1
0
Fork 0
libreoffice/vcl/source/text/ImplLayoutRuns.cxx
Daniel Baumann 8e63e14cf6
Adding upstream version 4:25.2.3.
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
2025-06-22 16:20:04 +02:00

211 lines
6.3 KiB
C++

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include <ImplLayoutRuns.hxx>
#include <algorithm>
#include <tuple>
void ImplLayoutRuns::AddPos( int nCharPos, bool bRTL )
{
// check if charpos could extend current run
if (!maRuns.empty())
{
auto& rLastRun = maRuns.back();
if (bRTL == rLastRun.m_bRTL)
{
if (nCharPos + 1 == rLastRun.m_nMinRunPos)
{
// extend current run by new charpos
rLastRun.m_nMinRunPos = nCharPos;
}
if (nCharPos == rLastRun.m_nEndRunPos)
{
// extend current run by new charpos
++rLastRun.m_nEndRunPos;
}
}
// ignore new charpos when it is in current run
if ((rLastRun.m_nMinRunPos <= nCharPos) && (nCharPos < rLastRun.m_nEndRunPos))
{
return;
}
}
// else append a new run consisting of the new charpos
maRuns.emplace_back(nCharPos, nCharPos + 1, bRTL);
}
void ImplLayoutRuns::AddRun( int nCharPos0, int nCharPos1, bool bRTL )
{
if( nCharPos0 == nCharPos1 )
return;
auto nOrderedCharPos0 = std::min(nCharPos0, nCharPos1);
auto nOrderedCharPos1 = std::max(nCharPos0, nCharPos1);
if (!maRuns.empty())
{
auto& rLastRun = maRuns.back();
if ((rLastRun.m_nMinRunPos <= nOrderedCharPos0)
&& (nOrderedCharPos0 <= rLastRun.m_nEndRunPos)
&& (nOrderedCharPos0 < rLastRun.m_nEndRunPos || bRTL == rLastRun.m_bRTL))
{
rLastRun.m_nEndRunPos = std::max(rLastRun.m_nEndRunPos, nOrderedCharPos1);
return;
}
}
// append new run
maRuns.emplace_back(nOrderedCharPos0, nOrderedCharPos1, bRTL);
}
void ImplLayoutRuns::Normalize()
{
boost::container::small_vector<Run, 8> aOldRuns;
std::swap(aOldRuns, maRuns);
std::sort(aOldRuns.begin(), aOldRuns.end(),
[](const Run& rA, const Run& rB)
{
return std::tie(rA.m_nMinRunPos, rA.m_nEndRunPos)
< std::tie(rB.m_nMinRunPos, rB.m_nEndRunPos);
});
for (const auto& rRun : aOldRuns)
{
AddRun(rRun.m_nMinRunPos, rRun.m_nEndRunPos, false);
}
}
void ImplLayoutRuns::ReverseTail(size_t nTailIndex)
{
std::reverse(maRuns.begin() + nTailIndex, maRuns.end());
}
bool ImplLayoutRuns::PosIsInRun( int nCharPos ) const
{
if( mnRunIndex >= static_cast<int>(maRuns.size()) )
return false;
return maRuns.at(mnRunIndex).Contains(nCharPos);
}
bool ImplLayoutRuns::PosIsInAnyRun( int nCharPos ) const
{
return std::any_of(maRuns.begin(), maRuns.end(),
[nCharPos](const auto& rRun) { return rRun.Contains(nCharPos); });
}
bool ImplLayoutRuns::GetNextPos( int* nCharPos, bool* bRightToLeft )
{
// negative nCharPos => reset to first run
if( *nCharPos < 0 )
mnRunIndex = 0;
// return false when all runs completed
if( mnRunIndex >= static_cast<int>(maRuns.size()) )
return false;
const auto& rRun = maRuns.at(mnRunIndex);
if( *nCharPos < 0 )
{
// get first valid nCharPos in run
*nCharPos = rRun.m_nMinRunPos;
}
else
{
// advance to next nCharPos
++(*nCharPos);
// advance to next run if current run is completed
if (*nCharPos == rRun.m_nEndRunPos)
{
++mnRunIndex;
if (mnRunIndex >= static_cast<int>(maRuns.size()))
{
return false;
}
const auto& rNextRun = maRuns.at(mnRunIndex);
*nCharPos = rNextRun.m_nMinRunPos;
*bRightToLeft = rNextRun.m_bRTL;
}
}
return true;
}
bool ImplLayoutRuns::GetRun( int* nMinRunPos, int* nEndRunPos, bool* bRightToLeft ) const
{
if( mnRunIndex >= static_cast<int>(maRuns.size()) )
return false;
const auto& rRun = maRuns.at(mnRunIndex);
*nMinRunPos = rRun.m_nMinRunPos;
*nEndRunPos = rRun.m_nEndRunPos;
*bRightToLeft = rRun.m_bRTL;
return true;
}
void ImplLayoutRuns::PrepareFallbackRuns(ImplLayoutRuns* paRuns, ImplLayoutRuns* paFallbackRuns)
{
// Normalize the input fallback runs. This is required for efficient lookup.
paFallbackRuns->Normalize();
// Adjust fallback runs to have the same order and limits of the original runs.
ImplLayoutRuns aNewRuns;
for (const auto& rRun : *paRuns)
{
auto nTailIndex = aNewRuns.size();
// Search for the first fallback run intersecting this run
auto it = std::lower_bound(paFallbackRuns->begin(), paFallbackRuns->end(),
rRun.m_nMinRunPos, [](const auto& rCompRun, int nValue)
{ return rCompRun.m_nEndRunPos < nValue; });
for (; it != paFallbackRuns->end(); ++it)
{
if (rRun.m_nEndRunPos <= it->m_nMinRunPos)
{
break;
}
int nSubMin = std::max(rRun.m_nMinRunPos, it->m_nMinRunPos);
int nSubMax = std::min(rRun.m_nEndRunPos, it->m_nEndRunPos);
aNewRuns.AddRun(nSubMin, nSubMax, rRun.m_bRTL);
}
// RTL subruns must be added in reverse order
if (rRun.m_bRTL)
{
aNewRuns.ReverseTail(nTailIndex);
}
}
*paRuns = std::move(aNewRuns);
paRuns->ResetPos();
paFallbackRuns->Clear();
paFallbackRuns->ResetPos();
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */