone);
}
}
else
rCharWidths[aGlyphItem.charPos() - mnMinCharPos] += aGlyphItem.newWidth();
}
}
// - stJustification:
// - contains adjustments to glyph advances (usually due to justification).
// - contains kashida insertion positions, for Arabic script justification.
// - The number of kashidas is calculated from the adjusted advances.
void GenericSalLayout::ApplyJustificationData(const JustificationData& rstJustification)
{
int nCharCount = mnEndCharPos - mnMinCharPos;
std::vector<double> aOldCharWidths;
std::unique_ptr<double[]> const pNewCharWidths(new double[nCharCount]);
// Get the natural character widths (i.e. before applying DX adjustments).
GetCharWidths(aOldCharWidths, {});
// Calculate the character widths after DX adjustments.
for (int i = 0; i < nCharCount; ++i)
{
if (i == 0)
{
pNewCharWidths[i] = rstJustification.GetTotalAdvance(mnMinCharPos + i);
}
else
{
pNewCharWidths[i] = rstJustification.GetTotalAdvance(mnMinCharPos + i)
- rstJustification.GetTotalAdvance(mnMinCharPos + i - 1);
}
}
// Map of Kashida insertion points (in the glyph items vector) and the
// requested width.
std::map<size_t, std::pair<double, double>> pKashidas;
// The accumulated difference in X position.
double nDelta = 0;
// Apply the DX adjustments to glyph positions and widths.
size_t i = 0;
while (i < m_GlyphItems.size())
{
// Accumulate the width difference for all characters corresponding to
// this glyph.
int nCharPos = m_GlyphItems[i].charPos() - mnMinCharPos;
double nDiff = 0;
for (int j = 0; j < m_GlyphItems[i].charCount(); j++)
nDiff += pNewCharWidths[nCharPos + j] - aOldCharWidths[nCharPos + j];
if (!m_GlyphItems[i].IsRTLGlyph())
{
// Adjust the width and position of the first (leftmost) glyph in
// the cluster.
m_GlyphItems[i].addNewWidth(nDiff);
m_GlyphItems[i].adjustLinearPosX(nDelta);
// Adjust the position of the rest of the glyphs in the cluster.
while (++i < m_GlyphItems.size())
{
if (!m_GlyphItems[i].IsInCluster())
break;
m_GlyphItems[i].adjustLinearPosX(nDelta);
}
}
else if (m_GlyphItems[i].IsInCluster())
{
// RTL glyph in the middle of the cluster, will be handled in the
// loop below.
i++;
}
else // RTL
{
// Adjust the width and position of the first (rightmost) glyph in
// the cluster. This is RTL, so we put all the adjustment to the
// left of the glyph.
m_GlyphItems[i].addNewWidth(nDiff);
m_GlyphItems[i].adjustLinearPosX(nDelta + nDiff);
// Adjust the X position of the rest of the glyphs in the cluster.
// We iterate backwards since this is an RTL glyph.
for (size_t j = i; j >= 1 && m_GlyphItems[j - 1].IsInCluster(); --j)
m_GlyphItems[j - 1].adjustLinearPosX(nDelta + nDiff);
// This is a Kashida insertion position, mark it. Kashida glyphs
// will be inserted below.
if (rstJustification.GetPositionHasKashida(mnMinCharPos + nCharPos).value_or(false))
{
pKashidas[i] = { nDiff, pNewCharWidths[nCharPos] };
}
i++;
}
// Increment the delta, the loop above makes sure we do so only once
// for every character (cluster) not for every glyph (otherwise we
// would apply it multiple times for each glyph belonging to the same
// character which is wrong as DX adjustments are character based).
nDelta += nDiff;
}
// Insert Kashida glyphs.
if (pKashidas.empty())
return;
// Find Kashida glyph width and index.
sal_GlyphId nKashidaIndex = GetFont().GetGlyphIndex(0x0640);
double nKashidaWidth = GetFont().GetKashidaWidth();
if (!GetSubpixelPositioning())
nKashidaWidth = std::ceil(nKashidaWidth);
if (nKashidaWidth <= 0)
{
SAL_WARN("vcl.gdi", "Asked to insert Kashidas in a font with bogus Kashida width");
return;
}
size_t nInserted = 0;
for (auto const& pKashida : pKashidas)
{
auto pGlyphIter = m_GlyphItems.begin() + nInserted + pKashida.first;
// The total Kashida width.
auto const& [nTotalWidth, nClusterWidth] = pKashida.second;
// Number of times to repeat each Kashida.
int nCopies = 1;
if (nTotalWidth > nKashidaWidth)
nCopies = nTotalWidth / nKashidaWidth;
// See if we can improve the fit by adding an extra Kashidas and
// squeezing them together a bit.
double nOverlap = 0;
double nShortfall = nTotalWidth - nKashidaWidth * nCopies;
if (nShortfall > 0)
{
++nCopies;
double nExcess = nCopies * nKashidaWidth - nTotalWidth;
if (nExcess > 0)
nOverlap = nExcess / (nCopies - 1);
}
basegfx::B2DPoint aPos = pGlyphIter->linearPos();
int nCharPos = pGlyphIter->charPos();
GlyphItemFlags const nFlags = GlyphItemFlags::IS_IN_CLUSTER | GlyphItemFlags::IS_RTL_GLYPH;
// Move to the left side of the adjusted width and start inserting
// glyphs there.
aPos.adjustX(-nClusterWidth + pGlyphIter->origWidth());
while (nCopies--)
{
GlyphItem aKashida(nCharPos, 0, nKashidaIndex, aPos, nFlags, 0, 0, 0, nCharPos);
pGlyphIter = m_GlyphItems.insert(pGlyphIter, aKashida);
aPos.adjustX(nKashidaWidth - nOverlap);
++pGlyphIter;
++nInserted;
}
}
}
bool GenericSalLayout::HasFontKashidaPositions() const { return m_bHasFontKashidaPositions; }
// Kashida will be inserted between nCharPos and nNextCharPos.
bool GenericSalLayout::IsKashidaPosValid(int nCharPos, int nNextCharPos) const
{
// Search for glyph items corresponding to nCharPos and nNextCharPos.
auto const aGlyph = std::find_if(m_GlyphItems.begin(), m_GlyphItems.end(),
[&](const GlyphItem& g) { return g.charPos() == nCharPos; });
auto const aNextGlyph = std::find_if(m_GlyphItems.begin(), m_GlyphItems.end(),
[&](const GlyphItem& g) { return g.charPos() == nNextCharPos; });
// If either is not found then a ligature is created at this position, we
// cant insert Kashida here.
if (aGlyph == m_GlyphItems.end() || aNextGlyph == m_GlyphItems.end())
return false;
// If the either character is not supported by this layout, return false so
// that fallback layouts would be checked for it.
if (aGlyph->glyphId() == 0 || aNextGlyph->glyphId() == 0)
return false;
// Lastly check if this position is kashida-safe.
return aNextGlyph->IsSafeToInsertKashida();
}
void GenericSalLayout::drawSalLayout(void* pSurface, const basegfx::BColor& rTextColor, bool bAntiAliased) const
{
Application::GetDefaultDevice()->GetGraphics()->DrawSalLayout(*this, pSurface, rTextColor, bAntiAliased);
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */